Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ugto.mx/handle/20.500.12059/5245
Título: Semiclassical statistical theory and computer simulations of confined quantum fluids
Autor: VICTOR MANUEL TREJOS MONTOYA
ID del Autor: info:eu-repo/dai/mx/cvu/373166
Contributor: ALEJANDRO GIL VILLEGAS MONTIEL
Contributor's IDs: info:eu-repo/dai/mx/cvu/12072
Resumen: Among various alternative fuels to gasoline an diesel, hydrogen remains to be a very attractive alternative. Nowadays, several types of porous materials have been extensively studied and tested as potential candidates for storage of hydrogen. On the other hand, the evaluation of an adsorptive process is commonly based in new adsorptive materials nanoporous technologies and predictive models based on equations of state. The great importance of hydrogen, thinking as a green combustible, have increased the searching for more accurate predicting models of thermodynamic properties. Molecular simulations and theoretical approaches are of key importance because the prediction of the adsorption properties over a wide range of temperatures and pressures would reduce the number of time consuming experiments required for performance evaluations. This thesis presents a theoretical analysis of the adsorption of mixtures containing quatum fluids at high pressures and low temperatures. Computer simulations under the Metropolis Monte Carlo scheme and molecular equation of state was the main methodology used in this work. The thesis is integrated in three items: The first step is the development of a semiclassical approach to model quantum fluids using the Statistical Associating Fluid Theory for Potential of Variable Range (SAFT-VR), that can be used to determine thermodynamic properties of quantum fluids. This theory is applied to the prediction of liquid-vapor properties of fluids like molecular hydrogen, neon, deuterium and helium-4. To understand the behaviour of these fluids under connement and their adsorptive properties, in the second part of the thesis a MC simulation study of quantum fluids using semiclassical efective pair potentials is presented. The first and second parts are the basis for the development of a two-dimentional equation of state to predict adsorption isotherms of pure quantum fluids and mixtures of there onto different surface substrates. In all cases: theory, experimental data, and computer simulations were compared.
Fecha de publicación: 6-ago-2014
Editorial: Universidad de Guanajuato
Licencia: http://creativecommons.org/licenses/by-nc-nd/4.0
URI: http://repositorio.ugto.mx/handle/20.500.12059/5245
Idioma: eng
Aparece en las colecciones:Doctorado en Física

Archivos en este ítem:
Archivo Descripción TamañoFormato 
VÍCTOR MANUEL TREJOS MONTOYA_Tesis24.pdf2.77 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.