Please use this identifier to cite or link to this item: http://repositorio.ugto.mx/handle/20.500.12059/4615
Full metadata record
DC FieldValueLanguage
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.contributorAGUSTIN VIDAL LESSO-
dc.creatorNatali Mancera Camposes_MX
dc.date.accessioned2021-04-20T17:19:48Z-
dc.date.available2021-04-20T17:19:48Z-
dc.date.issued2020-09-
dc.identifier.urihttp://repositorio.ugto.mx/handle/20.500.12059/4615-
dc.description.abstractEn este trabajo se desarrolló un modelo de elementos finitos de pie, con el objetivo principal, de determinar los efectos biomecánico-estructurales, que pueden llegar a generar la consideración de los distintos tipos de no linealidades numéricas. Para ello, se realizaron distintos cambios al modelo de pie, tanto en los tipos de contacto generados en cada una de sus articulaciones, como en el modelo de material asignado a algunos de los tejidos blandos. El contacto entre articulaciones se estableció de dos tipos, lineal (Bonded) y no lineal (No separation) en dos distintos modelos de pie, para después, comparar los valores de los parámetros estructurales obtenidos de ellos, y poder establecer las diferencias generadas entre parámetros, al modificar el tipo de contacto utilizado. De manera similar se hizo con el modelo de material asignado a algunos de los tejidos blandos de dos diferentes modelos, donde se asignó un modelo de material lineal a los tejidos del primer modelo de pie, y un no lineal para los tejidos del segundo modelo, y posteriormente poder determinar las diferencias encontradas entre los parámetros estructurales de un modelo y otro debido al tipo de material. La comparación de los parámetros estructurales obtenidos con un modelo en el que el movimiento relativo entre huesos fue restringido, con otro en el que no, mediante el control de las regiones de contacto, mostró una diferencia significativa entre modelos de hasta 99.1%, lo que indica que el uso de un tipo de contacto lineal (que no permita el movimiento relativo entre huesos), en modelos numéricos de pie, puede derivar en resultados muy distintos de los obtenidos con modelos en los que se usen contactos no lineales (No separation), que además son más acordes a la realidad. Se pudo verificar también, que el incremento de esfuerzos y deformaciones, en cada uno de los tejidos blandos del pie, está directamente relacionado con el incremento del peso corporal de una persona, lo cual indica que personas con sobrepeso pueden ser propensas a desarrollar con mayor facilidad diferentes patologías del pie. Finalmente, de la comparación realizada entre modelos de pie, con distinto tipo de material, no se obtuvo diferencia alguna, esto, debido al rango de deformación presente en el modelo.es_MX
dc.language.isospaes_MX
dc.publisherUniversidad de Guanajuatoes_MX
dc.rightsinfo:eu-repo/semantics/openAccesses_MX
dc.subject.classificationCIS- Maestría en Ingeniería Mecánica-
dc.titleAnálisis de los Efectos de las no Linealidades de Tejidos Blandos y Contactos en el Comportamiento Biomecánico del Piees_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.subject.ctiinfo:eu-repo/classification/cti/7es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/33-
dc.subject.ctiinfo:eu-repo/classification/cti/3313-
dc.subject.keywordsLinealidades de Tejidos Blandoses_MX
dc.subject.keywordsAnálisis de los Efectoses_MX
dc.subject.keywordsComportamiento Biomecánicoes_MX
dc.subject.keywordsPiees_MX
dc.contributor.idinfo:eu-repo/dai/mx/cvu/173290es_MX
dc.contributor.roledirectores_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX
dc.contributor.oneJavier Bayod López-
dc.contributor.idoneinfo:eu-repo/dai/mx/orcid/0000-0001-5505-6974es_MX
dc.contributor.roleonedirectores_MX
dc.description.abstractEnglishThe development of finite element models of the foot has been ongoing since 1981 (Nakamura et al.[88]) and has been increasing over time. Due to the implicit complexity in the numerical analyzes of the foot, each of the models has been developed with different kinds of simplifications according to the study to be carried out. Thus, in the literature we can find either2D,3D models, linear or nonlinear. Thus, given the relevance that the development of new foot models represents, it is that in this work a finite element model of this member was developed, with the main objective of determining the biomechanical-structural effects due tothe consideration of the different types of numerical nonlinearities. To achieve the above, different changes were made to the foot model, both in the types of contact generated in each of its joints, and in the material model assigned to some of the soft tissues. The contact between joints was established of two types, linear (Bonded) and non-linear (No separation) in two different foot models, to later compare the values of the structural parameters obtained from them, and be able to establish the differences generated between parameters. In a similar way, it was done with the material model assigned to some of the soft tissues of two different foot models, where a linear material model was assigned to the tissues of the first model, and a non-linear one for the tissues of the second, and later to be able to determine the differences found between the structural parameters of both models due to the type of material. Once the numerical foot model was complete, it was possible to validate it, by comparing the distribution of body weight in the hindfoot and toes with the values obtained experimentally and by simulation by Cavanagh et al.[52] and Isvilanonda et al.[2] respectively, obtaining for the model developed here, a body weight distribution of 67% in the hindfoot and 7% in the toes. The physiological angles of Costa Bartani and Kite were also measured, obtaining values of 124° and 23°, respectively, which helped to verify that the model developed was anatomically correct. Comparison of the structural parameters obtained with a model in which the relative movement between bones was restricted, with another in which it was not, by controlling the contact regions, showed a significant difference between models of up to 99.1%, which indicates that the use of a type of linear contact (that does not allow relative movement between bones), in numerical foot models, can lead to results very different from those obtained with models in which non-linear contacts are used (No separation) , which are also closer to reality. It could also be verified that the increase in stress sand deformations in each of the soft tissues of the foot is directly related to the increase in body weight of a person, which indicates that overweight people may be prone to develop more easily different pathologies of the foot. Finally, from the comparison made between models with different types of material, no difference was obtained, this, due to the range of deformation present in the model.-
Appears in Collections:Maestría en Ingeniería Mecánica

Files in This Item:
File Description SizeFormat 
NATALI MANCERA CAMPOS_Tesis.pdf6.74 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.