Please use this identifier to cite or link to this item:
http://repositorio.ugto.mx/handle/20.500.12059/10516
Title: | Tracking with artificial intelligence for the hand tracking of different species |
Authors: | Alberto Lopez Moreno |
Abstract: | Accurately scientific disciplines, including biomechanics, genetics, ethology, and neurology, it is essential to accurately track the behavior of animals throughout studies, particularly without employing markers. However, it has proven difficult to extract precise stances from backgrounds that are always shifting. Recently, we unveiled an open-source toolset that makes use of a cutting-edge algorithm for estimating human position. With the help of this toolbox, users may train a deep neural network to accurately monitor user-defined features with tracking accuracy that rivals that of human labeling. We have added new features, including as graphical user interfaces (GUIs), efficiency improvements, and network refinement based on active learning, to this revised Python module. In order to help customers create a unique and repeatable analysis pipeline using a graphical processing unit (GPU). |
Issue Date: | 10-Jan-2024 |
Publisher: | Universidad de Guanajuato |
License: | http://creativecommons.org/licenses/by-nc-nd/4.0 |
URI: | http://repositorio.ugto.mx/handle/20.500.12059/10516 |
Language: | eng |
Appears in Collections: | Revista Jóvenes en la Ciencia |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Tracking with artificial intelligence for the hand tracking of different species.pdf | 1.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.