Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ugto.mx/handle/20.500.12059/9395
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0 | es_MX |
dc.creator | Luis Fernando Parra Sánchez | es_MX |
dc.date.accessioned | 2023-09-04T14:49:23Z | - |
dc.date.available | 2023-09-04T14:49:23Z | - |
dc.date.issued | 2023-08-09 | - |
dc.identifier.uri | http://repositorio.ugto.mx/handle/20.500.12059/9395 | - |
dc.description.abstract | Breast cancer is one of the leading causes of death in women in the world. An early detection is crucial to be able to performan appropriatetreatment and thus reduce mortality. An importanttool for early detection ismastography, whichis a technique to obtainimages through X-rays. Through this technique it is possible to detect abnormalities in the breast tissue, thus allowing to detect the disease at an early stage.On the other hand,machine learning algorithmshaveprovidedpromising resultsin automaticdetection.In this work we combine both X-ray mastography and machine learning algorithms to perform breast detection.The YOLO neural network was used, which is a convolutional network that performs the detection in a single stage. For the training of the network, 216 mastographiesfrom the dataset of breast mammography images with masses were used. Experimental resultsin position-independent breast detection showedan average confidence of 0.983, and a standard deviation of 0.024 in a sample of 200 images.This result allows to propose YOLO as an accurate preprocessing method for more sophisticated neural networks designed to solve breast cancer related tasks. | es_MX |
dc.language.iso | eng | es_MX |
dc.publisher | Universidad de Guanajuato | es_MX |
dc.relation | https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/4152 | es_MX |
dc.rights | info:eu-repo/semantics/openAccess | es_MX |
dc.source | Jóvenes en la Ciencia: Veranos de la Ciencia XXVIII Vol. 21 (2023) | es_MX |
dc.title | Breast detection in X-ray mastography with machine learning techniques | es_MX |
dc.type | info:eu-repo/semantics/article | es_MX |
dc.subject.cti | info:eu-repo/classification/cti/3 | es_MX |
dc.subject.cti | info:eu-repo/classification/cti/3201 | es_MX |
dc.subject.cti | info:eu-repo/classification/cti/32 | es_MX |
dc.subject.keywords | Breast cancer | es_MX |
dc.subject.keywords | Mastography | es_MX |
dc.subject.keywords | Machine learning | es_MX |
dc.subject.keywords | Breast detection | es_MX |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_MX |
dc.creator.two | Uriel Isaac Álvarez Cárdenas | - |
dc.creator.three | Arturo Daniel Jiménez Salazar | - |
dc.creator.four | Blanca Olivia Murillo Ortiz | es_MX |
dc.creator.five | Luis Carlos Padierna García | es_MX |
Aparece en las colecciones: | Revista Jóvenes en la Ciencia |
Archivos en este ítem:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
13Breast detection in X-ray mastography with machine learning techniques.pdf | 1.29 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.