Please use this identifier to cite or link to this item: http://repositorio.ugto.mx/handle/20.500.12059/4705
Full metadata record
DC FieldValueLanguage
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.contributorMARIO ALBERTO GARCIA MURILLO-
dc.creatorMAURICIO ARREDONDO SOTO-
dc.date.accessioned2021-04-28T16:53:45Z-
dc.date.available2021-04-28T16:53:45Z-
dc.date.issued2019-08-
dc.identifier.urihttp://repositorio.ugto.mx/handle/20.500.12059/4705-
dc.description.abstractSe propone un sistema de medición basado en fotogrametría, el cual usa una sola cámara y dos patrones planos para extraer datos cinemáticos en 3D. Se realizó un estudio de precisión para asegurar la confiabilidad del sistema. Con este sistema de medición se propone además un nuevo procedimiento experimental para medir el espacio de trabajo de la rodilla durante tres tareas de movimiento (flexión-extensión pasiva, rotación interna-externa pasiva y flexión semi-activa) y calcular sus parámetros geométricos. Entonces, se propone un nuevo modelo cinemático de rodilla, como una plataforma paralela con 4-GdL y arquitectura RRPP+4-SPS con significancia anatómica, capaz de emular un espacio de trabajo de flexión específico de un paciente obtenido experimentalmente, así como de simular variaciones de longitud de los ligamentos: ACL, PCL, MCL y LCL, a través de las distancias ente los pares esféricos de las cadenas cinemáticas SPS. De igual manera, se presenta el análisis cinemático inverso mediante notación de Denavit-Hartenberg y el análisis de movilidad. Finalmente, se desarrolla un proceso de optimización para obtener curvas de variones de longitud de los ligamentos similares a unas pre-escritas tomadas de la literatura. Dos ejemplos del modelo cinemático de rodilla antes y después del proceso de optimización han sido validados mediante el software SolidWorks.es_MX
dc.language.isoenges_MX
dc.publisherUniversidad de Guanajuatoes_MX
dc.rightsinfo:eu-repo/semantics/openAccesses_MX
dc.subject.classificationCIS- Maestría en Ingeniería Mecánica-
dc.titleA Novel Kinematic Knee Model as a Parallel Mechanism for Computing Ligament Length Variationses_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.creator.idinfo:eu-repo/dai/mx/cvu/863078es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/7es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/33-
dc.subject.ctiinfo:eu-repo/classification/cti/3314-
dc.subject.keywordsKinematic Knee Modeles_MX
dc.subject.keywordsMeasurement Systemes_MX
dc.subject.keywordsMotion Taskes_MX
dc.subject.keywordsOptimization Processes_MX
dc.subject.keywordsLigament Length Variationes_MX
dc.contributor.idinfo:eu-repo/dai/mx/cvu/269909es_MX
dc.contributor.roledirectores_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX
dc.contributor.oneAGUSTIN VIDAL LESSO-
dc.contributor.idoneinfo:eu-repo/dai/mx/cvu/173290es_MX
dc.contributor.roleonedirectores_MX
dc.description.abstractEnglishMeasurement of the knee motion and the computing of its geometrical parameters isa complex task that requires the use of specialized facilities and equipment to perform data acquisition, as well as clinicians with training in physiology to place the markerscorrectly on anatomical landmarks. Additionally, the existing kinematic knee model shave important limitations in their ability to reproduce complex movements different than pure flexion-extension, since their mobility have been limited to 1-DoF. The architecture of these models has evolved over the years from the planar mechanisms to the recent spatial parallel platforms, improving their capability to reproduce spatial movements of the knee, but only during passive motion. Moreover, these models take the ligaments as isometric links, therefore, not allowing to simulate their actual behavior. In order to overcome the drawbacks, a photogrammetric measurement system is pro-posed, which uses only one camera and two planar patterns to extract 3D kinematic data. An accuracy study of the measurement system was developed to ensure the reliability of it. With this measurement system, a new experimental procedure to acquire the work-space of three motion tasks (passive flexion-extension, passive internal-external rotation and semi-active flexion-extension) and compute the geometrical parameters of the knee is proposed. Then, a new kinematic knee model as a parallel platform with 4-DoF and a RRPP+4-SPS architecture with high anatomic significance is proposed, which is capable of reaching a subject-specific flexion work-space obtained experimentally as well as being able to simulate the ligament length variations of: ACL PCL MCL and LCL by the distance between the spherical pairs in the SPS kinematic chains. Likewise, the inverse kinematic analysis by means of the Denavit-Hartenberg notation and the mobility analysis are presented for the proposed kinematic knee model. Finally, an optimization process is developed to set the ligament length variation curves of the model as the prescribed ones taken from the literature. Two examples of the kinematic knee model before and after the optimization process have been validated by the computer software SolidworksR©.-
Appears in Collections:Maestría en Ingeniería Mecánica

Files in This Item:
File Description SizeFormat 
MAURICIO ARREDONDO SOTO_Tesis.pdf19.58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.