Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ugto.mx/handle/20.500.12059/10417
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.contributorYURIY SHMALIYru
dc.creatorCARLOS MAURICIO LASTRE DOMINGUEZes_MX
dc.date.accessioned2024-02-23T15:39:05Z-
dc.date.available2024-02-23T15:39:05Z-
dc.date.issued2020-05-
dc.identifier.urihttp://repositorio.ugto.mx/handle/20.500.12059/10417-
dc.description.abstractThe electrocardiogram (ECG) signals bear fundamental information for deciding about heart diseases. So the scientific community has been performing many efforts during decades to extract features of heartbeats via ECG records with high accuracy and efficiency using different strategies and methods. However, the noise and artifacts provided by external factors avoid significant patterns associated with the ECG signals. These patterns play an important role to find specific abnormalities in ECG signals. Hence, techniques based on unbiased FIR (UFIR) filtering promises better results. In this dissertation, we have applied a model based on UFIR to ECG signals. Hence, we compare the proposed technique with traditional method such as predictors, standard filters (e.g. low-pass filter) wavelet filters, Savitsky-Golay filter. The UFIR method outperforms other studied techniques for ECG signals.en
dc.language.isoengen
dc.publisherUniversidad de Guanajuatoes_MX
dc.rightsinfo:eu-repo/semantics/openAccesses_MX
dc.subject.classificationCIS- Doctorado en Ingeniería Eléctricaes_MX
dc.titleDenoising and features extraction of ECG Signals using Unbiased FIR estimation techniqueses_MX
dc.typeinfo:eu-repo/semantics/doctoralThesises_MX
dc.creator.idinfo:eu-repo/dai/mx/cvu/763720es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/7es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/33es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/3311es_MX
dc.subject.keywordsNoise removalen
dc.subject.keywordsElectrocardiographic Signals (ECG) – Processingen
dc.subject.keywordsUnbiased Finite Impulse Response (UFIR)en
dc.subject.keywordsHeart diseases – Diagnosisen
dc.contributor.idinfo:eu-repo/dai/mx/cvu/26159es_MX
dc.contributor.roledirectores_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX
dc.contributor.twoOSCAR GERARDO IBARRA MANZANOes_MX
dc.contributor.idtwoinfo:eu-repo/dai/mx/cvu/19462es_MX
dc.contributor.roletwodirectores_MX
Aparece en las colecciones:Doctorado en Ingeniería Eléctrica

Archivos en este ítem:
Archivo Descripción TamañoFormato 
CARLOS MAURICIO LASTRE DOMÍNGUEZ_TesisDr24.pdf6.48 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.