
UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO - SALAMANCA
DIVISIÓN DE INGENIERÍAS

“Evolutionary Learning of Selection

Hyper-Heuristics for Choosing the Right

Method in Text Classification Problems”

Thesis

A thesis presented for the degree of:

Maestŕıa en Ingenieŕıa Eléctrica
(Instrumentación y Sistemas Digitales)

By:

Ing. Jonathán de Jesús Estrella Ramı́rez

Thesis Director:

Dr. Juan Carlos Gómez Carranza

Salamanca, Guanajuato September 2023

UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO - SALAMANCA
DIVISIÓN DE INGENIERÍAS

“Aprendizaje Evolutivo de Hiperheuŕısticas

de Selección para Elegir el Método Correcto

en Problemas de Clasificación de Textos”

Tesis

Que para obtener el grado de:

Maestŕıa en Ingenieŕıa Eléctrica
(Instrumentación y Sistemas Digitales)

Presenta:

Ing. Jonathán de Jesús Estrella Ramı́rez

Director de Tesis:

Dr. Juan Carlos Gómez Carranza

Salamanca, Guanajuato Septiembre 2023

Abstract

Text classification is a common task in various areas of machine learning and has
many applications. In this task, there are different problems such as email filtering,
fake news detection, sentiment detection, etc. Different datasets can be used depend-
ing on the problem, but the optimal classification method can be specific for each
one. Nevertheless, the process to find this optimal method is a complicated prob-
lem. In the scope of automated machine learning, different approaches have been
developed to attack this problem; the most recent ones based on deep learning. In
this thesis project, an evolutionary model, with the objective of generalizing the se-
lection of methods in text classification problems through selection hyper-heuristics,
is presented. Given a dataset, it is characterized by a group of 16 statistical meta-
features that represent its data distribution. A hyper-heuristic consists of a set of
rules of the if-then form, where each rule evaluates the group of meta-features to
determine the appropriate classification method for that dataset. The evolutionary
model begins with the creation of an initial population of hyper-heuristics, which,
over the generations, is evolved through specific crossover and mutation operators.
During each generation, the performance of the hyper-heuristics is calculated using
a group of training datasets. In the last generation, the hyper-heuristic with the
best performance is selected, and its final generalization is determined with a group
of independent datasets. The results and analysis indicate that the best learned
hyper-heuristic, in addition to having a good generalization, is more efficient than
two state-of-the-art automated machine learning systems, with very similar overall
performance.

2

Resumen

La clasificación de textos es una tarea común en diferentes áreas de aprendizaje de
máquina y tiene muchas aplicaciones. Dentro de esta tarea, existen diversos proble-
mas tales como filtrado de correo electrónico, detección de noticias falsas, detección
de sentimientos, etc. Diferentes conjuntos de datos pueden ser usados dependiendo
del problema, pero el método de clasificación óptimo puede ser espećıfico para cada
uno. Sin embargo, el proceso para encontrar este método óptimo es un problema
complicado. En el ámbito de aprendizaje de máquina automatizado, diferentes en-
foques han sido desarrollados para atacar este problema; los más recientes basados
en aprendizaje profundo. En este proyecto de tesis, un modelo evolutivo, con el
objetivo de generalizar la selección de métodos en problemas de clasificación de
textos mediante hiper-heuŕısticas de selección, es presentado. Dado un conjunto
de datos, este es caracterizado mediante un grupo de 16 meta-caracteŕısticas es-
tad́ısticas que representan su distribución de datos. Una hiper-heuŕıstica consta de
un conjunto de reglas de la forma si-entonces, donde cada regla evalúa el grupo de
meta-caracteŕısticas para aśı determinar el método de clasificación adecuado para
tal conjunto de datos. El modelo evolutivo parte de la creación de una población
inicial de hiper-heuŕısticas, que con el paso de las generaciones, es evolucionada
mediante operadores de cruza y mutación espećıficos. Durante cada generación, el
desempeño de las hiper-heuŕısticas es evaluado mediante un grupo de conjuntos de
datos de entrenamiento. En la última generación, la hiper-heuŕıstica con el mejor
desempeño es seleccionada, y su generalización final es determinada con un grupo
de conjuntos de datos independiente. Los resultados y análisis indican que la mejor
hiper-heuŕıstica aprendida, además de contar con una buena generalización, es más
eficiente que dos sistemas de aprendizaje de máquina automatizados del estado del
arte, con desempeños generales muy similares.

3

Dedication

To my mother Maŕıa

4

Acknowledgements

I want to thank my mother Maŕıa, my sisters Brenda, Lućıa, Juana, Laura and
Yesenia, and my brothers Jesús and Gamaliel for being my support during this
journey.

Thank you, Dr. Carranza, for giving me the opportunity to work on this project
and also for your constant support during its development.

To all of you my greatest appreciation and gratitude.

5

Institutional Acknowledgements

Thanks to the University of Guanajuato for all the academic supports, and to
CONACyT for the financial support under grant 806210.

6

Contents

List of Tables 9

List of Figures 10

1 Introduction 12
1.1 Motivation . 14
1.2 Objectives . 15
1.3 Literature Review . 16

2 Theoretical Framework 20
2.1 Genetic Algorithms . 20

2.1.1 Basics . 20
2.1.2 Individuals . 21
2.1.3 Initial Population . 22
2.1.4 Crossover . 22
2.1.5 Mutation . 23
2.1.6 Fitness . 24
2.1.7 Selection . 24
2.1.8 Termination Criterion . 25

2.2 Hyper-Heuristics . 25
2.2.1 Selection Hyper-Heuristics . 26

2.3 Methods for Data Pre-Processing . 27
2.3.1 Cleaning Process . 27
2.3.2 Transformation Process . 29
2.3.3 Normalization Process . 30

2.4 Machine Learning and Deep Learning Methods 31
2.4.1 Multinomial Näıve Bayes . 32
2.4.2 Complement Näıve Bayes . 33
2.4.3 Bernoulli Näıve Bayes . 34
2.4.4 k -Nearest Neighbors . 34
2.4.5 Decision Tree . 35
2.4.6 Logistic Regression . 37
2.4.7 Support Vector Machines . 38

7

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.4.8 BERT . 38
2.4.9 ALBERT . 40

2.5 Evaluation Setup . 41
2.5.1 Dataset Split . 41
2.5.2 Evaluation Metrics . 43

3 Methodology 45
3.1 Data Gathering . 45

3.1.1 Dataset Description . 46
3.2 Data Processing . 52
3.3 Classification Methods . 53
3.4 Meta-Feature Extraction . 54
3.5 Evolutionary Model . 64

3.5.1 Individuals . 65
3.5.2 Initialization . 68
3.5.3 Fitness Evaluation . 70
3.5.4 Crossover Operator . 71
3.5.5 Mutation Operator . 76
3.5.6 Selection . 80
3.5.7 Termination . 80
3.5.8 Evaluation of the Best Individual 80

3.6 Analysis . 81
3.6.1 Single Run . 83
3.6.2 Multiple Runs . 83
3.6.3 Computational Time . 84

4 Results 86

5 Conclusions 100

Bibliography 103

8 CONTENTS

List of Tables

3.1 Datasets used for the experiments. News: News classification. Sen-
timent: Sentiment detection. Email filt.: Email filtering. Bullying:
Cyberbullying detection. Hier. Doc.: Hierarchical document classi-
fication. Disaster: Disaster detection. Political: Political preference.
Age: Age identification. Fake job: Fake job posting detection. Res.
Art.: Research Articles classification. Moderation: Automated Mod-
eration. 47

3.2 Distribution of tasks, number of categories and documents for the
group of datasets. 51

3.3 Group of ML classification methods. norm: Apply second normal-
ization. k: Neighbors. m: Distance metric. cr: Quality criteria.
mf: Maximum number of features. C: Regularization parameter. s:
Solver. l: Loss function. ke: Kernel. de: Degree for the polynomial
kernel. 54

3.4 Set of meta-features used to represent the data distribution of a dataset. 55
3.5 Values of the meta-features for the datasets. 60
3.6 Values of the meta-features for the datasets. 61
3.7 Values of the meta-features for the datasets. 62
3.8 Values of the meta-features for the datasets. 63

4.1 Values of model’s parameters for experimenting. 86
4.2 Optimal classification methods and their macro F1 performance for

the datasets of the genetic test group. 91
4.3 Relationship between datasets and the rules of the best hh. 93
4.4 Frequency of use of rules of the best hh. 94
4.5 Results (macro F1) of the best hyper-heuristic against AutoGluon

and AutoKeras on the genetic test group. 97

9

List of Figures

2.1 General process of a genetic algorithm. 21

2.2 Representation of an individual. 22

2.3 Some techniques used by an evolutionary crossover operator. 23

2.4 Mutation of an individual. 24

2.5 Example of the cleaning process. 28

2.6 Representation of obtaining a term-document matrix with the tf-idf
method. 30

2.7 k-Nearest Neighbors classification example for k = 5 (the assigned
category will be ‘pentagon’) and k = 11 (the assigned category will
be ‘star’). 35

2.8 Distance between two points (x, y) using different metrics: (a) Eu-
clidean, (b) Manhattan and (c) Cosine Similarity 35

2.9 Representation of the structure of a DT. 36

2.10 Representation of a Soft Margin Support Vector Machine. 39

2.11 BERT’s architecture. 40

2.12 ALBERT’s architecture. 42

2.13 A confusion matrix for a binary classification problem. 44

3.1 Schematic representation of the methodology process. 45

3.2 Frequency of text classification tasks within the group of datasets. . . 48

3.3 General process of the evolutionary model to learn and evaluate hhs. 64

3.4 Representation of the rules that compose a single hh. 65

3.5 Example of a hh created by the evolutionary model. 68

3.6 Block representation of a hh. 72

3.7 Crossover operator at block level. 72

3.8 Crossover operator at rule level. 73

3.9 Crossover operator at condition level. 74

3.10 Mutation operator at block level: (a) Delete a rule and (b) Create
and add a new rule. 76

3.11 Mutation operator at rule level. 77

3.12 Mutation operator at condition level. 78

3.13 Mutation operator at operator level. 79

10

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

4.1 Performance of the best hhs from 100 independent runs: (a) Fitness
of each best hh, (b) Boxplot for the best fitnesses. 88

4.2 Computational time (in minutes) of hhs that use the same single
method for classifying all the datasets in the genetic training group. . 89

4.3 Performance of the hhs population over 100 generations. 89
4.4 Best hh selected as a final solution and obtained from 100 independent

runs. 90
4.5 Behavior of the best hh on the genetic test group. 92
4.6 Average performance of each classification method in the datasets of

each genetic group. 95
4.7 Comparison of the best hh against AutoGluon and AutoKeras. 96
4.8 Comparison of computational times (in minutes) of the best hh against

AutoGluon and AutoKeras. 98

LIST OF FIGURES 11

Chapter 1

Introduction

In recent years, natural language processing (NLP), machine learning (ML), and
data mining have experienced exponential growth in their respective areas of re-
search and application, mainly due to the massive growth of data from Internet and
other sources, and the involvement of large technology companies such as Google,
Facebook, Amazon, Microsoft, among others 1. And as a consequence, the interest
of new researchers has been attracted in each of these fields. In the industry, the
work that allows NLP and ML to be carried out has become very important, mainly
because it allows analyzing large amounts of data and at the same time to extract
information that may be relevant for decision-making. There is a wide variety of
the different tasks covered by NLP, such as indexing and searching large texts, in-
formation retrieval, information extraction, speech recognition, automatic language
translation, text classification, among others [1, 2]. Likewise, for each of these tasks,
there is a wide variety of methods that could provide solutions to them.

One of the most popular tasks within these fields is text classification, due in
large part to an exponential growth in data generation sources 2, such as social
networks, news websites, e-commerce stores, etc. For example, in the case of the
social network Twitter, in May 2022, it was estimated that there were around 867
million tweets sent per day 3. Also, these sources have provided a large number of
texts that have become more complex over the years, so various ML or deep learning
(DL) methods have been developed to handle and analyze them more efficiently.

Text classification has a wide variety of applications and existing problems that
can be solved with different methods and techniques that have been developed over
the years [3, 4, 5]. Text classification is focused on different types of tasks such as
sentiment analysis, fake news detection, news classification, email spam detection,
authorship analysis, among others [6]. For each of the text classification tasks, there
are different proposals that provide a solution to them. Commonly, in these pro-

1https://bit.ly/3UKhYqL
2https://bit.ly/3HgdcwX
3https://bit.ly/3Usc4cE

12

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

posals, different methodologies are used in each of the stages of the classification
process, such as pre-processing, obtaining a textual representation, feature extrac-
tion, selection and configuration of classification methods [6, 7, 8], in such a way that
a significant amount of time and computational resources are consumed to be able
to determine which methodologies are the most appropriate for each of the stages,
and thus achieve an adequate result for a given problem/dataset.

Thus, when addressing a specific problem of a text classification task, there
is a wide search space, where different proposals provide different results. The
main difference between these is in the classification method used (Näıve Bayes,
support vector machines, k-Nearest neighbors, Random forest, etc.) because they
work with different approaches (probabilistic, instance-based, rule-based, functions,
ensembles, deep learning, etc.), which allows a wide diversity of configurations for
each of them. This is the main problem, the selection of classification methods
consumes the most time and computational resources since in this stage it is very
common to try different classification methods with different configurations, in order
to find the method and its configuration that allows obtaining the best performance
for a given problem/dataset.

The abovementioned also occurs in other ML classification tasks, such as speech
recognition or detection/recognition of people or objects in images or videos, and the
only differences between these tasks are different data types, different distributions,
and different features to represent them. In the case of text classification, it has
been observed and investigated that a classification method can be optimal or near
to it for those datasets that have similar meta-features [9, 10]. Meta-features are
commonly based on statistics, and these provide insightful information about the
data distribution in a dataset.

Various researchers have sought to attack the problem of the selection of clas-
sification methods with the aim of making this stage automated. In recent years,
several works use the term “Automated Machine Learning” (AutoML) as a funda-
mental part, and they address different stages of the general classification process
such as automated model selection, automated feature engineering, or something
more specific as in the case of neural networks: automated neural architecture
search [11, 12, 13]. It all started with the idea of developing a tool capable of
automating the process of selecting classification methods and their adjustment, in
problems that were classification or regression, from a given dataset (which may not
have had pre-processing applied to it). And thus, removing the need for an ML
expert, so that non-experts could apply ML to different problems and analyze their
results for themselves. Generally, most tools today are capable of optimizing the
method selection process for a single task for a single dataset [14, 15]. However, for
the text classification task, most AutoML proposals have focused on pre-processing
stages, in order to obtain adequate textual representations, and therefore have not
addressed the method selection problem [16], without taking into account that de-
veloping an alternative to try to alleviate this problem would also achieve reductions

CHAPTER 1. INTRODUCTION 13

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

in the time and computational resources consumed in the search for the best classi-
fication method for a specific problem/dataset.

For this research, an evolutionary model is presented that seeks to generalize the
method selection process for text classification tasks through evolutionary learning
of hyper-heuristics, using a genetic algorithm approach, in such a way that the evolu-
tionary model is capable of learning a set of hyper-heuristics that allow determining
the most appropriate methods based on the meta-features based on statistics that
describe the data distribution in each dataset. In addition, it is expected that the
learned hyper-heuristics allow for optimal performance or close to it. The evolu-
tionary model is tested with a total of 34 datasets, which correspond to different
types of text classification tasks, and in turn, have different numbers of categories
and documents. The evaluation of these hyper-heuristics is through the average
macro F1 evaluation metric. The results obtained have shown that the proposed
model allows the generation of hyper-heuristics that, when evaluated, result in a
performance very close to the optimal value.

1.1 Motivation

Applying ML for the automation of tasks or processes has become very common and
essential in recent years, mainly due to the continuous generation of large amounts
of data in the digital world 4. Therefore, it has also grown a lot in the alternatives
it proposes to solve a wide variety of tasks, allowing the applications derived from
it to act in an intelligent way, and be able to either hand in hand with humans or
individually be more effective and efficient 5.

Despite the great advances that ML has had in recent years in the supervised
learning part [17, 18] when dealing with classification or regression tasks, an expert
in this area is still required to be able to successfully apply any of its methods and
obtain a correct solution for a specific problem of a specific task. This is caused be-
cause although there is a wide variety of methods developed, none of these is capable
of being superior to all the others in all possible scenarios. This has been demon-
strated by theorem I of the theorems of “No free lunch” [19], which establishes the
following: “Any two optimization algorithms are equivalent when their performance
is averaged across all possible problems”, endorsing the aforementioned.

AutoML tools have been developed to deliver solutions for these types of tasks,
eliminating the need for an expert [14]. In any type of classification task, finding the
best classification method for a single dataset is a complex problem due to the wide
diversity of methods and configurations that can be tried. These problems have
been addressed by AutoML tools with different methodologies. In addition, the use
of these tools has become more common, mainly by non-experts in the area [20],

4https://bit.ly/3CgfwRT
5https://stanford.io/3LNTPM2

14 CHAPTER 1. INTRODUCTION

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

since these tools allow for a faster implementation of ML and sometimes better for
the solution of a specific problem than that which could be provided by an expert,
without the need for it.

Currently, most AutoML tools for any type of classification task search over a
large space (in some cases, this space can be very complex), optimizing the method
selection process according to a given dataset from a determined problem, for which
there is no generalization of this. Furthermore, for the algorithm to converge and
find the best solution for such a dataset, this optimization may be time-consuming
if the search space is not bounded and also according to the data distribution of
such a dataset. In the case of the text classification task, there are proposals that
demonstrate that the meta-features of a dataset provide a lot of valuable information,
which has allowed them to develop works that are more focused on the stages prior to
the selection of methods, as is the optimization for obtaining textual representations.
Although, there are also proposals that are focused on the method selection process,
which mostly works with the same general approach mentioned in the previous
paragraph.

The AutoML works developed for the task of text classification have allowed
us to observe that it is still necessary to develop a framework that has a more
general process for the selection of suitable classification methods. Therefore, this
thesis project is aimed at research for the development of a framework of this type,
involving the meta-features that allow a good representation of the data distribution
of a dataset. This type of meta-features, based mainly on statistics, can be key to
determining the optimal (or close to it) classification methods for different types of
datasets belonging to different types of text classification tasks.

This thesis work is part of the line of research carried out in [9, 10], making
a deeper analysis of classification methods, meta-features, hyper-heuristics, and in
general. This will allow us to know if this type of methodology can be a promis-
ing path or alternative toward the automatic classification of texts in the selection
process of classification methods.

1.2 Objectives

The general objective of this work is to create a framework that, through an evolu-
tionary learning process, is capable of learning a set of hyper-heuristics capable of
generalizing the selection process of classification methods based on meta-features
extracted from a group of datasets and producing near-optimal performance. The
specific objectives for the success of this work are the following:

• Define and extract a set of meta-features for a collection of datasets for text
classification.

• Create a pool of different machine learning methods for text classification
based on the following approaches: probabilistic (Näıve Bayes), instance-based

CHAPTER 1. INTRODUCTION 15

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

(k-Nearest Neighbors), rules (Decision Trees), and functions (Logistic Regres-
sion and Support Vector Machines).

• Design and create an evolutionary model based on genetic algorithms to learn
hyper-heuristics, that applies evolutionary operators (selection, crossover, and
mutation) to create and identify a set of general hyper-heuristics for method
selection in text classification.

• Evaluate the performance of the learned hyper-heuristics using the macro F1
evaluation metric, over a group of test datasets.

1.3 Literature Review

In recent years, ML and NLP have significantly expanded text classification to an-
alyze and solve several problems effectively [2, 18]. However, to address text classi-
fication as a task, it is necessary to have experience in the area of ML, in order to
be able to apply the methods correctly and obtain results that can be considered
acceptable. One of the biggest conflicts within this type of classification is deter-
mining which method will be used to classify the documents (samples), due to the
large diversity of these. The methods belong to different approaches (probabilistic,
instance-based, rule-based, functions, etc.), and most of them allow a large number
of configurations in their hyperparameters (neighborhood number, distance metric,
kernel, parameter regularization, etc.). To give a solution to a problem of some text
classification task, what is usually done is to perform tests with various methods
until finding the one that has the best classification performance based on the result
of an evaluation metric such as accuracy or F1.

This conflict is found in a general way in any type of ML classification and has
been named the CASH problem (Combined Algorithm Selection and Hyperparam-
eter) [21]. Currently, CASH is still a problem where the skill of a human expert in
ML intervenes a lot and, to find the best method and its respective configuration
for a certain problem, the search is done exhaustively or guided based on trial and
error.

AutoML arose in order to attack the selection of methods and their respective
adjustment, and later it also focused on automating all the processes in which ML
is involved, so it also has proposals that are aimed at automated neural architecture
search [22, 23], automated feature engineering [24, 25], among others [14]. Regarding
the automation of the selection of classification methods, some of the first works that
started to use the term AutoML were Particle Swarm Model Selection [21], Auto-
WEKA [26], and Hyperopt-sklearn [27].

During the early years, AutoML was not a popular term within ML, but its
popularity grew thanks to the two ChaLearn AutoML Challenge [11] competitions.
These competitions occurred between the years 2015 to 2018 and were focused on

16 CHAPTER 1. INTRODUCTION

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

supervised ML with the objective of training and testing various methods to solve
different classification and regression problems without requiring human skill. The
datasets/problems could contain data from various sources such as audio, images,
speech, sensor data, text, and video, among others. In addition to being fully
automated, the systems developed had to be computationally efficient in order to
provide solutions to datasets with categorical values, irrelevant variables, missing
values, and unbalanced classes, among others; regardless of whether it was binary
or multi-class classification, and to be able to handle dimensionality of up to 300,000
features with sparse or full matrices.

The main challenge in the first competition (held between 2015 and 2016) con-
sisted of 6 rounds that in turn had multiple phases (AutoML, Tweakathon, Final).
For this competition, the computational resources were limited and when passing
the round the difficulty had a considerable increase. In each round, the systems had
a time limit of 20 minutes to provide a solution to each of the datasets provided (5
datasets in total), along with each dataset a scoring metric was provided so that
the system would optimize the solution from this. The standings were determined
by the average rank obtained and the average performance of the five datasets in
each round. The team AAD Freiburg won the competition with the system called
AutoSklearn [28]. This system creates an ensemble from machine learning methods
that might work well with a given dataset, using a meta-model based on Bayesian
optimization. The meta-model performs the comparison of datasets in a repository
by extracting 38 meta-features, allowing you to select the possible machine-learning
methods.

For the second competition (held in 2018), 5 datasets were provided to the com-
petitors to develop and improve their systems (development phase). And for the
final phase (AutoML blind test) the systems were tested with 5 datasets not dis-
closed to the competitors. The datasets for this competition were more complex than
the previous one, resulting in lower overall performance. The winning system was
an enhancement to AutoSklearn called PoSH (Portfolio Successive Halving) Auto-
Sklearn [29] and developed by the AAD Freiburg team. This system implemented
new improvements in terms of candidate configurations for every dataset; a new
technique to remove methods that have poor performance; and the implementation
of successive halving with Bayesian optimization to get efficient and robust results
in a given time.

In recent years, the application of AutoML within text classification has had
different approaches and methodologies, which have allowed certain stages within
this classification to become more efficient. First, in [10] the authors developed
a framework for method selection, through the use of genetic algorithms to learn
meta-rules. A meta-rule selects a method for a given dataset based on the evalua-
tion of the meta-features extracted from that dataset. In [30], the authors applied
meta-learning in order to identify the type of task to which a dataset belongs (fake
news identification, sentiment analysis, etc.), by extracting a group of 72 meta-

CHAPTER 1. INTRODUCTION 17

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

features including those used in [10]. Later, in [31] the authors developed a work
focused on obtaining the most appropriate textual representation for a dataset by
extracting the same group of meta-features used in [30]. The textual representation
was determined from that representation that worked well for datasets of similar
tasks, the associations of textual representations with tasks were learned in pre-
vious training. As the culmination and union of the works developed in [30, 31],
the authors in [32] presented AutoText, a framework that was developed with the
purpose of automating the entire classification process. This framework, based on
a given dataset, searched for the most appropriate textual representation for that
dataset. This representation was the input for the AutoSklearn [28] framework,
which was in charge of finding, training, and evaluating the classification method
more appropriate. In [33] the authors presented a new sequence for the classifica-
tion process, with an extension in the pre-processing stage in order to obtain an
optimal textual representation for a dataset from three steps. First, a new represen-
tation is obtained from the calculation of a set of meta-features based on distances
(distance from a sample to the centroids of the classes, distance from a sample to
its k nearest neighbors belonging to other classes, etc.) of a previously obtained
tf-idf representation. Second, a sparsification is applied to the new representation
in order to remove noise that can affect the quality of the samples. And as the last
step, selective sampling is applied to rule out conflicting samples that could affect
training. This new sequence allows classification methods to take better advantage
of the information provided for their training.

In more recent years, works have been presented that have a larger complexity
because they cover a large number of stages of the classification process, including
different pre-processing and classification methods. In [34] the authors developed
a system called AutoKeras, which performs a neural architecture search (NAS) in
a much more efficient way than its predecessors. This system uses Bayesian opti-
mization to drive network morphism, which is responsible for maintaining network
functionality while its architecture is changing, thus avoiding the large computa-
tional cost of NAS methods back then. Although AutoKeras was not developed
primarily to deal with text, it does have an internal embedding to deal with this
type of data and make configurations regarding the maximum size of the vocabu-
lary, the text vectorization method, or using a pre-trained word embedding such as
word2vec [35], GloVe [36] or fastText [37], among others.

In [38] the authors presented AutoGluon, a system that is based on classifier
ensembles and neural network architecture, instead of searching over a wide space
for the best method and its best configuration. The system has a neural network
architecture, in which each layer is made up of an assembly of methods, the outputs
of these methods are concatenated and become the input of the next layer, this
technique allows better use of the time of training. In terms of text classification,
the system is only responsible for fine-tuning methods based on transformer neural
networks like BERT [39], ALBERT [40] and ELECTRA [41].

18 CHAPTER 1. INTRODUCTION

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

In [42] the authors presented TextBrew, this system is in charge of finding the
best transformer-based methods for a given dataset, and creates a soft voting en-
semble with the union of these. The transformer-based methods that are considered
are variants of ALBERT, BERT, and XLNET [43]. The number of methods that the
ensemble can contain will depend on those that could be trained during a certain
time given by the user. An internal meta-model is in charge of determining the best
methods for a dataset, this meta-model is a soft voting ensemble, where the input
data for it are the accuracies obtained by a Näıve Bayes Multinomial classifier and
an ALBERT variant, and the number of documents of such a dataset.

The works presented above attack various stages of the general process of text
classification, but in most of these, there is no generalization of the method selection
process. These works allow an optimization that goes according to a single dataset
that belongs to a single problem. In addition, these are works that are clearly more
focused on pre-processing stages, such as obtaining adequate or optimal textual
representations. In the case of the AutoKeras, AutoGluon, and TextBrew systems,
they have the limitation of only contemplating methods based on DL, without taking
into account that the ML methods are still superior in certain problems or tasks [44,
45].

In recent years, selection hyper-heuristics have been popularized to such an ex-
tent that they can be applied to various problems. For example, in [46], for tackling
bi-objective 2D bin packing problems. In this work, a hyper-heuristic is represented
by blocks of the condition-action form, where the condition represents the current
state of the problem and the action determines which heuristics to apply. In this
case, two evolutionary crossover operators were designed: the first to exchange com-
plete blocks between two selected individuals (block-level crossover); the second to
exchange internal parts of blocks (internal-level crossover), where the individuals,
the blocks, and their internal parts are randomly selected. The mutation opera-
tors were also designed according to the problem: the block-level mutation operator
allows removing or adding a new block from a randomly selected individual; the
second operator (internal level mutation) allows the mutation of the conditions or
actions of blocks that are randomly selected. Such methodology serves as the basis
for the development of the evolutionary model presented in this work.

This thesis presents a more in-depth examination of this problem that has not
been fully resolved, giving significance to the relationship between meta-features and
the optimal (or near to it) classification method for a given dataset. Applying the
selection hyper-heuristics approach could be crucial to the generalization of method
selection for text classification problems.

CHAPTER 1. INTRODUCTION 19

Chapter 2

Theoretical Framework

2.1 Genetic Algorithms

Genetic algorithms are adaptive heuristic search methods, developed in order to
apply them to optimization problems (e.g., the traveling salesman problem) and to
study self-adaptation in biological processes [47]. A genetic algorithm (GA) is based
on Darwin’s theory of evolution, which allows it to have operators that exploit and
explore the space of possible solutions for a given problem. Although a GA does not
occupy a large configuration, it is capable of evolving highly complex individuals
(possible solutions), and thus being able to find an optimal solution or close to it.
An explanation of each of the components of a GA is provided below.

2.1.1 Basics

The general process of a GA begins with the creation of an initial population (par-
ent population) in a random or heuristic way, where each individual within it is a
possible solution to the problem being treated. The parent population is involved
in an iterative process, where each iteration is known as a generation. Within each
generation, certain methods are applied to the population. First, the individuals
of the parent population are evaluated with respect to their ability to solve the
problem, in order to know which are the fittest (the best solutions to the problem
in that generation). Second, the evolutionary crossover operator is applied to the
parent population. This operator allows the creation of a new population, which is
called the child population. Third, the evolutionary mutation operator is applied to
the child population, allowing further exploration of the solution space. Fourth, the
fitness of the individuals of the created population (child population) is evaluated.
Fifth, once the fitness of the individuals of the child population is obtained, the par-
ent and child populations are mixed, and the fittest individuals are selected to form
the new population, which will become the new parent population. This process
returns to the second step until the termination criterion is met (e.g. number of

20

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

generations or no major improvements in fitness). When the termination criterion
is met, the fittest individual or individuals of the last generation are returned (in
some cases the entire final population may also be returned). This general process
can be seen in Fig. 2.1.

Figure 2.1: General process of a genetic algorithm.

2.1.2 Individuals

As mentioned above, GA is a computational method of biological evolution based
on Darwin’s theory of evolution. An individual or chromosome has two types of
representations: phenotype and genotype. Within the genotype representation, each
part of the chromosome is known as a gene. A gene has two properties: allele and
locus. Allele is the corresponding value of the gene and locus is the location that
the gene occupies within the chromosome. The phenotype representation is the
observable properties of the chromosome.

To bring it to an explanation in computational terms, an individual can be
represented as a string of bits (genotype representation). The genes would be each
one of the bits of the string. Given a certain bit of the string, its corresponding value
(0 or 1) would be the allele property and the position of that bit within the string
would be the locus property. Its phenotype representation could be the conversion
of the bit string to an integer or a float. This example can be seen in Fig. 2.2.
Within GAs, genotype-phenotype mapping is not always required.

CHAPTER 2. THEORETICAL FRAMEWORK 21

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.2: Representation of an individual.

2.1.3 Initial Population

Once the representation of the individuals has been defined, another crucial stage
is the creation of the initial population. The size of this population is a parameter
given by the user, and it will always be maintained across generations. There are
different “simple” techniques for initializing this population, each of which causes
the population to behave differently across generations and in turn, could result in
different final solutions.

Some of these techniques are random initialization, random initialization with
overpopulation, initialization with a single value, initialization defined by the user,
and initialization with final individuals from another execution, among others. Al-
though the initialization with final individuals from another execution allows a warm
start of the GA, commonly the most used techniques are random or random initial-
ization with over-population because the solution space can be covered widely.

2.1.4 Crossover

Crossover is an evolutionary operator that allows the genes of two or more individ-
uals (parents) to be combined to create new individuals (children). In nature, the
most common is that this process involves only two parents, in various applications

22 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

of the GAs the same thing occurs but this is not a restriction. Based on the repre-
sentation of individuals in the form of bit strings, there are different operators such
as single point, multiple point, or uniform crossover, examples of these can be seen
in Fig. 2.3. Within the literature, according to the complexity of the problem, the
adequate representation of individuals is sought. From the selected representation,
the crossover operators are designed, so it is not limited to the above-mentioned
crossover operators.

(a)

(b)

(c)

Figure 2.3: Some techniques used by an evolutionary crossover operator.

The use of this operator allows the newly created individuals (children) to be
potentially fitter than their parents and thus be a better solution to the problem,
since they may have inherited the best parts of them, which is why it is also known
as the operator that exploits the different sectors of the solution space. Despite this,
the fact that this operator is applied does not mean that the parents have to be
replaced, since the children created may not be as suitable as these. This operator
in some cases is accompanied by a probability, so it is not applied to the entire
population.

2.1.5 Mutation

The evolutionary mutation operator is in charge of maintaining diversity in a popu-
lation, this is achieved by disturbing some individuals in it. This operator is always

CHAPTER 2. THEORETICAL FRAMEWORK 23

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

applied to the child population, which is created by applying the crossover operator
to the parent population. In the case of representing individuals in the form of
strings of bits, the evolutionary mutation operator changes the values of some of
the bits of an individual, the way to select the bits that will be mutated is random
in many cases, as shown in Fig. 2.4. As in the case of the crossover operator, the
mutation operators are designed according to the representation of the individuals.

Figure 2.4: Mutation of an individual.

The selection of an individual for mutation is by probability, which is generally
low. When applying this operator to an individual, the information prior to its
mutation is not conserved, rather it is replaced by the new one. Unlike the crossover
operator, this operator allows you to explore the wide space of solutions, where there
are sectors that perhaps have not yet been known.

2.1.6 Fitness

A GA optimizes solutions according to the fitness function. In order to know how
good an individual is as a solution to a problem, genotype-phenotype mapping is
performed if necessary. The fitness function determines the quality of the solutions
that the GA provides and also guides the search in the solution space. This function
has to be designed in an efficient way so that the performance of the GA is not af-
fected too much. Also, a very important factor is to reduce the number of calls to the
fitness function when dealing with highly complex problems where each call to the
fitness function is computationally expensive because the fitness function is applied
to each individual of each of the populations obtained through each generation.

2.1.7 Selection

The selection operator is also known as survival selection. Since it determines which
individuals survive and which die, where the fittest have a better chance of surviving.
When having the father and child populations, it is necessary to make a selection of
the individuals in order to direct the GA toward the optimal solution. This selection
allows to preserve the fittest individuals of both populations and for this, there is a
great diversity of methods, with some of them using randomness.

In its simplest form, the new population is composed of the entire child popula-
tion. Some methods directly select the best individuals from the child population as
parents of the next generation. Others only select a portion of the best individuals
from the child population to form part of the next generation. Or in some cases, the
best individuals from the child population are selected together with the individuals

24 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

from the parent population that generated them. Another method is to select the
best individuals by mixing the parent and child populations.

The different methods of this operator are used in some cases to select the in-
dividuals that will function as parents in the crossover stage. For this selection of
parents, there are some methods such as Proportional Selection (Roulette Wheel
Selection), Linear-Rank Selection, and Tournament Selection, among others.

2.1.8 Termination Criterion

In order for the evolutionary process of a GA to end, a termination criterion must
be met. This criterion is determined by the user. The most common is to use
the number of generations as a criterion. There are also other criteria such as
the convergence of the optimization process (when the fitness of individuals does
not improve significantly), a specific time limit (not recommended when evaluating
individuals is expensive), or maximum fitness achieved (the optimal solution has
been found).

When the termination criterion is the convergence of the optimization process,
it may be the case that the search is stuck in a local optimum and the evolutionary
operators are not able to get out of that optimum. For this problem, there are
“restart strategies”, which help to avoid falling into this type of optimum.

2.2 Hyper-Heuristics

The term hyper-heuristic (hh, read as hyper-heuristic throughout the manuscript)
is used to refer to a high-level approach, which searches over a space of low-level
heuristics, allowing it to select and apply appropriate low-level heuristics to make
decisions, which in turn allows giving a good solution to the problem that is being
addressed [48]. There are two types of low-level heuristics: constructive and pertur-
bative. Constructive heuristics are used in order to create an initial solution that
serves as a starting point. And perturbative heuristics allow initial solutions to be
improved regardless of whether they were created randomly or with a constructive
heuristic.

Within various problems, a single low-level heuristic has a lower performance
than a mixed and combined set of these, because the performance of each one is
linked to a certain situation or instance of a problem, that is, a heuristic may
provide a good or optimal solution to an a instance of the problem but perhaps
not for a b instance. The hhs are in charge of finding and providing solutions (e.g.
sets of heuristics), which allow a better generalization for a certain problem, these
solutions may not allow for obtaining the optimal performance but they are capable
of obtaining performances very close to it for a large number of instances of the
problem than using a single heuristic. In short, when using the concept of hh its
equivalent would be a heuristic to choose heuristics.

CHAPTER 2. THEORETICAL FRAMEWORK 25

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.2.1 Selection Hyper-Heuristics

Hhs can be used in order to create or select low-level heuristics. Therefore, they
can be categorized into four types (according to the type of low-level heuristic): se-
lection constructive, selection perturbative, generation constructive, and generation
perturbative [49]. Selection hhs (constructive or perturbative) have different meth-
ods to choose low-level heuristics such as case-based reasoning, local search methods,
population-based methods, adaptive methods, and others. Although selection hhs
can also be classified according to feedback method (online, offline, mixed or with-
out learning); low-level heuristics (type, set, grouping method); the type of solution
(single-point, multi-point or mixed); the type of objective (single or multi); the type
of move acceptance (stochastic or non-stochastic); and parameter settings (static,
dynamic, adaptive or self-adaptive) [50].

In the case of constructive selection hhs, starting from a given problem and a
set of low-level constructive heuristics (depending on the problem), a constructive
selection hh is responsible for providing a solution for that problem, by selecting
and applying a low-level heuristic at each of the different stages of the problem.

Using a population-based method (such as GAs) for the selection of low-level
heuristics, has the advantage that it allows exploring a large number of solutions
at the same time, which normally have a great diversity; therefore, the space of
solutions can be further explored. GAs are very flexible to be applied to various
problems, and the case of selection hhs is no exception. The GAs methodology
allows the conservation of the most suitable individuals (the best solutions), so that
convergence can be achieved to what could be an optimal solution or close to it for
a given problem.

By applying this method, each individual in the population is a set of low-level
constructive heuristics selected by a selection hh; each of these individuals represents
a possible solution to the problem. The performance obtained by the hhs will depend
on the representation used, this representation will also determine the design of the
evolutionary crossover and mutation operators. During the process of evolution,
individuals are evaluated in each of the generations to know their fitness for solving
one or more instances of the problem, and those that are the fittest have a better
chance of surviving and moving on to the next generation. To obtain individuals
that allow better generalization, it is best to evaluate them with multiple instances
of the problem, since by using only one instance, the individuals will be developed
specifically to provide a solution to it.

When an individual’s fitness is determined by their ability to solve multiple
instances of a problem, it is most common to divide these instances into two parts:
training and test. The training part contains those instances of the problem with
which the individuals will be evaluated and evolved during the evolutionary process.
On the other hand, the instances of the test part are used to know the fitness of the
individuals to solve unseen instances of the problem.

26 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.3 Methods for Data Pre-Processing

The data collected by the various sources of generation and storage cannot be sent
directly to the classification methods, because within these data there may be values
that can seriously affect the performance of the methods (e.g. irrelevant variables,
missing values, among others). The pre-processing methods allow discarding this
type of conflicting values, with which the quality of the datasets increases and the
data within it becomes more consistent. This has a high impact on classification
methods since it allows them to speed up the reading, use, and interpretation of
datasets.

2.3.1 Cleaning Process

Due to the fact that a large number of sites for the interaction among users, the
use of the Internet has become more common within society, which has also caused
the abundant generation of data. In turn, different types of data generated on these
sites can be found and collected, such as audio, images, text, and video, among
others. For this work, the cleaning process is focused solely on the generated textual
content. The majority of the most popular sites are developed by big companies, in
which a correct analysis of their data can provide a lot of information for decision-
making. Also, much of this data can be collected by scientists for research into the
development of new techniques. Therefore, the cleaning step is very important as it
can significantly improve the results obtained and the interpretation of these, as well
as get the best out of the data provided. Within ML, this process is very relevant
since the performance of the classification methods (execution time, accuracy, etc.)
will depend on the quality of the data. If the data is of poor quality, rarely any
classification method will provide good results, regardless of its focus.

Today various techniques developed in different programming languages allow
this process to be carried out, and in general they are capable of eliminating ir-
relevant data, fixing structural errors, dealing with missing data, and eliminating
atypical data, among others. In Fig. 2.5, a general example of the cleaning process is
shown with a sample of a news item. Prior to the cleaning process (left side), it can
be observed that this sample is composed mainly of English words with uppercase
or lowercase letters, punctuation marks, and also alphanumeric strings, in addition,
in some cases they may contain links to websites, emails, phone numbers, etc. After
the cleaning process (right side), all words are kept, and all letters are lowercase,
in some cases, words of too short or too long length (depending on the language)
are also removed. This process is adapted according to the interest that one has in
preserving the textual content depending on the task that is going to be carried out,
for example in certain problems it might be necessary to preserve the capital letters
or punctuations.

As mentioned above, various techniques or a set of techniques can be applied
according to the problem, some of these are: convert all letters to lowercase, apply

CHAPTER 2. THEORETICAL FRAMEWORK 27

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.5: Example of the cleaning process.

tokenization, remove stop words, or remove short and large words. Converting all
the letters of a text to lower case is not a technique used in many cases, since it
can cause certain problems due to the different meanings that words can have when
beginning with upper or lower case (capitonym), for example, August (the eight
month of the year) or august (majestic or venerable). Tokenization is a technique
that consists of dividing a text (or part of it) into tokens, where each token represents
a sequence of characters (e.g. a word, a phrase, etc.). These tokens are created
from a separator character (blank spaces, line breaks, tabs, etc.), that is, the one
that allows identifying where a token begins and ends. For example, if you have
the sentence “i will try to remember that” and the separator character is a white
space, the resulting tokens would be [‘i’, ‘will’, ‘try’, ‘remember’, ‘that’]. Normally
this tokenization process is done with the help of regular expressions since they
allow powerful, efficient, and flexible text processing [51]. Depending on the regular
expression, it could be possible to extract different features such as words, links,
phone numbers, email addresses, etc.

Stop word removal is typically used when tokenization and regular expressions
are not enough. Stop words are a set of meaningless words on their own, such as
conjunctions, articles, prepositions, and adverbs [52]. Despite the fact that these
words are the most used in the texts, the fact of removing them does not substan-
tially affect the meaning of the sentences. Clearly, the set of stop words depends
on the language, some examples of stop words from the English language are ‘me’,
‘my’, ‘our’, ‘being’, and ‘having’. The NLTK (Natural Language Toolkit) [53] library
allows access to more than 25 sets of stop words from different languages, which fa-
cilitates the process of removing them. In addition, NLTK has tools for tokenization,
lemmatization, labeling, parsing, and semantic reasoning, among others.

28 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.3.2 Transformation Process

Once the cleaning process has been applied to the data, it is necessary to perform
a transformation process on it, in order to convert it into a suitable representation
for ML classification methods. In general, any of these classification methods (such
as k-Nearest Neighbors, Support Vector Machines, Decision Trees, etc.), work with
arrays of numbers as input data, that is, tabular data. Since this work is focused
on working with textual content (non-tabular data), it is necessary to convert the
data to a suitable representation for the classification methods. To achieve this
transformation, there are various methods such as tf-idf [54], fastText, word2Vec,
gloVe, etc. Some of these may have advantages over others, always depending more
on the type of problem than on the classification method. For this work, only the
tf-idf method is used.

tf-idf

Despite being proposed many years ago with respect to fastText, word2Vec, and
gloVe, the term frequency-inverse document frequency or just tf-idf method is still
very popular and used in various problems, allowing to obtain superior or competi-
tive results against others. There are documents in which the frequencies of words
of little significance are very high, and if this count goes directly to the classifica-
tion methods, the words with the least frequency (which may be the most significant
and interesting for the distinction of documents) would be overshadowed, and would
have no relevance to the methods. Tf-idf is a method that allows calculating how
relevant a word turns out to be within a document in a collection of documents,
that is, words with very high frequencies and that appear in multiple documents do
not turn out to be very relevant compared to those that they appear one or multiple
times in a single document. This method is summarized in Equation 2.1.

tf -idf(t, d) = tf(t, d)× idf(t) (2.1)

The first factor tf(t, d) calculates the frequency of occurrence of a term t in a
document d for all documents in a collection, although an adjustment is commonly
made due to the variability that may exist between the lengths of the documents in
the collection. For example, this adjustment can be done by dividing the frequency
tf(t, d) by the length of the document d or by the frequency of the largest term
found in the document d. There are also established methods for normalizing these
frequencies such as ‘boosted normalized term frequency’ [54].

The second factor called inverse document-frequency or idf(t) helps with the
problem of large frequencies of terms across multiple documents by giving more
relevance to terms found in fewer documents in the collection. This factor directly
depends on the collection of documents, as can be seen in Equation 2.2.

CHAPTER 2. THEORETICAL FRAMEWORK 29

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

idf(t) = log
N

df(t)
(2.2)

where N is the total number of documents in the collection, and df(t) is the number
of documents that contain the term t.

The result of this method is a matrix of type term-document. An illustration
of how this method works can be seen in Fig. 2.6. First, a term-document matrix
is calculated according to the tf(t, d) method, then the idf(t) part is calculated, in
order to know the importance of each term within the entire collection of documents.
The result can be represented as a diagonal matrix, where each of the elements on
the diagonal represents the importance of a term. Finally, the product of tf by idf
is computed. This results in a term-document matrix, but now each element of the
matrix represents a tf-idf value. The rows represent each of the documents and the
columns the terms.

Figure 2.6: Representation of obtaining a term-document matrix with the tf-idf
method.

2.3.3 Normalization Process

Normalization is a process that should always be applied prior to training the clas-
sification methods, since this allows the characteristics to be in the same range of

30 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

values, avoiding problems with scales and units, and considered with the same im-
portance by the classification method. Furthermore, the performance and stability
of the classification methods during training are generally improved.

There are various techniques for data normalization, and some of the most com-
mon are Z-Score, Log Scaling, Min-Max, Feature Clipping, Max-Norm, L1-Norm,
and L2-Norm. Normalization using L2-Norm allows transforming a vector x into a
unit vector x̂, that is, the sum of the squares of the n-components (x̂1, x̂2, . . . , x̂n) is
equal to 1. This normalization is also known as Euclidean Norm because, within the
normalization process of a vector, it is necessary to calculate its magnitude, which
is the same equation as in the calculation of a Euclidean distance from a point p to
the origin, as can be seen in Eq. 2.3.

∥x∥2 =

√

√

√

√

n
∑

i=1

x2
i (2.3)

Therefore, the L2 or Euclidean normalization for a vector x is defined by Eq. 2.4

x̂ =
x

∥x∥2
(2.4)

where x̂ is the normalized vector. Within text classification, this process is applied
to a term-document matrix, where each row of the matrix is a vector and the value
associated with each column are the components of that vector.

2.4 Machine Learning and Deep Learning Meth-

ods

ML is an area that is focused on the ability to learn through experience. There
are four main categories within ML, which are: supervised learning, unsupervised
learning, semi-supervised learning, and reinforcement learning. Within each of these
categories there are various learning algorithms, which are fed with experience in the
form of data, in order to build computational models that are capable of recognizing
the different patterns found in the data provided, and therefore be able to make
correct predictions. Being so that many applications today work in an intelligent
way thanks to the extensive advances in ML.

For its part, DL is a broad field of study within ML, which has been popularized
in recent years. The various DL classification methods for supervised learning are
based on artificial neural networks. Neural networks are able to identify various
patterns that some cases are too complex, which allows extracting a large number
of features, but at a large computational cost unlike other more simple ML methods,
in addition to requiring a large amount of data to perhaps generate good learning.

Supervised learning is a technique used in order to be able to learn a mapping
function or a set of weights and thus assign an output value (category) to an input

CHAPTER 2. THEORETICAL FRAMEWORK 31

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

(sample) based on a training set made up of input-output pairs (sample-category).
It is during the learning or training process that such a function or set of weights
is learned. Later, the model is tested with samples not seen during the training
process, in order to know its generalization capacity. When a model performs very
well within a set of unseen samples it is known as a well-generalized model.

The classification methods used in this work belong to the category of supervised
learning. Likewise, the datasets used consist of samples in document-category form.
A brief description of the classification methods used is given below.

2.4.1 Multinomial Näıve Bayes

Bayes’ classification methods are methods based on Bayes’ probabilistic Theorem.
This theorem allows us to know the probability of an event, taking into account
the previous knowledge related to such event. This theorem is expressed in Eq. 2.5,
where P (A) and P (B) are the probabilities that the events A and B occur without
any conditions; and the conditional probabilities P (A|B) and P (B|A) are those
that determine the probabilities of an event A occurring given an event B and for
an event B to occur given an event A, respectively.

P (A|B) =
P (A|B)P (A)

P (B)
(2.5)

In terms of classification it can be expressed as in Eq. 2.6, where there is a
sample x = {x1, x2, . . . , xn} in the form of an n-dimensional vector, and a set of
k-classes C = {c1, c2, . . . , ck}. P (ci|x) determines the probability that the sample
x belongs to a class ci; P (xj|ci) is the probability of occurrence of a feature xj in
a sample belonging to a class ci; and P (ci) is the prior probability of the class ci.
The denominator found in the right-hand factor in Eq. 2.5 is omitted in this case,
since it only represents a constant.

P (ci|x) ∝ P (ci)
n
∏

j=1

P (xj|ci) (2.6)

In such a way that to determine to which class a sample belongs x is calculated:

argmax
i

P (ci|x) (2.7)

Multinomial Näıve Bayes (MNB) is a very popular method within text clas-
sification. From a term-document matrix representation, a document (sample) is
represented by a vector with numeric values, this method of classification treats
the values of such a vector as a multinomial distribution. Thus, it allows convert-
ing to a linear classification method by passing to a logarithm space as shown in
Eq. 2.6, which also changes the way in which likelihood is calculated P (xj|ci) of a
document, as seen in Eq. 2.8. Where Nij is the number of times that the feature

32 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

j appears in the documents of a class i; Ni is the number of occurrences of class i;
³j is a smoothing prior for a feature j and ³ is the sum of ³i; x = {x1, x2, . . . , xn};
wi = {wi1, wi2, . . . , win}. See [55, 56] for a more detailed definition of this method.

logP (ci|x) ∝ log

(

P (ci)
n
∏

j=1

P (xj|ci)

)

= logP (ci) +
n
∑

j=1

xj log
Nij + ³j

Ni + ³

= logP (ci) +wT
i x

(2.8)

where wij = log
Nij+αj

Ni+α
. So the MNB classification method summarizes the max-

imum argument of Eq. 2.8, as shown in Eq. 2.9.

argmax
i

[

logP (ci) +wT
i x
]

(2.9)

2.4.2 Complement Näıve Bayes

Complement Näıve Bayes (CNB) [55] is a classification method developed to address
the systematic errors of MNB that prevent better performance. This method has a
different way to calculate the weights unlike MNB (Eq. 2.8), since instead of using
the data of a ci class, it uses the data of the other classes except for this one. This
allows for dealing with problems where there is an imbalance in the classes. In such
a way that taking Eq. 2.8 as a starting point, the second logarithm on the right side
and the sign associated with it are rewritten as shown in Eq. 2.10.

logP (ci|x) = logP (ci)−
n
∑

j=1

xj log
Nĩj + ³j

Nĩ + ³
(2.10)

where Nĩj corresponds to the number of times a feature j occurs in documents
of all classes except class i, and Nĩ is the number of occurrences of all classes except
class i, ³ and ³j are calculated in the same way as in Eq. 2.8.

Another conflict within MNB is the erroneous production of different magnitude
classification weights, which are mainly caused by the assumption of independence
between features, which causes the weights to bias towards a particular class. The
way in which CNB solves these problems is through normalization of these weights
wi =

wij∑
j wij

. Finally, CNB can be represented by the classification rule shown in

Eq. 2.11. xj represents the value of feature j of a vector x, and wij is the weight of
class i for feature j.

argmin
i

[

n
∑

j

xjwij

]

(2.11)

CHAPTER 2. THEORETICAL FRAMEWORK 33

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.4.3 Bernoulli Näıve Bayes

The Bernoulli Näıve Bayes (BNB) classification method, as its name suggests, uses
Bernoulli multivariate distributions when making use of the data for training or
classification. That is, a document is represented by a vector made up of ones and
0s, in which a 1 represents the presence of the feature in the document and a 0
the absence of it. Therefore, BNB does not consider the number of occurrences
of a feature within a document, unlike MNB and CNB. Thus, the probability of a
document x given a class ci or (likelihood) is determined differently from MNB and
CNB as can be seen in Eq. 2.12.

P (ci|x) ∝ P (ci)
n
∏

j=1

xjP (xj|ci) + (1− xj) (1− P (xj|ci)) (2.12)

Similar to the other Näıve Bayes classification methods, logarithms are applied in
order to deal with problems where the dimensionality is very large. Likewise, BNB
uses a Laplacian prior to compute each P (xj|ci). Therefore, the BNB classification
rule is shown in Eq. 2.13. A further breakdown of this classification method is
presented in [55, 57].

argmax
i

[

logP (ci) +
n
∑

j

log

(

xj

1 +Nij

2 +Ni

+ (1− xj)

(

1 +Nij

2 +Ni

))

]

(2.13)

2.4.4 k-Nearest Neighbors

In the instance-based classification method approach, the one that always appears
first is the k-Nearest Neighbors (KNN) [58] classification method. KNN is an
instance-based method since it does not create a model, rather, it stores instances
(to be used as neighbors) of the documents given in the document-category form to
later make use of this information during the stage of tests. In an n-dimensional
space, a test document x is classified by a vote of its k-nearest neighbors (k is a
user-supplied parameter, usually of odd value), that is, the category assigned to this
document will be the one that is in the majority among these neighbors, as can be
seen in Fig. 2.7.

There are different methods to find the k-neighbors, some of them optimize the
search when dealing with large numbers of instances, but there are also different
metrics for calculating the distances that will allow to identify which are the closest,
such as: Minkowski, Manhattan, Euclidean, Cosine Similarity, Mahalanobis, among
others. In each of these metrics, the way to calculate the distances varies with
respect to the others, this is exemplified in Fig. 2.8. Thus, each one can provide
different results for the same problem.

34 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.7: k-Nearest Neighbors classification example for k = 5 (the assigned
category will be ‘pentagon’) and k = 11 (the assigned category will be ‘star’).

(a) d =
√

∑n
i=1 (xi − yi)

2
(b) d =

∑n
i=1 |xi − yi| (c) d = x · y/ (∥x∥2∥y∥2)

Figure 2.8: Distance between two points (x, y) using different metrics: (a) Eu-
clidean, (b) Manhattan and (c) Cosine Similarity

2.4.5 Decision Tree

A Decision Tree (DT) is a non-parametric classification method, which, during the
training stage, seeks to create a set of decision rules based on the features of the input
documents. Thus, DT can decompose complex decisions into much simpler ones,
and thus determine the difference between documents of a class A and documents
of a class B by means of a subset of features. Although there are also cases in which

CHAPTER 2. THEORETICAL FRAMEWORK 35

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

a DT can develop a very complex structure, which will not allow it to have a good
generalization when classifying unseen documents.

In general, a DT is composed of a root node, internal nodes and leaves (terminal
nodes), and has the structure of a binary or non-binary tree, see Fig. 2.9. Each of
the internal nodes, as well as the root node, are defined by a node-specific subset
of classes c(i), feature subset f(i), and decision rule [59, 60] d(i). Therefore, the
process of classifying a document can be understood as a hierarchical classification.
This means that, when classifying a document, it goes through stages in which the
number of possible categories decreases as it advances on the DT until it reaches
a terminal node, which only contains the category to which the document belongs.
When a tree is fully developed, the predicted probability for a document that can
be classified into k-categories is 1 for one category and 0 for the others, since all
terminal nodes are pure. When it is the opposite, the predicted probability for each
category can be a number between 1 and 0, and the document is classified with the
category with the highest probability.

Figure 2.9: Representation of the structure of a DT.

36 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.4.6 Logistic Regression

The Logistic Regression (LR) classification method is a method that allows describ-
ing the probability that a document x belongs to a category c1 through the use of
the logistic function. This probability can be defined as a conditional probability, as
shown in Eq. 2.14. The parameters ³ and ´ are calculated with the data provided
during the training stage. Therefore, 1−Pc1 (x) is the probability that the document
x belongs to a category c2.

Pc1 (x) =
1

1 + e−(α+βx)
(2.14)

When dealing with a non-binary classification problem, a methodology known as
Multinomial Logistic Regression [61] is used, and the probability that a document x
belongs to a class ci, where there are K possible classes, is determined by Eq. 2.15.
Thus, each wi is a vector of weights for a category i, and bi is a bias.

Pci (x) =
exp (wi · x+ bi)

K
∑

j=1

exp (wj · x+ bj)

(2.15)

In order to find the optimal weight vectors for each category, the problem is
approached as an optimization problem given an objective function. And also,
in order to avoid overfitting, the addition of a regularization term would be the
solution. This is represented in Eq 2.16, where m is the number of samples provided
for training, w is the vector of weights that allows maximizing the log probability,
and R (w) is the regularization term.

argmax
w

m
∑

i=1

logP
(

y(i)|x(i)
)

− ³R (w) (2.16)

Commonly, the term R (w) is computed by L1 or L2 regularizations. In case of
applying L1 regularization, the term would look like:

R (w) = ∥w∥1 =
n
∑

j=1

|wj|

and for L2 regularization, the term is computed as follows:

R (w) = ∥w∥22 =
n
∑

j=1

w2
j

In both regularizations, n corresponds to the size of the vector w.

CHAPTER 2. THEORETICAL FRAMEWORK 37

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

2.4.7 Support Vector Machines

Like LR, Support Vector Machines (SVM) is a feature-focused classification method,
but in this case, SVM tries to find the best hyperplane in feature space that allows
it to separate instances according to their category [62]. An instance (document)
is represented as a point in an n-dimensional space (n corresponds to the number
of features). In such a way that the hyperplane learned through the documents
provided in a training stage, allows dividing the space into two subspaces, so that in
each subspace a single category dominates. The way the feature space is partitioned
is defined by Eq. 2.17. Therefore, ϕ(x) denotes a feature space transformation
applied to the document x, which can be categorized into one of two categories. y ∈
{1,−1}. The transformation is commonly performed when there is no hyperplane
that can admissibly separate the documents in the original space. The parameters
w (normal vector, which controls the direction of the hyperplane) and b (bias, the
distance from the origin to the hyperplane), are adjusted during the learning process.
The category assigned to an unseen document will depend on the sign resulting from
applying Eq. 2.17, allowing to know if it is above or below the hyperplane.

wTϕ(x) + b = 0 (2.17)

The closest points to the hyperplane are known as the support vectors, and
the smallest distance from this hyperplane to the support vectors is called margin.
Therefore, it is vital to find the maximum-margin hyperplane, since with it the com-
ponents w and b can be obtained, which in turn achieve the minimum generalization
error of all possible hyperplanes. The way to solve this optimization problem can
be in its primal or dual [63] form, the latter represented by Eq. 2.18. Where each
document xi corresponds to a category yi of a set ofm documents. Such an equation
is subject to:

∑m

i=1 ³iyi = 0, ³i ⩾ 0, i = 1, 2, . . . ,m.

max
α

m
∑

i=1

³i −
1

2

m
∑

i=1

m
∑

j=1

³i³jyiyjϕ(xi)
Tϕ(xj) (2.18)

Since space cannot be perfectly separated, either linearly or using a kernel, the
SVM can be allowed to make some minimal errors (see Figure 2.10), this method is
known as soft margin. This method performs an addition of a regularization parame-
ter C and a loss function (e.g. hinge loss, exponential loss, or logistic loss). Using the
loss function hinge, the dual problem (Eq. 2.18) becomes bound by:

∑m

i=1 ³iyi = 0,
0 ⩽ ³i ⩽ C, i = 1, 2, . . . ,m. Where the only difference is the limits set for ³i.

2.4.8 BERT

Bidirectional Encoder Representations from Transformers (BERT) is one of the most
popular DL methods for the text classification task, based primarily on one of the
Transformers components. A Transformer is based on self-attention mechanisms,

38 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.10: Representation of a Soft Margin Support Vector Machine.

which allows it to give greater importance to the context according to the input
information. In general, a Transformer is made up of two components encoding and
decoding. Both the encoding and decoding components consist of stacks of encoders
and decoders, respectively. Each encoder is composed of a self-attention layer and a
Feed Forward Neural Network. Instead, each decoder is composed of a self-attention
layer, an encoder-decoder attention layer, and a Feed Forward Neural Network. The
middle layer of the decoders allows them to give more importance to the parts that
are relevant.

BERT is a method that only uses the encoding component of a Transformer, as
shown in Fig. 2.11. This stack consists of n-encoders (12 for the Base version and 24
for the Large version). When this method is used to perform text classification tasks,
it is most common to use methods that have been pre-trained with large amounts
of datasets. The input data consists first of a special CLS token (to specify use as
a classifier) and followed by a sequence of words, and this entire sequence is passed
through each of the encoders, where each apply two processes: first, a layer of self-
attention; the output of such a layer is passed to a feed-forward neural network,
and these results from each encoder are passed to the next in the stack. Finally,
the first position (a numeric vector) of the top encoder is passed as input data to a
feed-forward neural network of a layer plus softmax, thus completing the classifier.
With such an architecture, BERT positioned itself as one of the state-of-the-art

CHAPTER 2. THEORETICAL FRAMEWORK 39

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

methods in various NLP tasks, surpassing performances in multiple benchmarks
such as GLUE [64], SQuAD v1.1 [65], SQuAD v2.0 (extension of SQuAD v1.1) and
SWAG [66].

Figure 2.11: BERT’s architecture.

2.4.9 ALBERT

A Lite BERT (ALBERT) was developed in order to reduce the computational costs
during the training of its predecessor BERT, this was achieved by using different
techniques to reduce the number of parameters, which allowed it to achieve lower
consumption of memory and a considerable increase in training speed. In sum-
mary, there were three improvements: 1) Factorized embedding parameterization,
2) Cross-layer parameter sharing, and 3) Inter-sentence coherence loss.

First, a Factorization of the Embedding matrix was performed, so that the size
of the input embedding layer and the hidden layer were different (in BERT they

40 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

are identical) since the input embedding layers learn from context-independent in-
formation, and the hidden embedding layers from context-dependent information.
This allows a great reduction of about 80% of the original number of parameters.
Second, to improve the efficiency of the parameters, the Cross-layer parameter shar-
ing method was proposed, which shares all the parameters in the n-encoders, which,
in addition to reducing the number of parameters, increases the regularization of
ALBERT. Finally, both BERT and ALBERT use the loss of masked language mod-
eling during training. But in addition, each one additionally uses different losses,
next-sentence prediction for BERT and sentence-order prediction for ALBERT, this
change was made because next-sentence prediction presented certain inefficiencies
when predicting topics, and instead, sentence-order prediction worked with consis-
tency between sentences.

With these improvements, it was able to surpass the performances of BERT
and similar to it in benchmarks such as GLUE, and SQuAD. The architecture of
ALBERT is very similar to that of BERT (Fig. 2.11), with the difference that the
parameters are the same in each encoder of ALBERT, as mentioned above and as
is specified in Fig. 2.12.

In general, DL methods such as BERT and ALBERT have become too popular,
obtaining great results in different types of tasks, but one of their main disadvan-
tages is the excessive use of computational resources. Although there are pre-trained
models, they still require large resources for their respective fine-tuning. In general,
both classic ML and DL methods have their respective advantages in computing
costs, time, performance, etc. This will always depend on the problem being ad-
dressed, as a simple example: when it comes to text classification and the number of
documents in a dataset is small, a ML method may be the most appropriate. If not,
a DL method could be superior, as long as only classification performance matters
and not the computational cost.

2.5 Evaluation Setup

2.5.1 Dataset Split

The most adequate way to validate the generalization of a classification method that
has been previously trained with a dataset is to evaluate it with a set of documents
that have not been seen during training. There are various validation methods that
allow this to be carried out, where the use of each will depend mainly on the number
of documents contained in the dataset being used.

The method used in this work is train-test split, which allows dividing a dataset
into two subsets, where the one with the largest number of documents is used for
the training stage of the classification method and the second for the validation of
the method. Normally, the proportions of documents are handled in percentages
of 60%-80% for the training subset, and the rest for the test subset. Under this

CHAPTER 2. THEORETICAL FRAMEWORK 41

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.12: ALBERT’s architecture.

method, there are cases in which three subsets training, validation, and test are
created, in order to use the training subset to train various classification methods
with different values in the hyperparameters and evaluate their performances with
the subset of validation, in order to find the best values of its hyperparameters, and
finally be tested with the test subset. This allows knowing a brief estimate of how
the classification method would perform when tested with real-world problems, with
any of the two techniques (train-test, train-validation-test).

Other types of methods are those of cross-validation, which are used with the
objective of analyzing the multiple versions of a classification method, which are
trained with different training sets, allowing finding a set that allows obtaining a
classification method with a good generalization. One of the most popular cross-
validation methods is k-fold, this method divides the original dataset into k subsets,
of which k−1 are selected to train a classification method, and the remaining subset
to validate such a method. This process is performed k times, in which the subset

42 CHAPTER 2. THEORETICAL FRAMEWORK

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

to validate the classification method is different each time. The performance of the
classification method when using k-fold is averaging the sum of the performances
obtained on each occasion. The value of k is determined by the user, and typically
values like 5, 10, or 20 are used.

In all validation methods, care must be taken when performing the splits when
dealing with datasets with multiple categories and in some cases such categories are
unbalanced (many documents for some categories and few for others). Since it may
happen that some of the subsets created may not contain documents from any of
the categories that appear in the original dataset. This problem can be avoided by
applying stratification which makes sure that documents from all the categories of
the original dataset will appear in each subset.

2.5.2 Evaluation Metrics

When a classification method is tested with a set of documents not seen during
the training stage, it is necessary to use an evaluation metric to know how well the
method performs when categorizing such documents. Each of the metrics provides
a score that allows knowing the generalization that the classification method has
achieved, evaluating it from different perspectives. Therefore, they can also be used
in order to select the best classification method within a set of methods, or other
types of cases [67].

A large number of the evaluation metrics are defined from a confusion matrix,
which simplifies the understanding of the performance of a classification method by
visualizing the number of occasions in which the classification method predicted the
category correctly (true positives and negatives) or incorrectly (false positives and
negatives). This matrix is built from the actual categories and those predicted by
the method, as shown in Fig. 2.13. The true positives (TP) and the true negatives
(TN) are the counts of occasions in which the classification method assigned the
correct category to a certain number of documents. Conversely, false positives (FP)
and false negatives (FN) are the counts in which the classification method did not
assign the correct categories.

Two of the most common evaluation metrics are Accuracy and F1. Being one of
the most used metrics in practice due to its ease of calculation and understanding,
accuracy is defined as the percentage of hits that the classification method had in
the entire test set, and it is defined as in Eq. 2.19. The problem with this metric
is when the test set suffers from unbalanced categories, since the results provided
may not correctly reveal the performance of the classification method in each of the
categories. For example, there is a dataset made up of 90 documents of category
A and 10 documents of category B; and the classification method is capable of
correctly categorizing all documents from category A but none from category B, an
accuracy of 0.90 would be obtained, which is a very good value, but it is provided
because there is a category that dominates in the dataset, and the classification

CHAPTER 2. THEORETICAL FRAMEWORK 43

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 2.13: A confusion matrix for a binary classification problem.

method really does not work.

Accuracy =
TP + TN

TP + FN + FP + TN
(2.19)

The F1 evaluation metric becomes a great alternative to avoid the problem of
imbalanced datasets, as it is made up of the Precision and Recall metrics. Precision
is a metric that allows knowing the percentage of everything that was categorized as
positive by the classification method and that really is (Eq. 2.20). And the Recall
metric instead calculates from the total number of documents of the positive class,
how many hits the classification method had (Eq. 2.21).

Precision =
TP

TP + FP
(2.20)

Recall =
TP

TP + FN
(2.21)

F1 determines the average between Precision and Recall, as shown in Eq. 2.22.
Therefore, a high value of F1 means that the Precision and Recall are high, and vice
versa.

F1 =
2 · Precison ·Recall

Precision+Recall
(2.22)

Both evaluation metrics provide values between 0 (completely incorrect classi-
fication) and 1 (perfect classification). In addition, F1 has two forms, macro and
micro, which are used when the datasets have more than two categories. In sum-
mary, the macro form calculates each metric for each class, that is, it creates a
confusion matrix for each of the classes, and at the end, it averages the results
obtained. And the micro form could be said to join all the confusion matrices to
calculate the corresponding metric.

44 CHAPTER 2. THEORETICAL FRAMEWORK

Chapter 3

Methodology

A general description of the methodology used in this work is presented in Fig. 3.1.
In the following subsections, each component is described more in-depth, except the
component Results, which is described in Chapter 4.

Figure 3.1: Schematic representation of the methodology process.

3.1 Data Gathering

For the creation of the group of datasets, the Kaggle1 site was used as the main
source, where there are large amounts of datasets for different ML tasks. The
objective was to create a group of datasets that encompassed different types of text

1https://www.kaggle.com

45

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

classification tasks (e.g. news classification, email filtering, sentiment detection,
etc.). Although, some other sites were also used to collect datasets that were very
popular in the literature.

Thus, a total of 34 datasets were collected, with different types of classification
tasks such as news classification, sentiment detection, email filtering, cyberbullying
detection, hierarchical document classification, disaster detection, political prefer-
ence, age identification, fake job posting detection, and research articles classifica-
tion. The textual content of each of the datasets is in English, as was intended
at the time of collection. Table 3.1 provides the names of the collected datasets
and the text classification task they are associated with. Datasets such as 20ng,
movies, r52, wipo l1, and wipo l2 have been widely used in various works focused
on text classification. Therefore, they are considered benchmarks to test different
pre-processing techniques, textual representations, classification methods, complete
methodologies, etc.

3.1.1 Dataset Description

The information contained in each of the 34 collected datasets comes from various
sources such as CNN (CNNAC, CNNAS), Twitter (CorTws, CybTws, DisTws),
Reddit (SuiDect), IMDB (imdbs, IMDBR), The New York Times (NYTAND, NY-
TATM), Rotten Tomatoes (Rotten, sen pol), TripAdvisor (TripAd), among others.
Within this group of datasets there are a total of 11 types of text classification tasks,
each one composed of a different number of datasets, as can be seen in Fig. 3.2. Some
tasks have more datasets than others, both News classification and Sentiment de-
tection are those that cover a greater number of datasets, 11 and 10 respectively,
and the others with fewer such as 3 (Research articles classification), 2 (Age iden-
tification, Hierarchical document classification) or 1 (Email filtering, Cyberbullying
detection, Disaster detection, Political preference, Automated Moderation, and Fake
job posting detection). Despite not covering all types of tasks and the number of
datasets for such tasks are not equivalent, all this content is enough to carry out the
different experiments in this work.

As previously mentioned, the textual content within the datasets was intended
to be in English so that the data processing was the same for each dataset. Clearly,
the largest amount of information within each dataset is textual content, but some
datasets provide other types of information that were collected during their con-
struction. For example, some of the datasets of the News classification type provide
information about the author who wrote the news, headline, keywords, publication
date, and links to sites that feed the news written, among other features. Another
example is those datasets that come from sources such as Twitter, where an instance
is composed by a tweet (textual content), username, date and time posted, and lo-
cation. This type of information in some works can be very valuable, but in this
work, only the textual content is kept.

46 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Dataset Task Source

20 Newsgroups (20ng) News https://bit.ly/3JrdgL7

AG News (AGNews) News https://bit.ly/3ZyV9IR

CNN Articles By Category (CNNAC) News https://bit.ly/3mIC9ZW

CNN Articles By Section (CNNAS) News https://bit.ly/3mIC9ZW

Coronavirus Tweets (CorTws) Sentiment https://bit.ly/3F6YHtG

CSDMC 2010 Spam Corpus (csdmc) Email Filt. https://bit.ly/3ZRB14q

Cyberbullying Tweets (CybTws) [68] Bullying https://bit.ly/3ZS01Iz

Disaster Tweets (DisTws) Disaster https://bit.ly/3ZxmKKg

Fake and real news dataset (F&RNS) [69] News https://bit.ly/421qVzy

GOP Debate Sentiment (gopds) Sentiment https://bit.ly/3JqUtiP

Highly Rated Children Books (HRCB) Age https://bit.ly/41WwvU2

Highly Rated Children Stories (HRCS) Age https://bit.ly/41WwvU2

IMDB Sentiment (imdbs) [70] Sentiment https://bit.ly/3mGPBx4

IMDB 50K Movie Reviews (IMDBR) [71] Sentiment https://bit.ly/3ZUUUYd

Liberals vs Conservatives on Reddit (LvsC) Political https://bit.ly/3yqQyfD

Movie Review Dataset (movies) [72] Sentiment https://bit.ly/3F70QFK

News Category Dataset (NewsCat) [73] News https://bit.ly/3T6tL2u

New York Times Articles By New Desk (NYTAND) News https://bit.ly/3ZBFF6J

New York Times Articles By Type of Material (NYTATM) News https://bit.ly/3ZBFF6J

oh News https://bit.ly/3FcOjjT

r8 News https://bit.ly/3FcOjjT

r52 News https://bit.ly/3FcOjjT

Real/Fake Job Posting Detection (RFJob) Fake job https://bit.ly/3Ld8pi0

Rotten Tomatoes Reviews Dataset (Rotten) Sentiment https://bit.ly/3J5dVQV

Sentence Polarity (sen pol) Sentiment https://bit.ly/3Lbh3xf

Stack Overflow Questions with Quality Rating (StOvQR) [74] Moderation https://bit.ly/3kYYWjs

Suicide and Depression Detection (SuiDect) Sentiment https://bit.ly/3ysdISS

Topic Modelling For Research Articles By Computer Science (TMACS) Res. Art. https://bit.ly/3ZUOpoo

Topic Modelling For Research Articles By Mathematics (TMAMt) Res. Art. https://bit.ly/3ZUOpoo

Topic Modelling For Research Articles By Statistics (TMASt) Res. Art. https://bit.ly/3ZUOpoo

TripAdvisor Hotel Reviews (TripAd) [75] Sentiment https://bit.ly/3JrfZUE

WIPO Level 1 (wipo l1) Hier. Doc. https://bit.ly/3T2aT4s

WIPO (wipo l2) Hier. Doc. https://bit.ly/3T2aT4s

YELP Sentiment (yelp) [70] Sentiment https://bit.ly/3mGPBx4

Table 3.1: Datasets used for the experiments. News: News classification. Sentiment:
Sentiment detection. Email filt.: Email filtering. Bullying: Cyberbullying detection.
Hier. Doc.: Hierarchical document classification. Disaster: Disaster detection.
Political: Political preference. Age: Age identification. Fake job: Fake job posting
detection. Res. Art.: Research Articles classification. Moderation: Automated
Moderation.

CHAPTER 3. METHODOLOGY 47

https://bit.ly/3JrdgL7
https://bit.ly/3ZyV9IR
https://bit.ly/3mIC9ZW
https://bit.ly/3mIC9ZW
https://bit.ly/3F6YHtG
https://bit.ly/3ZRB14q
https://bit.ly/3ZS01Iz
https://bit.ly/3ZxmKKg
https://bit.ly/421qVzy
https://bit.ly/3JqUtiP
https://bit.ly/41WwvU2
https://bit.ly/41WwvU2
https://bit.ly/3mGPBx4
https://bit.ly/3ZUUUYd
https://bit.ly/3yqQyfD
https://bit.ly/3F70QFK
https://bit.ly/3T6tL2u
https://bit.ly/3ZBFF6J
https://bit.ly/3ZBFF6J
https://bit.ly/3FcOjjT
https://bit.ly/3FcOjjT
https://bit.ly/3FcOjjT
https://bit.ly/3Ld8pi0
https://bit.ly/3J5dVQV
https://bit.ly/3Lbh3xf
https://bit.ly/3kYYWjs
https://bit.ly/3ysdISS
https://bit.ly/3ZUOpoo
https://bit.ly/3ZUOpoo
https://bit.ly/3ZUOpoo
https://bit.ly/3JrfZUE
https://bit.ly/3T2aT4s
https://bit.ly/3T2aT4s
https://bit.ly/3mGPBx4

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 3.2: Frequency of text classification tasks within the group of datasets.

The two datasets that make up the Age identification task (HRCB and HRCS)
are used to determine the interest age of a document (book or story, depending on
the dataset) from a text that contains a brief description of it. Both datasets are
composed of books or stories for children with an age range of 0-12 years. There-
fore, there are certain features within the textual content that make it possible to
differentiate, for example, a book recommended for 3-year-olds against a book with
a recommended age of 10 years (such as difficult words).

Regarding the Cyberbullying detection task, it was a task that had great growth
due to the COVID-19 pandemic because it caused a great increase in the use of social
networks as the main sources of communication but also increased the harassment
within them. As there is massive interaction between users on a social network, a
group of people may not be able to moderate the posts, comments, responses, etc.,
from a large number of users. This is where classification methods play an important
role since these models could be capable of moderating social networks in order to
reduce the great harassment that is experienced within them.

The Disaster Detection task is also related to social networks, this task aims
to identify if a post is really about a real disaster or not. This would allow news
agencies to quickly publicize such disasters or disaster relief agencies to act more
quickly, all with the main objective of helping the population.

Email filtering has been a very popular type of task for many years, its name
clearly says it, filtering true information from that which is not. This task has been

48 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

approached with different methodologies, which have been improving over the years.
The fact that it is still a very popular task is due to the fact that email is still a
widely used means of communication in different sectors, and today on the Internet
there are a wide variety of ways in which they seek to scam people, stealing personal
information, phishing, etc.

Fake job posting detection, is another task that focuses on identifying true in-
formation in this case of job postings, since this is another technique used by cyber-
criminals to defraud people. This was also a task that gained popularity in the years
of the COVID-19 pandemic, as many companies from different fields were looking
for people to work remotely. As it is a false publication, cybercriminals request
certain money for the person’s application to be accepted, in addition to requesting
personal data.

Hierarchical document classification is a task that consists of assigning categories
within a hierarchy in such a way that the assigned categories at lower levels are more
specific. This task can be applied to different documents such as web pages, news,
etc. As the years go by, attempts have been made to train classification methods
that allow this process to be automated since new data is generated every day, which
requires a lot of personnel to carry out such classification, and the results that have
been obtained when applying ML techniques have not been good enough to declare
that the problem has already been solved. The two datasets collected that belong
to this type of task (wipo l1 and wipo l2) are a series of documents that contain the
abstract part of patents with categories at a certain level of hierarchy.

With the great rise of the internet and its use as a means of communication,
the task of Fake News classification emerged in order to prevent people from being
misinformed about news that are not real. This problem has been tried to be solved
for some years since this type of news has caused serious problems in the political
and social fields because it can easily influence a person to change their mind. On the
other hand, News classification is focused on classifying the news according to the
field to which they are directed, such as sports, social, political, etc. The datasets
collected on this type of task are directed toward both problems.

Today, social networks are used as the main means of communication between
a political party and its supporters. Likewise, a person can publish their political
tastes or ideas related to this field with great ease. Political preference is a type
of task focused on identifying the political preferences of an individual, group, or
sector of a population. The dataset collected from this type of task (LvsC) comes
from the Reddit website, which contains posts on two types of trends: liberal and
conservative.

Research articles classification is a type of task similar to hierarchical docu-
ment classification, being a problem of determining one or multiple categories to a
document, only research articles classification addresses a big problem within the
scientific field. Because there are hundreds of thousands of research articles pub-
lished each year that address problems in one or multiple specific areas, the problem

CHAPTER 3. METHODOLOGY 49

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

of determining which articles are relevant when searching for a particular topic has
arisen. As there is a lot of information available over the years, the correct iden-
tification of what area a certain article belongs to is essential for various systems
such as search engines, citation indexes, and digital libraries, among others. For this
type of task, a total of three datasets were collected (TMACS, TMAMt, TMASt),
the documents that make up the datasets contain only the title and abstract of an
article, and its respective category that allows identifying its research area.

Sentiment detection is a task in which the political and business fields have
placed great interest in recent years by providing a polarity (e.g. positive, neutral,
or negative) or emotional state. (e.g. sad, happy, worried, etc.) to a text created by
a person. A large amount of this information is generated on websites where people
can easily exchange ideas, points of view, opinions, reviews, etc. The reason these
fields are involved is that sentiment detection can provide very valuable information
for decision-making. An example from the business field is that it allows them to
know if a product is well received by people or not, and thus determine what to do
to improve its sales. The datasets collected on this type of task come from various
sources such as Twitter, IMDB, Rotten Tomatoes, TripAdvisor, and YELP. There
are three types of category groups that can be found in these datasets: two (negative
and positive); three (negative, neutral, and positive); and five (extremely negative,
negative, neutral, positive, and extremely positive).

Finally, automated moderation is focused on the moderation of question-and-
answer (Q&A) websites, where the content of these is mainly generated by various
users. These sites are very popular because they are used as learning tools. In such
a way that the moderation of the content within these is vital, keeping only con-
tent of good or high quality (e.g. non-duplicate content, spam-free, understandable,
etc.). Currently, many of these sites depend on the community of users to preserve
their quality, but it is a process that consumes too much time since to determine
if content should be preserved, it goes through different stages (according to the
site) to determine a final decision, within which the community is always involved,
either to provide a rating, comment, flag spam or duplicate question, among others.
Therefore, providing an automated solution for these types of sites can increase the
quality of the content as well as serve as a tool for new users by giving them informa-
tion on how to answer, rate, or post questions. StOvQR is a dataset with questions
asked during the years 2016-2020 on the Stack Overflow 2 site, classified according
to their quality (High-quality, low-quality still open, and low-quality closed).

Some of the collected datasets are divided into subsets, in different ways such
as training-validation-test, training-test, and by categories (e.g. Fake and True
datasets). In some other cases, multiple files where each one contains only one
document, or subsets according to the year of extraction (e.g. CNN News), and in
the best of cases a single dataset containing all the documents and their respective
categories. In order for the datasets to share the same format, a methodology was

2https://stackoverflow.com

50 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

proposed, with which each dataset only had two files, the first corresponding to the
documents, and the second to the labels of such documents. Once applied to all
the datasets in the group, a series of statistics were calculated with the purpose of
knowing the composition of each one of the datasets, that is, given a dataset, to
which type of task it belongs, and how many categories and documents were found
within it. These results are presented in Table 3.2.

Dataset Task #Cat #Docs Dataset Task #Cat #Docs

20ng News 20 7528 NYTAND News 43 9335

AGNews News 4 127600 NYTATM News 13 9335

CNNAC News 9 37949 oh News 23 7399

CNNAS News 49 37949 r8 News 8 7673

CorTws Sentiment 5 44955 r52 News 51 9099

csdmc Email Filt. 2 4327 RFJob Fake job 2 17880

CybTws Bullying 6 47692 Rotten Sentiment 5 156060

DisTws Disaster 2 11370 sen pol Sentiment 2 10662

F&RNS News 18 44919 StOvQR Moderation 3 60000

gopds Sentiment 3 13871 SuiDect Sentiment 2 232074

HRCB Age 10 3269 TMACS Res. Art. 2 20972

HRCS Age 48 430 TMAMt Res. Art. 2 20972

imdbs Sentiment 2 1000 TMASt Res. Art. 2 20972

IMDBR Sentiment 2 50000 TripAd Sentiment 5 20491

LvsC Political 2 12854 wipo l1 Hier. Doc. 114 75249

movies Sentiment 2 2000 wipo l2 Hier. Doc. 922 75249

NewsCat News 41 200853 yelp Sentiment 2 1000

Table 3.2: Distribution of tasks, number of categories and documents for the group
of datasets.

When analyzing the content of Table 3.2, it can be seen that in addition to
the variability of the types of tasks, this also exists with respect to the number
of categories and documents. Regarding the tasks that have a greater number of
datasets: News classification has a range of documents from a minimum of 7,399 to
a maximum of 200,853 and for categories a minimum of 4 and a maximum of 51; the
second task, Sentiment detection has values from 1,000 to 232,074 for the number
of documents and from 2 to 5 for the number of categories. For Research articles
classification, the number of categories and documents is the same for the 3 collected
datasets. Both age identification and hierarchical document classification count a

CHAPTER 3. METHODOLOGY 51

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

couple of datasets, which have different numbers of categories, and different numbers
of documents in the case of age identification datasets. Finally, the remaining tasks
only have a single dataset, for which in general, the number of categories ranges from
2 to 6, and from 4,327 to 47,692 documents. Within the entire group of datasets,
SuiDect is the dataset with the largest number of documents (232,074) and HCRS
has the fewest (430), wipo l2 is the dataset with the largest number of categories
(922), whereas the smallest number of categories (2) can be found in various datasets
such as csdmc, DisTws, imdbs, among others. By having great variability in various
aspects, this group of datasets will allow a better analysis of the evolutionary model
to be carried out in order to verify its generalization capacity.

3.2 Data Processing

At the end of the collection of the datasets, and after applying a process so that
they are only composed of two files (documents and categories), it is necessary to
apply processing on the part of the documents, since the data within these still are
in a raw form. This process is focused on dividing each of the datasets into subsets,
to later extract superficial features, which for this work are words, leaving aside
other features such as emojis, links, etc. All the following processes were done using
Python using several libraries.

First, each of the datasets of the collected group was divided into two subsets:
the first with 50% of the data for the training part of the evolutionary model (genetic
training group), and the remaining 50% of the data for carrying out the tests of this
(genetic test group); the subsets were created in a stratified way and the documents
belonging to each subset were randomly selected. Later, having 34 datasets in each
genetic group (training and test), these were divided in a stratified way into 80% to
train and 20% to test the different classification methods that are described below.
The following stages of data processing are applied independently to each of the
subsets (training and test) of each genetic group.

Once the splitting process was completed, the extraction of surface features con-
tinued. First, given a document, all text within it is converted to lowercase. Then,
through the use of regular expressions, only words were extracted, as sequences of
alphabetical characters plus the ‘-’ hyphen char, to capture compound words that
are common in English. This process was done with the re library.

After word extraction, stop words were eliminated, which are words that do
not provide relevant information and appear very frequently within texts. The pre-
compiled list of stopwords in English from the NLTK library was used. In addition,
to stop word removal, words of short length (less than 3 characters) and long length
(greater than 30 characters) were also eliminated. And as a last step, words that
appeared only once in the entire dataset were also eliminated.

Once the surface features were extracted, each dataset was transformed using the
tf-idf method to be used with the classification methods. As previously mentioned,

52 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

within each genetic group there are a total of 34 datasets, which in turn are divided
into a training set and a test set. For each dataset, the vocabulary is extracted from
the training set, and for each term within it, the idf is calculated following Eq. 2.2.
And then, the vectorization of each document in the training set is performed ac-
cording to Eq. 2.1, allowing to obtain a matrix within which each element represents
the importance of the t term in the document d. Having vectorized the training set,
both the vocabulary and the idfs obtained are reused to vectorize the test set using
the same Eq. 2.1. The vectors of both sets are normalized by applying the L2-Norm.

3.3 Classification Methods

Once the data processing was carried out, a pool of various ML classification methods
was defined, addressing different approaches and configurations of these, so that the
evolutionary model could have wide options to choose the most appropriate method
for each of the different datasets used.

Methods with various approaches (probabilistic, instance-based, and functions,
among others) and different configurations were used according to the hyperparam-
eters available for each method, as follows. Bernoulli (BNB), Complement (CNB),
and Multinomial (MNB) from Näıve Bayes; turning normalization on and off in the
case of CNB. K-Nearest Neighbors (KNN) combining k (neighbors) with values of
1, 5, 10, and 20; with the distance metrics Manhattan, Euclidean, and cosine simi-
larity. Decision Trees (DT) alternating the quality criteria of entropy and gini; with
max features as None, auto, sqrt, and log2. Logistic Regression (LR) with a regular-
ization parameter C of 0.1, 1, or 10; and using different types of solvers such as lbfgs,
newton-cg, liblinear, sag, or saga; in addition to limiting the number of iterations to
10,000. Linear Support Vector Machine (LSVM) in its dual form; the regularization
parameter C with values of 0.1, 1, or 10; hinge or squared hinge as loss functions;
and a maximum of 20,000 iterations. Support Vector Machine (SVM) with gamma
as scale; the kernels of rbf, sigmoid, and polynomial; and using the degrees of 2,
3, and 4 for the polynomial kernel. These classification methods and their various
configurations make it possible to obtain a set of 60 methods, which are described
in Table 3.3.

One of the objectives of this work is not to search for the best hyperparameters
of a classification method, but rather to determine the most appropriate method for
a given dataset based on its meta-features. In this case, the method is selected from
the pool of 60 previously defined methods. For each dataset of each genetic group,
the training part is used to train each pool method, and the test part of the dataset
is used to test their respective classification performance.

The evaluation metric macro F1 was used to measure the performance of the
classification methods on each dataset. This metric provides values between 0 and
1; a value close to 1 means good performance and vice versa. The ML methods were
implemented in Python, using the libraries scikit-learn [76], and NumPy [77]. For

CHAPTER 3. METHODOLOGY 53

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Base Hyperparameters # Base Hyperparameters # Base Hyperparameters

1 MNB 21 DT cr=‘entropy’, mf=None 41 LSVM C=0.1, l=‘hinge’

2 CNB norm=True 22 DT cr=‘entropy’, mf=‘auto’ 42 LSVM C=1, l=‘s hinge’

3 CNB norm=False 23 DT cr=‘entropy’, mf=‘sqrt’ 43 LSVM C=1, l=‘hinge’

4 BNB 24 DT cr=‘entropy’, mf=‘log2’ 44 LSVM C=10, l=‘s hinge’

5 KNN k=1, m=‘manhattan’ 25 LR C=0.1, s=‘lbfgs’ 45 LSVM C=10, l=‘hinge’

6 KNN k=1, m=‘euclidean’ 26 LR C=0.1, s=‘newton-cg’ 46 SVM C=0.1, ke=‘rbf’

7 KNN k=1, m=‘cosine’ 27 LR C=0.1, s=‘liblinear’ 47 SVM C=0.1, ke=‘poly’, de=2

8 KNN k=5, m=‘manhattan’ 28 LR C=0.1, s=‘sag’ 48 SVM C=0.1, ke=‘poly’, de=3

9 KNN k=5, m=‘euclidean’ 29 LR C=0.1, s=‘saga’ 49 SVM C=0.1, ke=‘poly’, de=4

10 KNN k=5, m=‘cosine’ 30 LR C=1, s=‘lbfgs’ 50 SVM C=0.1, ke=‘sigmoid’

11 KNN k=10, m=‘manhattan’ 31 LR C=1, s=‘newton-cg’ 51 SVM C=1, ke=‘rbf’

12 KNN k=10, m=‘euclidean’ 32 LR C=1, s=‘liblinear’ 52 SVM C=1, ke=‘poly’, de=2

13 KNN k=10, m=‘cosine’ 33 LR C=1, s=‘sag’ 53 SVM C=1, ke=‘poly’, de=3

14 KNN k=20, m=‘manhattan’ 34 LR C=1, s=‘saga’ 54 SVM C=1, ke=‘poly’, de=4

15 KNN k=20, m=‘euclidean’ 35 LR C=10, s=‘lbfgs’ 55 SVM C=1, ke=‘sigmoid’

16 KNN k=20, m=‘cosine’ 36 LR C=10, s=‘newton-cg’ 56 SVM C=10, ke=‘rbf’

17 DT cr=‘gini’, mf=None 37 LR C=10, s=‘liblinear’ 57 SVM C=10, ke=‘poly’, de=2

18 DT cr=‘gini’, mf=‘auto’ 38 LR C=10, s=‘sag’ 58 SVM C=10, ke=‘poly’, de=3

19 DT cr=‘gini’, mf=‘sqrt’ 39 LR C=10, s=‘saga’ 59 SVM C=10, ke=‘poly’, de=4

20 DT cr=‘gini’, mf=‘log2’ 40 LSVM C=0.1, l=‘s hinge’ 60 SVM C=10, ke=‘sigmoid’

Table 3.3: Group of ML classification methods. norm: Apply second normalization.
k: Neighbors. m: Distance metric. cr: Quality criteria. mf: Maximum number of
features. C: Regularization parameter. s: Solver. l: Loss function. ke: Kernel. de:
Degree for the polynomial kernel.

the training and testing of the ML classification methods, a PC with an Intel Xeon
Silver processor @2.1 GHz, 128 GB of RAM, and Windows 10 Pro was used.

3.4 Meta-Feature Extraction

In addition to defining the classification methods (actions) available for the evolu-
tionary model, it is also necessary to extract certain meta-features from each dataset.
These meta-features are focused on representing the distribution of the data within
each dataset in the best possible way, and thus knowing the properties of a dataset
that favor the performance of a certain classification method. Therefore, each of the
defined meta-features can provide valuable information for the selection of an ap-
propriate method for a given dataset. For example, if a certain classification method
A provides better classification performance than a method B when the categories
within a dataset are unbalanced, a meta-feature that allows knowing the standard
deviation of the documents by category could be essential to make the decision of

54 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

which classification method to apply. For each training part of the datasets of each
genetic group, a total of 16 meta-features defined in Table 3.4 were calculated, based
mainly on statistics that are calculated at a document, category, and dataset level.
Both their definition and the way they are calculated are explained in the following
paragraphs.

Abreviation Description

nDocs Number of documents

nTops Number of categories

dptAvg Mean of documents per category

dptMed Median of documents per category

dptStd Standard deviation of documents per category

dptStdAvg Ratio bewteen dptStd and dptAvg

dptEnt Shannon entropy of documents per category

wpdAvg Mean of words per document

wpdMed Median of words per document

wpdStd Standard deviation of words per document

wpdStdAvg Ratio between wpdStd and wpdAvg

wpdEnt Shannon entropy of words per document

pca10 Variance captured by the first 10 components of PCA

pca20 Variance captured by the first 20 components of PCA

pca30 Variance captured by the first 30 components of PCA

cmxWds Percentage of difficult words in the entire dataset

Table 3.4: Set of meta-features used to represent the data distribution of a dataset.

• Number of documents. nDocs corresponds to the number of documents
found in the training part of a dataset, which will be used to train each clas-
sification method. nDocs can allow the evolutionary model to select classifi-
cation methods that are capable of performing well with a given number of
documents.

• Number of categories. Similar to nDocs, nTops is the number of categories
found in the training part of a dataset. In turn, this meta-feature can be crucial
to identify methods that perform well on binary or multi-class classification
datasets.

CHAPTER 3. METHODOLOGY 55

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

• Documents per category: mean. dptAvg corresponds to the average
number of documents per category, which is calculated as the division of
nDocs/nTops. This meta-feature measures the centrality of the number of
documents per category but is sensitive to extreme values.

• Documents per category: median. A meta-feature that also measures
the centrality of the number of documents per category, but is not sensitive to
extreme values is dptMed, which corresponds to the median of the documents
per category. Given the training part of a dataset, this meta-feature is calcu-
lated as the middle value of the ordered list of the number of documents that
exist in each category.

• Documents per category: standard deviation. dptStd measures the
dispersion of the documents per category with respect to their mean, through
the standard deviation. This meta-feature is calculated by Eq. 3.1.

dptStd =

√

√

√

√

1

N

N
∑

i=1

(dpti − µ)2 (3.1)

where N is nTops, dpti is the number of documents in category i, and µ is
dptAvg. A value of 0 or close to it means that the categories are balanced
(same number of documents per category), on the other hand, a large value
means that there is an imbalance between the categories. This meta-feature
could allow the evolutionary model to select classification methods that are not
affected in their performance due to unbalanced categories (a very common
problem in the literature).

• Documents per category: the ratio between standard deviation and
mean. The objective of calculating the ratio between the standard devia-
tion and the mean of the documents per category is also to calculate the
dispersion of the documents. However, dptStdAvg allows comparison between
datasets that have widely different dptAvg values, since this meta-feature is
dimensionless. Its calculation is simple since it is a value corresponding to
dptStd/dptAvg.

• Documents per category: Shannon entropy. Shannon entropy or infor-
mation entropy is a measure that allows knowing the uncertainty of a source
of information, and thus also knowing the measure of information necessary
to deal with such uncertainty. In this case, dptEnt is the average amount
of information found in each category of a given dataset, which is calculated
using Eq. 3.2.

dptEnt =
N
∑

i=1

P (dpti) loge

(

1

P (dpti)

)

(3.2)

56 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

where N is equal to nTops; P (dpti) is the probability that a category has a
total of dpti documents. dpti is an element of dpt, which is a list of size N
containing the number of documents that exist in each category. For reasons
of ease in computational terms, the base of the logarithm was taken as e; in
information theory, it is taken as base 2 because it works in terms of bits (0
or 1).

• Words per document: mean. This meta-feature is the average size of the
documents within a given dataset, with which we can generally identify how
large or small the documents are. Due to the diversity of types of text clas-
sification tasks, the documents in a cyberbullying detection dataset are not
the same length as those in a research articles classification dataset. wpdAvg
can allow the evolutionary model to identify classification methods that are
capable of handling long, short, or both types of documents. The way to be
calculated within Python is by reading each document (a sequence of charac-
ters) and dividing it by the spaces that exist within it, which allows knowing
the total number of words within the document. This summation divided by
nDocs is the value assigned to wpdAvg.

• Words per document: median. wpdMed is a meta-feature that is similar
to dptMed, only that it is calculated at a document level. wpdMed takes
the middle value of the ordered list of word counts for each document in the
training part of a given dataset. By also sharing a feature of wpdAvg, which is
measuring data centrality, this meta-feature can perhaps be key to identifying
methods that are very sensitive to large feature spaces.

• Words per document: standard deviation. Taking Eq. 3.1 as a reference,
to apply it at a document level, it results in Eq. 3.3.

wpdStd =

√

√

√

√

1

N

N
∑

i=1

(wpdi − µ)2 (3.3)

where N is nDocs, wpdi is the number of words in document i, and µ is
wpdAvg. When wpdStd is a large value, it means that there is a large variance
between document lengths from the mean, whether they contain many or few
words. Datasets with high values in wpdStd are commonly found, such as
product reviews, movies, etc., where there is no control over the text size. But
there is also the opposite case, for example, where the documents of a dataset
represent the abstracts of articles, which rarely exceed the amount of around
150 words.

• Words per document: the ratio between standard deviation and
mean. Like dptStdAvg, wpdStdAvg is a meta-feature for comparing datasets

CHAPTER 3. METHODOLOGY 57

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

where there is a wide difference in means, in this case, the number of words
per document. This can allow identifying classification methods that perform
well on this type of distribution, regardless of any other meta-characteristic of
the dataset (e.g. nDocs, nTops, etc.).

• Words per document: Shannon entropy. Using Eq. 3.4, the Shannon
entropy is calculated with respect to words per document, that is, the average
amount of information in a document when its number of words is observed. In
such an equation, N equals nDocs, P (wpdi) is the probability that a document
has a total of wpdi words, and wpd = [wpd1, wpd2, . . . , wpdN].

wpdEnt =
N
∑

i=1

P (wpdi) loge

(

1

P (wpdi)

)

(3.4)

• Principal Component Analysis. Principal Component Analysis (PCA) is
a process widely used within ML, which, from a dataset consisting of multi-
ple variables, passes it to a space of uncorrelated latent components, which
allows obtaining a new set where each feature is an orthogonal component and
uncorrelated to all others. These new features or components are known as
principal components, and they are ordered in such a way that the first ones
explain a greater amount of variance than those that are last. Typically, the
components that explain the least amount of variance can be removed because
there is no significant loss of information, thus lowering the dimensionality,
which in turn may allow for better classification.

The principal components can be calculated from the singular value decom-
position (SVD) defined by Eq. 3.5, where X corresponds to the input data in
a space of n dimensions, U and V are unitary matrices, whose columns are
known left and right singular vectors respectively, and S is a diagonal matrix
containing the singular values of X. The columns of V (right singular vectors)
correspond to the eigenvectors. The principal components correspond to the
columns of U · S as long as if X is centered.

X = U · S · V T (3.5)

The percentage of information provided by a component cj is calculated using
Eq. 3.6, where ¼i corresponds to the variance of the component i, which is
related to the singular value si by means of ¼i = s2i / (n− 1).

Ecj =
¼j

∑n

i=1 ¼i

(3.6)

In this work, SVD is applied to the tf-idf representations of the training parts
of each dataset, which is why it can also be called Latent Semantic Analysis.

58 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

As mentioned above, the first components are the ones that provide the most
information to the system, in such a way that they are also the ones that
capture the greatest variance. Equation 3.7 is used to compute the percentage
of variance explained by the first k components.

PCAk =

∑k

j=1 ¼j
∑n

i=1 ¼i

(3.7)

Three meta-features were defined from PCA, which correspond to the percent-
age of explained variance contained by the first 10 (pca10), 20 (pca20), and
30 (pca30) components.

• Difficult words. cmxWds represents the percentage of complex or difficult
words within the training part of each dataset. This meta-feature is based
on the Gunning fog index [78], which is a test that determines the academic
degree that a person should have to understand a certain text in the first
reading of it.

A word is called a complex word when it consists of 3 or more syllables, in
addition to not being a proper noun, familiar jargon, or compound word. The
cmxWds computation was done using the textstat 3 library. This meta-feature
is calculated by Eq. 3.8.

cmxWds =
Ncw

Ntw

(3.8)

where Ncw is the number of difficult words, and Ntw is the total number of
words for a given dataset.

The values obtained by the set of 16 meta-features when applied to the training
parts of each dataset in the training and test genetic groups are shown in Tables 3.5
to 3.8. Looking at these values, we can notice that there is great variability between
the meta-features between datasets.

3Available at: https://pypi.org/project/textstat

CHAPTER 3. METHODOLOGY 59

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

20ng AGNews CNNAC CNNAS CorTws csdmc CybTws DisTws F&RNS

Genetic training group

nDocs 3011 51040 15179 15179 17981 1730 19076 4548 17967

nTops 20 4 9 49 5 2 6 2 18

dptAvg 150.5 12760 1686.5 309.7 3596.2 865 3179.3 2274 998.1

dptMed 152.5 12748 222 31 3259 865 3182 2274 5.5

dptStd 13.22 57.27 2724.4 738.4 919.1 311 32.85 1410 1546.9

dptStdAvg 0.087 0.004 1.615 2.383 0.255 0.359 0.010 0.620 1.549

dptEnt 2.787 1.386 2.197 3.337 1.609 0.693 1.791 0.693 2.135

wpdAvg 143.7 24.37 528.5 528.5 18.92 171.3 13.11 10.21 234.2

wpdMed 86 24 391 391 20 88 12 11 210

wpdStd 315.2 6.793 566.6 566.6 6.458 403.1 7.528 3.243 185.7

wpdStdAvg 2.192 0.278 1.072 1.072 0.341 2.352 0.573 0.317 0.793

wpdEnt 5.570 3.212 6.917 6.917 3.251 5.599 3.276 2.541 6.236

pca10 0.029 0.023 0.059 0.059 0.028 0.102 0.048 0.020 0.047

pca20 0.048 0.037 0.085 0.085 0.045 0.149 0.069 0.037 0.073

pca30 0.064 0.049 0.103 0.103 0.058 0.177 0.086 0.051 0.093

cmxWds 0.181 0.189 0.199 0.199 0.209 0.200 0.139 0.161 0.234

Genetic test group

nDocs 3011 51040 15180 15180 17982 1731 19076 4548 17968

nTops 20 4 8 46 5 2 6 2 13

dptAvg 150.5 12760 1897.5 330 3596.4 865.5 3179.3 2274 1382.1

dptMed 157 12795 293 41 3353 865.5 3189.5 2274 302

dptStd 19.28 86.52 2803.2 748.4 950.3 308.5 48.76 1452 1671.3

dptStdAvg 0.128 0.006 1.477 2.268 0.264 0.356 0.015 0.638 1.209

dptEnt 2.510 1.386 2.079 3.491 1.609 0.693 1.791 0.693 2.311

wpdAvg 138.5 24.40 539.7 539.7 18.93 165.2 13.07 10.28 236.9

wpdMed 85 24 395 395 20 90 12 11 212

wpdStd 257.3 6.794 559.3 559.3 6.424 404.2 8.388 3.143 191.5

wpdStdAvg 1.857 0.278 1.036 1.036 0.339 2.447 0.641 0.305 0.808

wpdEnt 5.569 3.208 6.941 6.941 3.249 5.590 3.280 2.504 6.232

pca10 0.028 0.023 0.061 0.061 0.028 0.101 0.049 0.020 0.047

pca20 0.048 0.037 0.087 0.087 0.045 0.145 0.071 0.035 0.072

pca30 0.064 0.049 0.105 0.105 0.058 0.172 0.087 0.048 0.092

cmxWds 0.184 0.190 0.197 0.197 0.208 0.193 0.140 0.159 0.234

Table 3.5: Values of the meta-features for the datasets.

60 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

gopds HRCB HRCS imdbs IMDBR LvsC movies NewsCat NYTAND

Genetic training group

nDocs 5548 1307 172 400 20000 5141 800 80340 3733

nTops 3 10 48 2 2 2 2 41 42

dptAvg 1849.3 130.7 3.583 200 10000 2570.5 400 1959.5 88.88

dptMed 1288 123.5 2 200 10000 2570.5 400 1332 35

dptStd 1076 84.51 3.593 3 65 764.5 1 2276.9 121.5

dptStdAvg 0.581 0.646 1.002 0.015 0.006 0.297 0.002 1.162 1.367

dptEnt 1.098 2.302 1.837 0.693 0.693 0.693 0.693 3.713 3.494

wpdAvg 10.28 90.78 55.54 7.112 116.3 7.855 351.9 16.94 27.41

wpdMed 11 81 55 6 87 7 323.5 17 27

wpdStd 2.851 40.48 25.23 5.396 88.42 4.950 157.6 7.068 10.84

wpdStdAvg 0.277 0.446 0.454 0.758 0.759 0.630 0.447 0.417 0.395

wpdEnt 2.443 3.364 4.171 2.771 5.470 2.793 5.87 3.301 3.765

pca10 0.101 0.297 0.096 0.092 0.021 0.028 0.035 0.017 0.049

pca20 0.158 0.589 0.177 0.155 0.032 0.048 0.065 0.029 0.077

pca30 0.194 0.845 0.249 0.208 0.042 0.065 0.090 0.038 0.097

cmxWds 0.184 0.195 0.193 0.200 0.175 0.232 0.189 0.181 0.238

Genetic test group

nDocs 5548 1308 172 400 20000 5141 800 80341 3734

nTops 3 10 43 2 2 2 2 41 43

dptAvg 1849.3 130.8 4 200 10000 2570.5 400 1959.5 86.83

dptMed 1235 124 2 200 10000 2570.5 400 1369 39

dptStd 1114.8 83.61 3.965 5 75 779.5 1 2298.1 118.9

dptStdAvg 0.602 0.639 0.991 0.025 0.007 0.303 0.002 1.172 1.369

dptEnt 1.098 2.302 2.042 0.693 0.693 0.693 0.693 3.645 3.491

wpdAvg 10.30 91.39 55.36 7.497 115.8 7.880 345.6 17 27.25

wpdMed 11 81 57 6 86 7 323 17 27

wpdStd 2.831 42.58 26.50 5.229 86.99 4.895 149.6 7.063 10.69

wpdStdAvg 0.274 0.465 0.478 0.697 0.751 0.621 0.432 0.415 0.392

wpdEnt 2.439 3.354 4.257 2.814 5.458 2.797 5.836 3.299 3.762

pca10 0.096 0.300 0.105 0.088 0.021 0.027 0.039 0.017 0.047

pca20 0.152 0.587 0.187 0.150 0.032 0.047 0.070 0.029 0.074

pca30 0.191 0.839 0.260 0.202 0.042 0.063 0.097 0.038 0.094

cmxWds 0.182 0.197 0.190 0.204 0.174 0.232 0.187 0.182 0.236

Table 3.6: Values of the meta-features for the datasets.

CHAPTER 3. METHODOLOGY 61

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

NYTATM oh r8 r52 RFJob Rotten sen pol StOvQR

Genetic training group

nDocs 3733 2959 3068 3639 7152 62424 4264 24000

nTops 13 23 8 51 2 5 2 3

dptAvg 287.1 128.6 383.5 71.35 3576 12484 2132 8000

dptMed 17 94 123.5 10 3576 10869 2132 8025

dptStd 661.9 120.6 521 247.8 3197 10504 21 36.77

dptStdAvg 2.305 0.937 1.358 3.474 0.894 0.841 0.009 0.004

dptEnt 2.458 3.075 2.079 3.190 0.693 1.609 0.693 1.098

wpdAvg 27.41 109.7 56.82 63.07 76.33 3.878 10.30 85.30

wpdMed 27 108 39 43 65 3 10 55

wpdStd 10.84 41.77 59.28 65.24 67.90 3.434 4.692 113.3

wpdStdAvg 0.395 0.380 1.043 1.034 0.889 0.885 0.455 1.329

wpdEnt 3.765 5.077 4.845 4.961 5.129 2.199 2.924 5.207

pca10 0.049 0.038 0.157 0.146 0.119 0.025 0.024 0.047

pca20 0.077 0.063 0.204 0.192 0.155 0.042 0.042 0.072

pca30 0.097 0.083 0.233 0.222 0.182 0.054 0.056 0.090

cmxWds 0.238 0.368 0.080 0.083 0.377 0.242 0.235 0.174

Genetic test group

nDocs 3734 2960 3069 3640 7152 62424 4264 24000

nTops 11 23 8 51 2 5 2 3

dptAvg 339.4 128.6 383.6 71.37 3576 12484 2132 8000

dptMed 78 90 121 10 3576 11066 2132 7957

dptStd 699 122.4 528.3 247.9 3260 10436 5 71.67

dptStdAvg 2.059 0.951 1.377 3.473 0.911 0.835 0.002 0.009

dptEnt 2.271 3.075 2.079 3.198 0.693 1.609 0.693 1.098

wpdAvg 27.25 108.9 59.93 61.60 76.12 3.884 10.25 84.42

wpdMed 27 106 41 44 65 3 10 55

wpdStd 10.69 42.07 62.95 62.6 66.85 3.451 4.663 111.4

wpdStdAvg 0.392 0.386 1.050 1.016 0.878 0.888 0.454 1.320

wpdEnt 3.762 5.085 4.895 4.938 5.129 2.201 2.920 5.196

pca10 0.047 0.037 0.157 0.147 0.117 0.025 0.024 0.047

pca20 0.074 0.061 0.202 0.193 0.154 0.041 0.041 0.072

pca30 0.094 0.081 0.232 0.223 0.181 0.054 0.056 0.090

cmxWds 0.236 0.369 0.083 0.081 0.376 0.241 0.236 0.174

Table 3.7: Values of the meta-features for the datasets.

62 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

SuiDect TMACS TMAMt TMASt TripAd wipo l1 wipo l2 yelp

Genetic training group

nDocs 92829 8388 8388 8388 8196 30099 30099 400

nTops 2 2 2 2 5 114 922 2

dptAvg 46414 4194 4194 4194 1639.2 264 32.64 200

dptMed 46414 4194 4194 4194 884 123.5 10 200

dptStd 17.5 788 1910 2087 1189 404.4 62.64 3

dptStdAvg 0.000 0.187 0.455 0.497 0.725 1.531 1.918 0.015

dptEnt 0.693 0.693 0.693 0.693 1.609 4.573 3.936 0.693

wpdAvg 58.62 95.08 95.08 95.08 97.20 63.94 63.94 5.432

wpdMed 28 93 93 93 72 61 61 5

wpdStd 98.05 37.22 37.22 37.22 94.16 29.78 29.78 3.170

wpdStdAvg 1.672 0.391 0.391 0.391 0.968 0.465 0.465 0.583

wpdEnt 4.924 5.001 5.001 5.001 5.330 4.757 4.757 2.423

pca10 0.044 0.026 0.026 0.026 0.037 0.033 0.033 0.116

pca20 0.064 0.042 0.042 0.042 0.057 0.053 0.053 0.184

pca30 0.081 0.055 0.055 0.055 0.074 0.068 0.068 0.238

cmxWds 0.125 0.384 0.384 0.384 0.152 0.320 0.320 0.126

Genetic test group

nDocs 92829 8388 8388 8388 8196 30100 30100 400

nTops 2 2 2 2 5 114 911 2

dptAvg 46414 4194 4194 4194 1639.2 264 33.04 200

dptMed 46414 4194 4194 4194 865 123 10 200

dptStd 71.5 735 1972 2131 1187.6 406.1 63.14 6

dptStdAvg 0.001 0.175 0.470 0.508 0.724 1.538 1.911 0.03

dptEnt 0.693 0.693 0.693 0.693 1.609 4.593 3.961 0.693

wpdAvg 58.66 95.18 95.18 95.18 99.05 63.90 63.90 5.535

wpdMed 27 93 93 93 73 61 61 5

wpdStd 98.71 36.71 36.71 36.71 93.05 29.76 29.76 3.013

wpdStdAvg 1.682 0.385 0.385 0.385 0.939 0.465 0.465 0.544

wpdEnt 4.921 4.988 4.988 4.988 5.359 4.758 4.758 2.387

pca10 0.043 0.027 0.027 0.027 0.038 0.033 0.033 0.117

pca20 0.063 0.043 0.043 0.043 0.057 0.052 0.052 0.185

pca30 0.080 0.055 0.055 0.055 0.074 0.068 0.068 0.240

cmxWds 0.125 0.384 0.384 0.384 0.152 0.321 0.321 0.138

Table 3.8: Values of the meta-features for the datasets.

CHAPTER 3. METHODOLOGY 63

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.5 Evolutionary Model

GAs are optimization algorithms that can be applied to various problems because
they are not problem dependent. One of the best features of GAs is the ability to
find solutions mainly due to its evolutionary operators. The evolutionary operators
of a GA allow to get out of local optima by exploring and exploiting the space of
solutions, for which a better solution can be provided.

The evolutionary model designed for this work is schematically represented in
Fig. 3.3, where the first phase (training) is designed according to a GA. The second
phase of the model (test) consists of testing the best hh that was obtained during the
training phase. The remaining content of this section corresponds to the explanation
of how our problem was approached with a GA.

Figure 3.3: General process of the evolutionary model to learn and evaluate hhs.

64 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.5.1 Individuals

The definition of individuals is one of the most essential parts of a GA since an
individual can be represented/designed in multiple ways, which allows for generating
different possible solutions to the problem being addressed.

In this work, an individual is a hh, and a hh is defined as a set of m if-then rules,
plus an else-rule. Each one of the rules of a hh is made up of a set of conditions and
an action, with the exception of the else-rule, the latter only has one action, and
it is applied in case none of the other rules are applied, as shown in Fig. 3.4, Cx,y

denotes the y condition for the x rule. The conditions inside the rules are joined
by the AND logical operator, it has been decided to be that way because the OR
logical operator is implemented explicitly at the rule level, or in other words, the
conditions of rule A are met OR the conditions of rule B are met. In a way, each
hh functions as a meta-classifier, which according to each rule provides a specific
classification method for a single dataset.

Figure 3.4: Representation of the rules that compose a single hh.

The way in which a hh determines the classification method for a dataset is
demonstrated in Algorithm 1. The following are received as arguments: the set of
meta-features extracted from the training part of the dataset, and the hh that will
be used. The evaluation is carried out sequentially, that is, it starts with rule 1,
then with rule 2, and so on until the rule is found in which all its conditions are
satisfactorily fulfilled. But there is also the case that the conditions of any rule are
not met, for this case, the else rule will be applied. Once the rule is found, the action
associated with it is taken, which is the classification method that is expected to be
optimal or one close to it for that dataset.

Due to the fact that the design of the individuals for this problem is somewhat
complex, in the following paragraphs the composition of these is broken down, pro-
viding a concise definition of each one of its components and the way in which they
are created.

CHAPTER 3. METHODOLOGY 65

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 1 Using a hh to determine a classification method for a single dataset

Require: hh,mfD ▷ Hyper-heuristic, set of meta-features of a dataset D
1: function EvaluateDataset(hh, mfD)
2: for each rule ∈ hh do
3: if rule ̸= elsehh then
4: if CheckConditions(rule, mfD) then
5: return actionrule

6: else
7: return actionelsehh

8: function CheckConditions(rule, mfD)
9: for each condition ∈ rule do
10: if not Satisfies(condition, mfD) then
11: return False
12: return True

Rule set

As mentioned above, a set of rules is an individual/hh, where each of its correspond-
ing rules can also be named low-level heuristics. In general, the hh is responsible for
selecting a rule to provide a solution that is expected to be the most appropriate
for an instance (dataset) of the general problem (group of datasets). In Python, the
list data type is used to create each set of rules.

Rule

In this work, a low-level rule or heuristic is composed of a set of conditions and
an action. In programming, it can be seen as an if-then statement, since certain
conditions must be met (it depends on the use of logical operators) to apply a
certain action. In this case, all the conditions of a rule have to be met in order for
an action to be returned. Due to this composition, it is necessary to create a final
rule (else statement) without a set of conditions to be applied in case none of the
if-then rules are met, this rule is added to the end of the set. These rules can also
be created using the list data type.

Condition

Each condition of a rule is designed to evaluate only one meta-feature from the set
previously defined in Table 3.4. This process is done by means of a comparison
operator, the respective value of the meta-feature, and a reference value. In this
way, the value of the meta-feature and the reference value have the role of operands,
the condition is fulfilled as long as the result of the operation is true. A condition

66 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

has the form of a 3-tuple (meta-feature, comparison operator, reference value).
The comparison operators were limited to two: less than (<) and greater than

(>). The equal comparison operator (=) was omitted due to the fact that it is a
criterion with a very low probability of being met. Although the reference value is
randomly generated at the beginning, it is necessary to establish the ranges in which
such a value can be generated. For example, given a meta-feature whose value only
varies between 0-10 regardless of the dataset, a reference value outside these ranges
would make the condition created with such a meta-feature always true, therefore,
the condition and the meta-feature would become irrelevant within the rule. Added
to the above, for the design of the rules it was contemplated that a meta-feature
could be evaluated on more than one occasion within a rule, this allows performing
range checks such as (nDocs > 52, 893 AND nDocs <79,463).

The rules work as a conjunction of multiple conditions (the conditions are joined
by means of the logical AND operator), that is, for the action associated with a rule
to be applied, it is necessary that all the conditions of the rule are fulfilled. Although
disjunctions (logical OR operator) were not contemplated to be implemented within
the rules, as was mentioned at the beginning of this subsection, they exist at a rule
level.

Action

The action associated with each rule means the classification method that will be
used to train and evaluate a certain dataset as long as all the conditions of the rule
are met. The Algorithm 1 function EvaluateDataset provides such a classifi-
cation method. Thus, the action assigned to a rule is one of the 60 classification
methods from the pool of classification methods (ML classification methods) defined
in Table 3.3.

As can be seen, within the pool of classification methods there are some methods
that have a higher frequency (multiple variants due to multiple configurations of
their hyperparameters) such as KNN, LR, LSVM, and SVM, the latter two use the
same approach (functions by support vector machines). If the classification method
assigned to a rule is taken randomly directly from the pool, the probability that one
of these methods will be selected is very high, which would not allow knowing the
performance of methods such as Näıve Bayes (BNB, CNB and MNB), DT, etc. To
address this problem, it was decided that any classification method has the same
probability of being selected, but the selected configuration of that method can be
randomly selected.

The methodology for selecting a classification method and its respective hy-
perparameter configuration is demonstrated in Algorithm 2. According to this
methodology, for example, a KNN method and a Näıve Bayes method have the
same probability of being selected despite having different numbers of hyperparam-
eter configurations within the pool.

Finally, an example of a hh created by the evolutionary model is shown in Fig. 3.5,

CHAPTER 3. METHODOLOGY 67

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 2 Select a classification method and its hyperparameter configuration
from a pool of classification methods

Require: pool ▷ Pool of classification methods
1: function SelectMethod(pool)
2: methods← [NB, KNN, DT, LR, SVM]
3: ms← RandomMethodFrom(methods)
4: method← GetRandomMethodFrom(pool, ms)
5: return method

in which it can be seen that there are rules with one or more conditions, rules whose
conditions create a range check, different actions that can apply the rules, among
other aspects.

Figure 3.5: Example of a hh created by the evolutionary model.

3.5.2 Initialization

A GA starts with an initial population of individuals. In this work, the initial
population of hhs is created at random. The size of such a population has to be
constant throughout the evolutionary process. To avoid the creation of complex hhs
(a large number of rules and/or conditions), it is necessary to establish a minimum
and maximum number of rules that can be in one hh and the same for the number
of conditions in a rule. The limits for the generation of the random reference value
against which a meta-feature will be compared can be set as 0 and the maximum
value found in the genetic training group of such meta-feature.

The process of creating the initial population is shown in the Algorithm 3, taking
into account the several aspects mentioned above. The limit values for the meta-
features can change according to the genetic training group, therefore limitsf must
always be a parameter that the function receives. Both sizep and pool are constant
in all generations of the evolutionary model and are defined in a previous stage.

68 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

The maximum and minimum values for the rules and conditions are defined within
the CreateInitialPopulation function, whereby the number of rules for an in-
dividual is a randomly generated number within these limits, and the same goes
for the number of conditions within a rule. The set features corresponds to the
set of 16 meta-features (see Table 3.4), and operators is a set containing only the
comparison operators (<) and (>). Finally, SelectMethod is the same function
that has been introduced in Algorithm 2.

Algorithm 3 Creation of an initial population of hhs

Require: sizep, pool ▷ Size of population, pool of classification methods
Require: maxr,minr ▷ Maximum and minimum number of rules for a hh
Require: maxc,minc ▷ Maximum and minimum number of conditions for a rule
Require: features, operators ▷ Set of meta-features, and set of operators
Require: limitsf ▷ List of maximum values for each meta-feature extracted from

a genetic training group
1: function CreateInitialPopulation(sizep, limitsf , pool)
2: population← []
3: for i← 1, sizep do
4: individual ← []
5: nr ← RandomInt(minr, maxr)
6: for j ← 1, nr do
7: nc ← RandomInt(minc, maxc)
8: conditions← CreateConditions(nc, limitsf)
9: action← SelectMethod(pool)

10: rule← CreateRule(conditions, action)
11: individual [j]← rule

12: actione ← SelectMethod(pool) ▷ Action for the else rule
13: individual [nr + 1]← actione

14: population [i]← individual

15: return population

16: function CreateConditions(nc, limitsf)
17: conditions← []
18: for i← 1, nc do
19: feature← SelectFeature(features)
20: operator ← SelectOperator(operators)
21: limit← LimitValueFeature(limitsf , feature)
22: value← RandomNumber(0, limit) ▷ Reference value
23: condition← CreateCondition(feature, operator, value)
24: conditions [i]← condition

25: return conditions

CHAPTER 3. METHODOLOGY 69

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.5.3 Fitness Evaluation

The fitness evaluation of the hhs population helps to identify those hhs that have a
better performance for the solution of the problem. This also makes it possible to
identify and select the hhs that could take the role of parents of the population of
the next generation, and at the same time discard those hhs that have low fitness.
Likewise, this evaluation can identify the best hh that was developed during the
entire evolutionary process of a GA execution.

The fitness evaluation of a hh begins with the extraction of the 16 meta-features
from the training part of a given dataset, which corresponds to 80% of the dataset
data. The hh and the values of the meta-features are provided to the function
EvaluateDataset (shown in the Algorithm 1), which is responsible for providing
the action (classification method) to be applied to such a dataset. Both the training
part and the test part (remaining 20% of the data) of the dataset are transformed
according to the tf-idf method, these new representations are used to train and test
the assigned classification method. The performance of the classification method is
measured through the macro F1 metric. A hh has to be tested with more than one
dataset to get a more accurate fitness to reality. During the evolutionary process,
the total fitness of a hh is determined with the use of the genetic training group;
and it is calculated as the average of the F1 macros obtained by each of the methods
assigned to each dataset of the group. Within each population, it is very likely that
there is a wide diversity of fitness due to the way the GA is designed, which means
a wide diversity of possible solutions to the problem.

Normally in GAs, the fitness evaluation of individuals is the process that requires
the greatest amount of time and sometimes computational resources as well. This
problem can occur in this work, since in order to know the fitness of a hh it is
necessary to train multiple classification methods (one method for each dataset of
the group), in addition to consider the computational time of extraction of the 16
meta-features for each dataset. The evaluation is carried out on a population of
multiple hhs in multiple generations, therefore, it would become a too-demanding
process. To avoid this problem, there are two options. The first one is a stage
prior to the evolutionary process, which consists of extracting and storing the 16
meta-features of the datasets of both genetic groups, as well as training and testing
all the classification methods in the pool to know their F1 macro with each of the
datasets of such groups. And the second one only needs to compute the 16 meta-
features on the first generation, to train and test each method only a single time and
store the results. In both cases, once these values are stored, the fitness evaluation
process of a hh only requires reading the corresponding meta-features of the dataset
that is being evaluated, and the same to know the F1 macro value when a certain
classification method has to be applied to such dataset. This fitness evaluation
process for a population of hhs is shown in Algorithm 4.

70 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 4 Evaluation of a population of hhs

Require: population, featuresT , F1T ▷ Population of hhs, values of the
meta-features and the macro F1 for each dataset of the genetic training group
T .

1: function EvaluatePopulation(population, featuresT , F1T)
2: fitness← []
3: N ← NumberDatasets(featuresT)
4: for each hh ∈ population do
5: score← 0
6: for each featuresD ∈ featuresT do
7: dataset← GetDataset(featuresD)
8: action← EvaluateDataset(hh, featuresD)
9: f1← GetF1(F1T , dataset, action)
10: score += f1

11: score← score/N
12: fitness[hh]← score

3.5.4 Crossover Operator

In order to achieve a better explanation of how the evolutionary operators were
designed and how they are applied, a hh could also be represented as a set of blocks,
as shown in Fig. 3.6. As can be seen, the components of a block (rule) are the
conditions and the action that compose it, with the exception of the last block (rule
m+1), which corresponds to the action associated with the else-rule. Due to the way
the creation of the initial population and hhs has been designed (see Algorithm 3),
the size of the blocks/rules is not constant, so there may be blocks with few or many
cells (multiple conditions).

The objective of the evolutionary operators is to allow wider exploration of the
space of solutions, each of these operators can provide new solutions from some
previous ones by applying different methodologies. In the case of the evolutionary
crossover operator, we have designed different versions that allow the creation of new
child hhs from two parent hhs by combining different components of these. Taking
the block representation as a reference, the operator is designed to work at the level
of blocks, rules, and conditions.

At block level, the crossover operator is applied by implementing the single
point [79] technique. At this level, the operator starts with two hhs randomly
selected from a population and then finds the length of the hh with the fewest
number of rules. This length is taken as a delimiter to calculate a random division
point that does not exceed such hh. Then, each of the selected hhs is divided into
two rule subsets according to the split point. The union of subgroup 1 of hh 1 with
subgroup 2 of hh 2 corresponds to the first new hh. And the second new hh is
created with subgroup 1 of hh 2 and subgroup 2 of hh 1. This process is represented

CHAPTER 3. METHODOLOGY 71

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 3.6: Block representation of a hh.

in Fig. 3.7 and described in Algorithm 5.

Figure 3.7: Crossover operator at block level.

The methodology designed to apply the crossover operator at rule level is the
following. First, it is necessary to randomly select two hhs from a population P , to
then identify the hh with the least number of rules. Once such a hh is identified,
a rule is selected at random, the else-rule is also considered. Then, the rule of the
other hh that is in the same position as the previously selected rule is selected. If
the else rule was selected then the selected rule of the other hh also has to be the
else rule. Finally, the two new hhs are created by exchanging the selected rules of
the chosen hhs. The process is shown in Fig. 3.8 and Algorithm 6.

72 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 5 Crossover operator at block level

Require: P ▷ Population of hhs
1: function CrossoverBlock(P)
2: Pc ← [] ▷ Population of new hhs
3: N ← Size(P)
4: for i← 1, N/2 do
5: hh1 ← RandomHHFrom(P)
6: hh2 ← RandomHHFrom(P)
7: M ← SizeSmallestHH(hh1, hh2)
8: cp← RandomInt(1,M − 1)
9: new hh1 ← JoinHHsSegments(hh1 [1 : cp], hh2 [cp+ 1 : end])

10: new hh2 ← JoinHHsSegments(hh2 [1 : cp], hh1 [cp+ 1 : end])
11: Pc [2i− 1]← new hh1

12: Pc [2i]← new hh2

13: return Pc

Figure 3.8: Crossover operator at rule level.

Finally, at condition level, the procedure starts from two randomly selected hhs,
from which two pairs of rules are selected in the same way. Once the two pairs of
rules have been selected, the new hhs are created by exchanging conditions and/or
actions between the previously selected rules, therefore, in this case, the else rule
cannot be contemplated since it does not have conditions. Exchanges only occur
between two rules, that is, the first selected rule of hh 1 exchanges conditions/action
with the first selected rule of hh 2, creating two new rules; the other two new rules
are created by exchanging the components of the second selected rules from the hhs.
The number of conditions (including the action) that can be exchanged between two
rules is randomly determined by the operator. This process is shown in Fig. 3.9 and
Algorithm 7.

CHAPTER 3. METHODOLOGY 73

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 6 Crossover operator at rule level

Require: P ▷ Population of hhs
1: function CrossoverRules(P)
2: Pc ← []
3: N ← Size(P)
4: for i← 1, N/2 do
5: hh1 ← RandomHHFrom(P)
6: hh2 ← RandomHHFrom(P)
7: if hh1 > hh2 then
8: hht ← hh1

9: hh1 ← hh2

10: hh2 ← hht

11: rhh1
← RandomRuleFrom(hh1)

12: p← Position(hh1, rhh1
)

13: rhh2
← hh2 [p]

14: if rhh1
= else rulehh1

then
15: rhh2

← else rulehh2

16: new hh1 ← ReplaceRuleHH(hh1, rhh1
, rhh2

)
17: new hh2 ← ReplaceRuleHH(hh2, rhh2

, rhh1
)

18: Pc [2i− 1]← new hh1

19: Pc [2i]← new hh2

20: return Pc

As can be seen in Algorithms 5 to 7, the three operators are designed to create
a new population Pc of the same size as population P .

Figure 3.9: Crossover operator at condition level.

74 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 7 Crossover operator at condition level

Require: P ▷ A population of hhs
1: function CrossoverCondtions(P)
2: Pc ← []
3: N ← Size(P)
4: for i← 1, N/2 do
5: hh1 ← RandomHHFrom(P)
6: hh2 ← RandomHHFrom(P)
7: r1hh1

, r2hh1
← TwoRandomRulesFrom(hh1)

8: r1hh2
, r2hh2

← TwoRandomRulesFrom(hh2)
9: n r1hh1

, n r1hh2
← CreateRules(r1hh1

, r1hh2
)

10: n r2hh1
, n r2hh2

← CreateRules(r2hh1
, r2hh2

)
11: new hh1 ← ReplaceRulesHH(hh1, r1hh1

, n r1hh1
, r2hh1

, n r2hh1
)

12: new hh2 ← ReplaceRulesHH(hh2, r1hh2
, n r1hh2

, r2hh2
, n r2hh2

)
13: Pc [2i− 1]← new hh1

14: Pc [2i]← new hh2

15: return Pc

16: function CreateRules(r1, r2)
17: M ← SizeSmallestRule(r1, r2)
18: k ← RandomInt(1, M

2
)

19: n r1 ← r1
20: n r2 ← r2
21: componentsr1 ← kRandomComponentsFrom(r1, k)
22: componentsr2 ← kRandomComponentsFrom(r2, k)
23: for i← 1, k do
24: cr1 ← componentsr1 [i]
25: cr2 ← componentsr2 [i]
26: if cr1 = actionr1 or cr2 = actionr2 then
27: cr1 ← actionr1

28: cr2 ← actionr2

29: n r1 ← ReplaceComponent(n r1, cr1 , cr2)
30: n r2 ← ReplaceComponent(n r2, cr2 , cr1)

31: return n r1, n r2

CHAPTER 3. METHODOLOGY 75

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.5.5 Mutation Operator

The second evolutionary operator is in charge of mutating the hhs, which allows
exploiting small sectors of the space of solutions and also has the ability to get out
of local maxima, expanding the possibilities of finding better hhs. In this work, the
mutation operator addresses four levels: block, rule, condition, and operator. This
operator is applied over the hhs of the child populations (created by the crossover
operator) with a defined probability. When a hh is selected by this operator, it must
also be determined at which level the mutation will be applied, in such a way that
the four levels have the same probability of being selected.

Block-level mutation consists of removing or adding a new rule to a given hh.
In the case of adding a new rule, the rule is created randomly, similar to how the
rules of the hhs of the initial population were created. The way to establish if a
rule has to be removed or added is by means of a value p between 0 and 1 obtained
randomly, and the number of rules in the hh. Two conditions were designed for a
rule to be added to the hh: 1) p is less than 0.5 and the number of rules in the hh is
less than the maximum number of rules allowed or 2) p is greater or equals 0.5 and
the number of rules is equal to the minimum number of rules allowed. The rule is
added at a position that is also calculated at random, but it can never come after
the else rule. Therefore, if neither of the two previous conditions can be fulfilled, a
randomly selected rule is eliminated. It is worth mentioning that for the mutation
at this level, the else rule is not contemplated. This process can also be visualized
in Fig. 3.10 and Algorithm 8.

(a)

(b)

Figure 3.10: Mutation operator at block level: (a) Delete a rule and (b) Create and
add a new rule.

At rule level, given a hh, the mutation operator selects a random number of
rules no greater than half the number of rules in the hh. These selected rules will

76 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Algorithm 8 Mutation operator at block level

Require: hh, maxr, minr ▷ Selected hh, maximum and minimum number of rules
allowed

1: function MutationBlock(hh, maxr, minr)
2: p← RandomFloat(0,1)
3: M ← Size(hh)
4: if (p < 0.5 and M < maxr) or (p g 0.5 and M = minr) then
5: rule← CreateRandomRule()
6: hh← InsertRule(hh, rule)
7: else
8: hh← RemoveRandomRule(hh)

9: return hh

be replaced by new rules that are created randomly (similar to how it is done at the
block level). At this level, the else rule is also considered a possible rule that can be
replaced by a new else rule. This process is illustrated in Fig. 3.11 and Algorithm 9.

Figure 3.11: Mutation operator at rule level.

Algorithm 9 Mutation operator at rule level

Require: hh ▷ Hyper-heuristic to be mutated
1: function MutationRules(hh)
2: M ← Size(hh)
3: k ← RandomInt(1, M/2)
4: rules← kRandomRulesFrom(hh, k)
5: for each rule ∈ rules do
6: if rule ̸= else rulehh then
7: new rule← CreateRule()
8: else
9: new rule← CreateElseRule()

10: hh← ReplaceRule(hh, rule, new rule)

11: return hh

The mutation operator, at condition level, performs a mutation at a deeper level
with the possibility of not overriding the rules of a hh entirely. Given a hh, the

CHAPTER 3. METHODOLOGY 77

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

operator first selects a random number of rules, this number of rules will always be
less than or equal to half the number of rules that exist in the hh. Once the rules to
be mutated have been identified, the operator proceeds to replace a random number
of conditions (the action may also be included) with new conditions and/or actions
created randomly for each of these rules. The number of conditions in a rule that
can be substituted is less than or equal to half the number of conditions in the rule.
Because the operator at this level is mainly focused on condition substitution, the
else rules are not considered. This process is shown in Fig. 3.12 and Algorithm 10.

Figure 3.12: Mutation operator at condition level.

Algorithm 10 Mutation operator at condition level

Require: hh ▷ Hyper-heuristic to be mutated
1: function MutationConditions(hh)
2: M ← Size(hh)
3: k ← RandomInt(1, M/2)
4: rules← kRandomRulesFrom(hh, k)
5: for each rule ∈ rules do
6: rulem ← rule
7: N ← Size(rule)
8: k ← RandomInt(1, N/2)
9: components← kRandomComponentsFrom(rule, k)
10: for each c ∈ components do
11: if c ̸= actionrule then
12: new c← CreateCondition()
13: else
14: new c← CreateAction()

15: rulem ← ReplaceCondition(rulem, c, new c)

16: hh← ReplaceRule(hh, rule, rulem)

17: return hh

Being the last type of mutation in this work, operator mutation is a process
similar to condition mutation. The main difference between the mutation operators
at these two levels is that the mutation operators do not replace a condition of a
rule, but rather the comparison operator and/or the reference value of the condition.

78 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

The operator at this level only works with the conditions of the rules excluding the
actions and therefore also the else-rules. The process of selecting the rules and, in
turn, the conditions of these that will be mutated is somewhat similar to the process
of the previous level (see Algorithm 10, lines 2 to 9). To determine if the comparison
operator and/or the reference value of a condition will be mutated, a value p between
0 and 1 is calculated randomly. The comparison operator is changed when p is less
than or equal to 0.33 or greater than or equal to 0.66. And the reference value is
only changed when p is greater than 0.33. This process can also be visualized in
Fig. 3.13 and Algorithm 11.

Figure 3.13: Mutation operator at operator level.

Algorithm 11 Mutation operator at operator level

Require: hh ▷ Hyper-heuristic to be mutated
1: function MutationOperators(hh)
2: M ← Size(hh)
3: k ← RandomInt(1, M/2)
4: rules← kRandomRulesFrom(hh, k)
5: for each rule ∈ rules do
6: rulem ← rule
7: N ← Size(rule)
8: k ← RandomInt(1, N−1

2
)

9: conditions← kRandomConditionsFrom(rule, k)
10: for each c ∈ conditions do
11: p← RandomFloat(0, 1)
12: if p f 0.33 or p g 0.66 then
13: new c← ChangeOperator(c)

14: if p > 0.33 then
15: new c← ChangeComparisonValue(c)

16: rulem ← ReplaceCondition(rulem, c, new c)

17: hh← ReplaceRule(hh, rule, rulem)

18: return hh

CHAPTER 3. METHODOLOGY 79

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.5.6 Selection

There are different methodologies for the selection of individuals (from a parent or
child population) to determine the parent population of the next generation [79].
In any GA, the goal of individual selection is to lead the GA toward some optimal
solution.

In this work, at the beginning of the evolutionary process, an initial population of
n hhs is created and evaluated (Algorithms 3 and 4). This population enters a cycle
of g generations, in the first generation this population acts as the parent population.
Then, when applying the evolutionary crossover operator to this population, three
hhs populations are created, one for each level to which it is applied (block, rules,
conditions), and the union of these is called the child population, which has a size of
3n. The mutation operator is applied over this population. For both the crossover
operator and the mutation operator, the selection of hhs is done randomly. Then
the hhs of the child population are also evaluated.

Once the evaluation is complete, the parent and child populations are mixed
creating a temporary population of hhs. Then, the hhs within this population are
sorted according to the fitness obtained with the genetic training group. Finally,
the best n hhs from the temporary population are selected to be the new parent
population. At this point, one generation has been completed, and the process
repeats itself until a user-defined termination criterion is met.

When the termination criterion is met, the final solution is selected as the hh
with the best fitness found in the last population. In such a way that, at this point, it
is expected that the rules that make up such hh may be able to identify the optimal
classification methods or close to them for unseen text datasets. This process is
illustrated in the training phase of Fig. 3.3.

3.5.7 Termination

There are multiple ways to determine the termination criteria of a GA. Depending
on the way in which we have decided to attack our problem, a simple criterion
may be enough to find optimal solutions. In this work, it was decided to establish
the number of generations as the termination criterion, since this criterion allows
to always find this type of solution, and also provides enough time to inspect the
solution space. Since the meta-features and the classification performances of the
methods of the pool for each dataset of the genetic groups were calculated prior to
the evolution process, the number of generations as the termination criteria is not
capable of causing the GA to consume too much time.

3.5.8 Evaluation of the Best Individual

At the end of the evolutionary process, a hh is provided, which had the best fitness
when evaluated with the genetic training group. At this point, it is necessary to know

80 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

how well it behaves with datasets that were not seen during the evolutionary process.
The evaluation of the hh on an unseen dataset follows the same procedure shown in
Algorithm 1. The result obtained with a single dataset is not enough to conclude
that hh has very good generalization abilities, therefore, hh is evaluated with the
genetic test group, a total of 34 datasets. For practicality, the F1 macro values of
the pool classification methods and the meta-features for each of the datasets in the
group were also calculated during the stage prior to the evolutionary process. In
the end, an F1 macro value will be obtained for each dataset of the group, these
results are averaged to know the general performance of the hh. If the hh has good
generalization abilities, this value will be very close to the F1 macro values provided
by the optimal classifiers for each dataset.

All the components of the evolutionary model were implemented in Python, using
the math, nltk, numpy, random, sklearn, spicy, statistics, and textstat libraries.

3.6 Analysis

Within the evolutionary process, when evaluating each hh of a population in a
certain generation, there may be rules in which their conditions will never be met,
that is, unused rules. One option is to remove these rules during the evolutionary
process because they may never be used in future generations, but there is no basis
for saying that this will always be true, and it is also unknown how much this
removal might interfere with the process. In these cases, the evolutionary operators
play a very important role because of the way they were designed. When applying
an evolutionary operator on a hh that has unused rules, there is a probability that
these rules will be crossed or mutated, which, could turn them into relevant rules
for the hh. Therefore, it was decided to keep the unused rules, since although, at
one time they do not provide anything to the hh, over the generations they could
become rules that provide useful information.

The evolutionary process or a single execution of the GA only outputs the hh
with the best fitness within the population of the last generation. This leads to
the following dilemma, a single execution of the GA may not be enough to give
the verdict of a final solution to the problem, and also perhaps with this, it is not
possible to define a relationship between the meta-features of a dataset and a specific
classification method. It is not entirely correct to conclude that the result of a single
execution is the final solution to the problem, since a GA is based on randomness,
which allows the GA to have different starting points for each of its executions,
and there is not something that ensures a convergence towards the same solution.
Besides that, the creation of the initial population and its respective individuals,
and the application of the evolutionary operators are also based on randomness.

The hh creation methodology allows for the possibility of one rule being specific
to one dataset, while another rule may be essential for multiple datasets. This is
possible because each of the rules in a hh can contain one or more conditions. A

CHAPTER 3. METHODOLOGY 81

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

rule with a single condition is very likely to be applied to multiple datasets since
this is not as specific compared to a rule with two or three conditions. The objective
of allowing more than one condition for each rule is to give the GA more freedom
in the large space of solutions, which in turn allows better rules for the hhs. Going
back to the example mentioned above, a rule with a single condition has a high
probability of being applied to multiple datasets, but the action associated with
this rule may not be able to obtain good performance for all of those datasets. On
the other hand, rules with a larger number of conditions may only be applied to a
smaller number of datasets, but the action associated with it may be able to provide
optimal or close to optimal classification performance since they are more specific
rules. This freedom that a rule can be defined by one or more conditions, in addition
to allowing range checks (e.g dptAvg > 70 AND dptAvg < 11, 618) allow the GA
to find relationships between meta-features, for example, that there is a correlation
between the meta-features dptMed and cmxWds.

This is also achieved in large part to the large number of datasets that are
being used to address this problem, since otherwise we could have encountered
various circumstances such as those mentioned below. First, in addition to using
a small number of generations, a small training group of datasets would not work
properly enough to define the reference value(s) of the conditions of a rule, which
would not allow for discriminating the datasets very well at the moment of being
evaluated. Second, a small number of datasets means very few instances of the
general problem, so in addition to being biased, the creation of hhs with overfitting
would be very likely (a single rule for a single dataset). As well as the case in
which a single classification method predominates as the most optimal for most of
the datasets. A classification method that predominates would avoid finding hhs
with good generalization capabilities, since when handling randomness there may
be a case in which none of the if rules of a hh are fulfilled, and therefore, the action
associated with the else-rule is the one that has to be applied in all the datasets.
If this action is the predominant classification method in the small group, the hh
will be taken as a good hh without knowing that it is actually a bad hh in which
the action of the else rule is always applied. In conclusion, using a small group of
datasets would be skewing the problem, it would avoid exploiting the capabilities of
a GA, and also, such a group would not be useful to determine if a hh has a good
generalization to solve the general problem.

We conclude that taking the best hh obtained from a single execution of the
GA as the final solution is not the best decision, at least if a deep analysis of it is
not carried out. To achieve a more precise approach to determine the final solution
to the problem, a statistical analysis of one or multiple runs is carried out. This
also allows us to understand the internal functioning of the GA in terms of the
development of the hhs, as well as their behavior. Therefore, the behaviors of the
hhs populations and the final hh can be better explained. This analysis can be
applied to one or multiple independent executions of the evolutionary model.

82 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

3.6.1 Single Run

For a single execution of the evolutionary model, the analysis is focused on visu-
alizing the behavior of the evolution of the hhs. With an analysis of this type,
information can be obtained about the moment in which the population converges,
that is, that both the worst hh and the best hh have similar behavior. In some
cases, this type of analysis is used to determine the number of generations in which
a GA will be working, because with it it is possible to see the moment in which the
fitness of the individuals does not achieve improvements.

According to the methodology designed for the evolutionary process, the hhs of
all populations are evaluated after applying the evolutionary operators (except for
the initial population that is evaluated at the beginning). Thus, the fitness values
of each new parent population can be accessed. From these values, the maximum,
average, and minimum aptitudes of such a population in each of the generations are
determined. These three values are stored in a text file to later be consulted and
plotted with the matplotlib module in Python. In this way, the general behavior of
the population in each generation can be analyzed. This analysis is also included
by default when doing multiple runs.

3.6.2 Multiple Runs

A run of the evolutionary model does not consume too much time due to the stage
before the evolutionary process, in which the F1 macro values were calculated for
each of the datasets of the training and test genetic groups with each of the classifica-
tion methods of the pool. In addition to the extraction of the set of 16 meta-features
for the training parts of such datasets. This allows various analyzes of multiple runs
to be carried out without much delay.

If n runs of the GA are carried out, n hhs are obtained, and also n text files,
which contain the behavior of the population during g generations, this belongs to
the analysis of a single run but is added by default when dealing with multiple runs.
Added to this, the frequency of the use of each of the rules is calculated and, in turn,
the frequency of the actions associated with them for each of the final hhs. Due to
the fact that the unused rules are not eliminated in the evolutionary process, there
may be the possibility of finding this type of rules at the end of such a process, they
will have a frequency of use of 0, and therefore, the classification methods associated
with them they are not considered when calculating the frequency of actions.

In addition to the above, the set of the fitness of the last population of each
run of the evolutionary model is used to calculate the five-number summary, and
thus obtain: the minimum, first quartile, median, third quartile, and maximum of
the aptitudes of such population. The mean value and standard deviation are also
calculated for each of these populations. These values allow for a more detailed
analysis of each of the hhs, in such a way that it can be observed when a hh has an
outlier fitness value. This also allows knowing how each of the datasets are being

CHAPTER 3. METHODOLOGY 83

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

associated with a specific rule. With the calculation of the frequency of the actions,
it is easy to determine which classification methods stand out the most, that is, if
one approach is really superior to another in certain datasets.

Certain statistics are calculated from the multiple hhs obtained and from the
frequencies mentioned above. For a total of n executions of the evolutionary model,
the frequency of the actions associated with the rules of each hh is obtained (rules
without use are not contemplated). Similarly, the frequency of occurrences of each
of the 16 meta-features in rules that are used by hhs is also calculated. Finally,
for each meta-feature, it is calculated how many times it is associated with each of
the comparison operators (< and >). And also, the mean, median, and standard
deviation values are obtained from the list of reference values that are extracted ac-
cording to the comparison operator. These latter statistics are calculated separately
for when the rules are used and when they are not.

3.6.3 Computational Time

In a run of the evolutionary model, various components are involved with respect to
the computational time required to find a final hh. Within this set, the evaluations
of hhs have the greatest impact, since to know the fitness of a hh it is necessary
to train and test a particular classification method for each of the datasets of the
genetic group. In order to know the theoretical limits (in terms of time) for a hh
to provide a solution to a group of datasets or even the limits of the computational
time that a run of the evolutionary model can consume to provide a final hh, first,
the training and test times were added for each of the classification methods with
each of the datasets in the group, in the form (classification method, dataset). In
such a way that the theoretical limits are established according to the sums of the
pairs (classification method, dataset) when a single classification method is applied
to all the datasets of the group, that is, the solutions of a hh for a group of datasets
is always to apply the same classification method. In the case of an execution of the
evolutionary model, the theoretical times are the same, since most of the training
and testing of classification methods would take place in the evaluation of hhs of
the first population, that is, when a hh needs to train and test a method A with a
dataset X, the result could be stored and used in case another hh needs to perform
the same operation.

The comparison of a final hh with other systems can be done using the classifi-
cation performance, but also the computational time. This comparison consists of
the computational times consumed (in minutes) by a final hh and the systems to
provide a solution and classify each of the datasets in a genetic test group. The
computational time consumed for each dataset is defined as the sum of three times:
processing, training, and testing. Each of these times is relevant since both the final
hh and each of the systems use a different approach to classify each dataset. For
example, for processing, a hh uses a tf-idf transformation, on the other hand, other

84 CHAPTER 3. METHODOLOGY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

systems can use various techniques to process and transform the information, and
in some cases these techniques maybe involve DL, thus, the difference between the
times consumed within this stage can be significant.

CHAPTER 3. METHODOLOGY 85

Chapter 4

Results

This chapter presents the results obtained from this work. The developed codes
were executed using the Spyder environment 1. The configuration of the evolutionary
model was determined experimentally since the GAs have the characteristic of being
very robust to changes in the values of its parameters, that is, small changes in
its parameters do not seriously affect its performance. Later, it will be observed
that the evolutionary model presents very interesting results. The configuration
of the evolutionary model is shown in Table 4.1, in which the parameters and their
respective assigned values are shown. The results that are presented later correspond
to this configuration of the evolutionary model. The mutation probability is high
compared to what is commonly used in the literature [79]. The management of a
relatively high probability is in order that the four types of mutation have a greater
chance of being applied and, therefore, there is a greater diversity of hhs within each
population.

Parameter Value

Population size 50

Number of generations 100

Maximum number of rules 16

Minimum number of rules 2

Maximum number of conditions 4

Minimum number of conditions 1

Mutation probability 20%

Table 4.1: Values of model’s parameters for experimenting.

1Available at: https://www.spyder-ide.org/

86

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

With these parameters, the initialization of the first population of the evolu-
tionary model is performed at random. Initialization is based on a probability
distribution. A hh can be made up of a number of rules between 2 and 16, any
number of rules within this range has the same probability of being selected. The
number of conditions of a rule can be 1, 2, 3, or 4, this value is chosen at random, in
such a way that any of these has the same chance of being chosen. When creating a
condition of a rule, any of the 16 meta-features have the same probability of being
selected, and this also happens when choosing one of the two comparison operators
defined in Chapter 3.

Under this design of the evolutionary model, there is no preference for large or
small hhs, as there is no preference for complex (greater number of conditions) or
simple (one or two conditions) rules. If for the solution of the problem it is necessary
to have a hh with many or few rules, as well as rules with few or many conditions, the
same evolutionary model will be in charge of developing these solutions. Regarding
the evolutionary operators, the three strategies of the crossover operator (at block,
rule, and condition levels) are always applied, that is, there is no selection probability
to decide which strategy to apply. In contrast, all four variants of the mutation
operator have an equal chance of being chosen to apply to a given hh.

In order to carry out the analysis for one or multiple runs of the evolutionary
process (see Chapter 3), we have divided the overall experiments into two phases.
The first part corresponds to an analysis of 100 independent runs of the evolutionary
process using the genetic training group, which results in a set of 100 hhs, which
were the best in each of the corresponding runs. In the second part, based on the
100 hhs obtained, the best hh within this set was selected as the final solution, in
such a way that this hh was evaluated with the genetic test group to determine its
generalization capabilities. Finally, the results of this hh are compared against the
optimum obtained by the best classification methods for each of the datasets in the
group. And also against those obtained by two state-of-the-art AutoML systems for
text classification using the same group.

For the first part of the experiments, because they are independent executions,
the evolutionary process starts from a different point for each execution, although it
is expected that when the termination criterion is reached, similar solutions will be
reached in terms of fitness. In Fig. 4.1, section (a), the fitness of the best hhs found
in each of the executions of the evolutionary process can be observed. The fitness
of the best hh within the set is highlighted enclosed in a black circle, this hh was
obtained in run number 56 with a fitness of 0.6790. This fitness is the average macro
F1 value obtained for each of the datasets of the genetic training group. From the
obtained set of 100 hhs, an average fitness of 0.6739 was found, a standard deviation
of 0.0020, a median of 0.6739, a minimum of 0.6639, and a maximum of 0.6790, this
can also be visualized in Fig. 4.1, in graph (b), which corresponds to a boxplot that
summarizes the aforementioned.

Figure 4.2 presents a box plot that summarizes the times it would take a hh

CHAPTER 4. RESULTS 87

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

(a) (b)

Figure 4.1: Performance of the best hhs from 100 independent runs: (a) Fitness of
each best hh, (b) Boxplot for the best fitnesses.

to apply a single classification method to all datasets in the genetic train group,
using the 60 classification methods in the pool. The multiple outliers of the boxplot
(found at the top) mean that there are very expensive methods within the pool,
which correspond to instances of the SVM method when using different kernels
(polynomial, sigmoid, or radial basis function). In the figure, the values serve as a
reference to determine the expected time of a run of the evolutionary model, giving
the following summary (in minutes): a minimum of 0.15, a maximum of 3,929, and
a median of 9.04.

The behavior of the hhs (in terms of fitness) during the evolutionary process
corresponding to run 56 can be observed in Fig. 4.3. This execution has provided
the best hh for the first part of the experiments. The evolutionary process lasted
100 generations, following the configuration shown in Table 4.1. This figure shows
the fitness of the best and worst hh during each of the 100 generations, as well as the
average fitness of the hhs of each of the populations. In this run, the convergence is
reached around generation number 30, in such a way that the worst and the best hh
have similar behavior to the passage of the following generations. This figure also
gives us an idea about how the population behaves in other runs, in which we find
that the evolutionary behavior is similar.

This hh (the one obtained in run 56) is presented as the final solution to the
problem. The rules that make up this hh are shown in Fig. 4.4. The hh is made up
of 7 rules (including the else-rule), in turn, the if-then rules are made up of 1, 2, or
3 conditions and involve 6 meta-features from the original set of 16 meta-features.
According to this solution of the evolutionary model, classification methods such as
MNB, BNB, KNN, and DT are not the most suitable for text classification tasks (at
least for those addressed with datasets of both genetic groups), since they are not

88 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 4.2: Computational time (in minutes) of hhs that use the same single method
for classifying all the datasets in the genetic training group.

Figure 4.3: Performance of the hhs population over 100 generations.

associated with any of the rules of this hh. So, it seems that the methods found in
the final solution rules (CNB, SVM, LR, and LSVM) seem to be superior to those
mentioned above, that is, in terms of performance the first set of models classification
is dominated by the latter. Analyzing more thoroughly the hh and its rules, within

CHAPTER 4. RESULTS 89

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

the conditions that make up each of these, we can see that nDocs (the total number
of documents within a dataset) is the most relevant meta-feature within the hh since
it appears in a total of 4 rules. The meta-feature for the standard deviation of the
number of words per document (wpdStd) only appears once, in Rule 1. Regarding
the other 4 remaining meta-features, the Shannon entropy of documents per category
(dptEnt), the median of words per document (wpdMed), the ratio between dptStd
and dptAvg (dptStdAvg), and variance captured by the first 10 components of PCA
(pca10), each one appears in two rules. In none of the rules is there a range check
(that a meta-feature is being evaluated on more than one occasion), which indicates
that it is not necessary or relevant to evaluate a dataset.

Figure 4.4: Best hh selected as a final solution and obtained from 100 independent
runs.

The second part of the general experiment consists of knowing the general per-
formance of the evolutionary model. To carry this out it is necessary to compare,
in this case, the selected final solution against the general optimal solution that
is obtained using the genetic test group. This optimal solution is determined by
finding for each dataset of the genetic test group its optimal classification method,
that is, the one that provides the best classification performance according to the F1
macro evaluation metric. The classification methods considered are those belonging
to the pool of classifiers (see Table 3.3). Table 4.2 presents the optimal classification
methods for each dataset of the genetic test group, together with the F1 macro per-
formance achieved. When analyzing these results, it can be observed that there is
a dominance by the SVM classification methods with different kernels with a total
of 30 appearances, of which; 10 belong when using a linear kernel (LSVM); 10 with
sigmoid kernel; 9 with rbf kernel; and 1 with polynomial kernel. For the remaining
datasets, the LR and Näıve Bayes (CNB and MNB) classification methods appear as

90 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

the optimal methods. Once these optimal classification methods have been found,
we have observed that many of them are the actions associated with the rules of
the hh chosen as the final solution, shown in Fig. 4.4, among which stand out SVM
methods with rbf kernel; and LSVM with s hinge as loss function. The last line
of the table shows the average performance of the optimal classification methods
for the genetic test group datasets, which is 0.6893, corresponding to the general
optimal solution. This optimal value is used to compare the performance of the final
selected hh obtained using the same genetic test group.

Dataset Classifier Macro F1 Dataset Classifier Macro F1

20ng LSVM C=10, l=‘s hinge’ 0.8814 NYTAND SVM C=10, ke=‘sigmoid’ 0.3772

AGNews SVM C=1, ke=‘poly’, de=2 0.9130 NYTATM LSVM C=10, l=‘s hinge’ 0.4608

CNNAC SVM C=10, ke=‘sigmoid’ 0.6733 oh LSVM C=10, l=‘hinge’ 0.6306

CNNAS SVM C=10, ke=‘sigmoid’ 0.5144 r8 LSVM C=1, l=‘s hinge’ 0.9709

CorTws SVM C=10, ke=‘rbf’ 0.5620 r52 SVM C=10, ke=‘sigmoid’ 0.7033

csdmc SVM C=10, ke=‘sigmoid’ 0.9687 RFJob LSVM C=10, l=‘hinge’ 0.8539

CybTws SVM C=1, ke=‘sigmoid’ 0.8297 Rotten SVM C=10, ke=‘rbf’ 0.5071

DisTws LSVM C=1, l=‘s hinge’ 0.7863 sen pol CNB norm=False 0.7418

F&RNS SVM C=1, ke=‘sigmoid’ 0.4885 StOvQR SVM C=10, ke=‘rbf’ 0.7972

gopds SVM C=10, ke=‘rbf’ 0.5906 SuiDect SVM C=10, ke=‘rbf’ 0.9376

HRCB SVM C=10, ke=‘sigmoid’ 1.0000 TMACS SVM C=1, ke=‘rbf’ 0.8704

HRCS SVM C=10, ke=‘sigmoid’ 0.0975 TMAMt SVM C=10, ke=‘rbf’ 0.8630

imdbs MNB 0.7300 TMASt LSVM C=1, l=‘hinge’ 0.8399

IMDBR SVM C=10, ke=‘rbf’ 0.8998 TripAd SVM C=1, ke=‘sigmoid’ 0.5471

LvsC SVM C=10, ke=‘rbf’ 0.7166 wipo l1 LSVM C=1, l=‘s hinge’ 0.4508

movies CNB norm=True 0.8299 wipo l2 LSVM C=1, l=‘s hinge’ 0.1394

NewsCat LR C=10, solver=‘saga’ 0.4745 yelp LSVM C=1, l=‘s hinge’ 0.7895

Average 0.6893

Table 4.2: Optimal classification methods and their macro F1 performance for the
datasets of the genetic test group.

One of the objectives of this work is to find a hh that is capable of achieving a
value equal to or very close to the optimum. Fig. 4.5 shows the performance of the hh
on the datasets of the genetic test group. In this case, the hh achieves a performance
of 0.6805 by averaging the F1 macro values obtained in each of the datasets. This
obtained value is very close to the optimal value of 0.6893, shown in Table 4.2.
When analyzing the various behaviors with each of the datasets, it can be seen that
for the hh, there were a large number of datasets in which what could be said as
good performances were achieved by obtaining F1 macro values greater than 0.8.
Within these, the HRCB dataset was the easiest to classify, obtaining a macro F1 of
1.0. On the other hand, the datasets with a poor classification rate were HRCS and

CHAPTER 4. RESULTS 91

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

wipo l2, obtaining F1 macro values below 0.2. According to the values of the meta-
features, for these last two datasets, the meta-feature of the mean of documents per
category (dptAvg) presents the lowest values of the entire group of datasets. On the
other hand, for the HRCB dataset (the best classification performance achieved),
the meta-feature of the variance captured by the first 30 components of PCA (pca30)
presents the highest value within the same group. In this work, Pearson’s correlation
is applied in order to explore the possible relationships that could exist between the
meta-features and the classification performance for each dataset. This correlation
is calculated by means of the values of the meta-features used in the hh and the
F1 macro values obtained by this hh for each dataset of the genetic test group.
According to Pearson’s correlation, the meta-features dptStdAvg and dptEnt, which
deal with the dispersion of the data and the amount of information per category,
present a negative correlation with the classification performance, with values of
−0.49 and −0.59 respectively. This allows us to deduce that when the categories of
a dataset are compact, it will tend to be easier to classify.

Figure 4.5: Behavior of the best hh on the genetic test group.

In order to understand the behavior of the final selected hh on the datasets of the
genetic test group, Table 4.3 shows the rule of the hh that is activated for each of the
datasets, the method of classification associated with such a rule and the F1 macro

92 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

value obtained by applying such a method. Table 4.4 shows how many times each of
the hh rules were triggered. In both tables, it can be seen that rules 2, 7 (else-rule),
and 1 are the most used by hh, with frequencies of 12, 11, and 5 respectively. The
classification methods associated with these rules are different from each other, since
for rule 2, the SVM method with C=10 and the rbf kernel is used; for rule 7, LSVM
with C=10 and hinge as loss function; and for rule 1, CNB without normalization.
As previously mentioned, in this final hh, there are classification methods that are
optimal for some of the datasets of the genetic test group (see Table 4.2). In such a
way that it has been found that of the 34 datasets of the group, the hh is capable of
selecting the optimal classification method for 10 of these datasets. With the rest of
the datasets, the hh is selecting very close to optimal classification methods, since
the overall performance of the hh is very close to the overall optimum. In short, this
final selected hh has the ability to select suitable classification methods for various
datasets.

Dataset #Rule Classification method Macro F1 Dataset #Rule Classification method Macro F1

20ng 3 LR C=10, solver=‘liblinear’ 0.8714 NYTAND 7 LSVM C=1, l=‘hinge’ 0.3692

AGNews 2 SVM C=10, ke=‘rbf’ 0.9114 NYTATM 7 LSVM C=1, l=‘hinge’ 0.4560

CNNAC 7 LSVM C=1, l=‘hinge’ 0.6712 oh 7 LSVM C=1, l=‘hinge’ 0.6306

CNNAS 7 LSVM C=1, l=‘hinge’ 0.5132 r8 7 LSVM C=1, l=‘hinge’ 0.9597

CorTws 2 SVM C=10, ke=‘rbf’ 0.5620 r52 7 LSVM C=1, l=‘hinge’ 0.7007

csdmc 7 LSVM C=1, l=‘hinge’ 0.9630 RFJob 5 LSVM C=1, l=‘s hinge’ 0.8216

CybTws 2 SVM C=10, ke=‘rbf’ 0.8204 Rotten 2 SVM C=10, ke=‘rbf’ 0.5071

DisTws 1 CNB norm=False 0.7820 sen pol 1 CNB norm=False 0.7418

F&RNS 7 LSVM C=1, l=‘hinge’ 0.4556 StOvQR 2 SVM C=10, ke=‘rbf’ 0.7972

gopds 2 SVM C=10, ke=‘rbf’ 0.5906 SuiDect 2 SVM C=10, ke=‘rbf’ 0.9376

HRCB 7 LSVM C=1, l=‘hinge’ 1.0000 TMACS 2 SVM C=10, ke=‘rbf’ 0.8649

HRCS 7 LSVM C=1, l=‘hinge’ 0.0834 TMAMt 2 SVM C=10, ke=‘rbf’ 0.8630

imdbs 1 CNB norm=False 0.6753 TMASt 2 SVM C=10, ke=‘rbf’ 0.8350

IMDBR 2 SVM C=10, ke=‘rbf’ 0.8998 TripAd 2 SVM C=10, ke=‘rbf’ 0.5353

LvsC 1 CNB norm=False 0.7156 wipo l1 6 LSVM C=1, l=‘s hinge’ 0.4508

movies 3 LR C=10, solver=‘liblinear’ 0.8193 wipo l2 6 LSVM C=1, l=‘s hinge’ 0.1394

NewsCat 4 LR C=10, solver=‘lbfgs’ 0.4745 yelp 1 CNB norm=False 0.7199

Table 4.3: Relationship between datasets and the rules of the best hh.

In some cases, there is the idea that a classification method with a certain con-
figuration will always be better than others in all the problems that arise, which
is not true, as we have explained in previous chapters. Consequently, we have also
compared the performance of the selected hh with the performance of the 60 clas-
sification methods of the pool of classifiers. Fig. 4.6 shows the average performance
of each classification method on the datasets of the training and test genetic groups.
According to the graph in the figure, it can be seen that methods 35 to 45 (with
the exception of 40 and 41), which correspond to LR and LSVM methods, are those
with the best average performance in both genetic groups. The best classification

CHAPTER 4. RESULTS 93

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Rule Frequency

Rule 1 5

Rule 2 12

Rule 3 2

Rule 4 1

Rule 5 1

Rule 6 2

Rule 7 11

Table 4.4: Frequency of use of rules of the best hh.

method within these is the number 42; a LSVM method with C=1 and s hinge as
loss function. With the genetic test group, this classification method achieves an
average performance of 0.6747, being a lower performance than that obtained with
the final hh (0.6805). Although at first glance the difference seems negligible, it can
be significant in statistical terms. In order to know if this difference between the
performance of the classification method 42 and the final hh is really significant, the
Wilcoxon signed-rank test [80] was performed. This test assumes the null hypothesis
that both classification methods (method 42 and the hh) perform equally well on N
observations. In this case, to perform a test with a significance level ³ = 0.05 and
N = 34 (number of datasets/observations), the reference value extracted from the
exact critical values table is 182. When finished the test results a value of z = 100 ,
which, being less than 182, allows us to reject the null hypothesis and conclude that
this small numerical difference between both performances is statistically signifi-
cant, therefore, the behavior of the hh is better. In other words, the use of a specific
classification method according to the type of dataset produces better classification
performances than always using the same classification method.

Once it was confirmed statistically that the final hh is better than any individ-
ual classification method, we compared the performance of this hh with the perfor-
mances that can be achieved by two state-of-the-art AutoML systems for text clas-
sification: AutoKeras 2 and AutoGluon 3; of which we have explained how it works
in Section 1.3. In short, both systems are based on DL methods, that is, selection,
ensemble, or fine-tuning (depending on the operation of each system) only takes
into account methods of this type. These systems are characterized by contemplat-
ing various word embeddings (such as word2Vec or fastText) and transformer-based
methods (such as BERT or ALBERT) to define their search space. Our objective

2Available at: https://autokeras.com/
3Available at: https://auto.gluon.ai/stable/index.html

94 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 4.6: Average performance of each classification method in the datasets of
each genetic group.

when using these systems is to see their ability to find the optimal classification
method (according to their methodology and solution space) for each dataset of the
genetic test group. For this experiment, some datasets in the group may be difficult
to classify, so both systems were left with their default settings so as not to limit
their search space. In this case, for using these AutoML systems we had to resort
to using a server with 2 Intel Xeon Gold processors @2.6 GHz, 256 GB of RAM,
a Tesla V100 GPU with 32 GB of RAM, and Windows Server 2016. Fig. 4.7 and
Table 4.5 show the behavior of the selected hh, AutoGluon, and AutoKeras in each
of the datasets of the genetic test group, in terms of macro F1. In these results, it
can be seen that the AutoGluon system found a solution for each of the 34 datasets.
On the other hand, the AutoKeras system was only able to provide solutions for 24
datasets, since for the other datasets this system crashed due to different problems,
such as lack of memory in some cases. Likewise, it can also be observed that the
difference in performance achieved by the three models on each of the datasets is
small in most cases. In the CorTws, DisTws, and sen pol datasets, the AutoKeras
and AutoGluon systems provide better classification performances than those of the
hh; on the other hand, the hh has higher performances in some datasets such as
NYTATM, oh, r8, among others.

The average performance of AutoKeras over the 24 datasets (for which only

CHAPTER 4. RESULTS 95

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 4.7: Comparison of the best hh against AutoGluon and AutoKeras.

results could be obtained) is 0.6700; instead, the hh achieves an average performance
of 0.6739 on these datasets. On the other hand, when taking into account the 34
datasets, AutoGluon has an average performance of 0.6860, and the hh with a
performance of 0.6805. The results shown in Fig. 4.7 and Table 4.5 together with
the average performance obtained allow us to believe that the final hh behaves
very similarly to the AutoKeras and AutoGluon systems. In order to know if this
assumption is correct, we decided to apply the Wilcoxon signed-rank test again to
provide more valid support for the differences that exist between them. Similar to
the previous test, we start from the null hypothesis in which each AutoML system
performs just as well as the hh. We use a significance level ³ = 0.05 for the two tests
(hh-AutoKeras and hh-AutoGluon); the reference values extracted from the tables
is 81 for AutoKeras (with N = 24 datasets), and 182 for AutoGluon (with N = 34
datasets). The hh-AutoKeras test returns z = 135; while for the hh-AutoGluon
test, the result is z = 240. These results are greater than their respective reference
values, therefore, the null hypothesis cannot be rejected, which means that the final
hh behaves just as well as either of the two AutoML systems.

In addition to the comparison of the final hh with both AutoML systems in
terms of performance, the comparison in terms of time also brings interesting and
relevant information. The results of this comparison are shown in Fig. 4.8. Because
some datasets were much faster to classify than others, a logarithmic scale was used,
which allows these differences to be observed more compactly. In general, the final hh

96 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Dataset Best hh AutoGluon AutoKeras Dataset Best hh AutoGluon AutoKeras

20ng 0.8714 0.8003 - NYTAND 0.3692 0.3984 -

AGNews 0.9114 0.9229 0.9226 NYTATM 0.4560 0.4070 0.3930

CNNAC 0.6712 0.7141 - oh 0.6306 0.4263 0.5251

CNNAS 0.5132 0.6025 - r8 0.9597 0.9250 0.8160

CorTws 0.5620 0.7604 0.7660 r52 0.7007 0.5408 0.7308

csdmc 0.9630 0.9663 0.9685 RFJob 0.8216 0.8434 0.7653

CybTws 0.8204 0.8362 0.8462 Rotten 0.5071 0.5424 0.5505

DisTws 0.7820 0.8249 0.8398 sen pol 0.7418 0.7834 0.7958

F&RNS 0.4556 0.4927 - StOvQR 0.7972 0.8536 -

gopds 0.5906 0.5533 0.5687 SuiDect 0.9376 0.9592 -

HRCB 1.0000 0.9981 - TMACS 0.8649 0.8556 0.7768

HRCS 0.0834 0.0731 0.0055 TMAMt 0.8630 0.8643 0.8650

imdbs 0.6753 0.7220 0.6673 TMASt 0.8350 0.8322 0.8411

IMDBR 0.8998 0.9146 - TripAd 0.5353 0.5833 0.5586

LvsC 0.7156 0.6220 0.7007 wipo l1 0.4508 0.5136 -

movies 0.8193 0.7383 0.8192 wipo l2 0.1394 0.0897 0.1063

NewsCat 0.4745 0.5635 0.5620 yelp 0.7199 0.8012 0.6892

Table 4.5: Results (macro F1) of the best hyper-heuristic against AutoGluon and
AutoKeras on the genetic test group.

behaves much faster than both AutoML systems, that is, it provides the solutions
to the group of datasets in a shorter amount of time. Taking the entire genetic
test group (only 24 datasets for AutoKeras), the hh has a median of 0.29 minutes,
AutoGluon 24.77 minutes, and AutoKeras 167.87 minutes. The most expensive
system is AutoKeras since to classify the 24 datasets it requires a total of 18,357
minutes, compared to 1,007 minutes for hh, and 1,357 minutes for AutoGluon, the
latter two taking into account all 34 datasets in the group. It is worth mentioning
that AutoGluon allows setting a limit to find a solution for a dataset. However,
this is not highly recommended as a very small value could cause the system to
provide bad results for some datasets. Finally, it is necessary to highlight that the
times consumed by the classification methods used by the hh were estimated using
only the CPU, unlike AutoML systems, where those times were estimated using the
dedicated GPU.

The comparison of the evolutionary model against state-of-the-art systems with
the respective analysis previously carried out, allows us to say that the evolutionary
model has been able to develop a final hh that can easily compete against these
systems that are based on DL methods. This is very interesting because the actions
associated with the final hh rules are classical ML methods, and yet the behaviors
between the AutoML systems and the hh are very similar. This being the case, it

CHAPTER 4. RESULTS 97

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

Figure 4.8: Comparison of computational times (in minutes) of the best hh against
AutoGluon and AutoKeras.

can also be concluded that ML methods are still superior to DL methods for several
problems or even text classification tasks, which has already been commented on
by other researchers in the literature [44, 45]. The main causes of these behaviors
are associated with the complexities of DL methods. For a DL method to achieve
good classification performance, it requires large amounts of data during the training
stage, in addition to large amounts of parameters that need to be tuned (such as
epochs, layers, numbers of units, learning rates, etc.), which entails the need for
large computational resources. In the work carried out in [44], the authors mention
that it is more probable that a DL method can outperform an ML one when there
are large amounts of data available for the training, but this does not ensure that
the difference between the classification performances will be large, in some cases
it is usually insignificant, unlike the computational costs, of which the differences
could be very significant. The results shown in Fig. 4.7, Table 4.5, and the Wilcoxon
signed-rank tests complement what was mentioned above, where it was possible to
observe that the AutoGluon and AutoKeras systems (both based on DL methods),
and the final hh (consisting of ML methods) have similar behaviors, even though ML
methods do not require large amounts of computational resources to train and test.
This also considering that the AutoML systems used a dedicated GPU, whereas the
hh worked only with the CPU.

98 CHAPTER 4. RESULTS

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

All this has led us to the following, the selection of an adequate classification
method always depends on the problem, which can be observed with the hh. Our
evolutionary model has provided new information on the relevance of meta-features
(representing the data distribution) for the selection of suitable classification meth-
ods for a dataset in question.

CHAPTER 4. RESULTS 99

Chapter 5

Conclusions

In this thesis work, we have presented an evolutionary model with the ability to
learn hhs as sets of rules of the if-then form (including an else-rule), being able to
generalize the method selection process for various problems of text classification.
The method selection process is a problem that has been addressed in AutoML
systems, where many of them do not have the ability to generalize the process,
that is, they have the objective of finding the classification method with the best
performance for a single problem. We have used a set of 16 meta-features to represent
the data distribution of a dataset, based on statistics. Given a dataset, the rules of
a hh evaluate its meta-features in order to select the most appropriate classification
method with optimal performance or very close to it. In order to validate the
solutions and the performance of our evolutionary model, we developed a series of
experiments, divided into 3 phases. First, we carried out 100 runs independently
of the evolutionary model in order to obtain 100 hhs from different starting points,
using the same genetic training group of datasets in each run. Then, from the 100
hhs obtained, we select the one that achieved the best performance as the final
hh. This hh was evaluated with a genetic test group to determine its generalization
capacity with unseen datasets. Each genetic group consists of 34 datasets associated
with various text classification tasks (e.g. sentiment detection, email filtering, among
others). In the last phase of the experiments, we performed a comparison of the final
hh performance with the results obtained by two state-of-the-art AutoML systems
for DL-based text classification.

From the results obtained in each phase of the experiments, the following was
concluded:

• The evolutionary model is capable of learning hhs that allow the selection of
appropriate methods for various text classification problems, achieving very
good and close to optimal classification performance for each dataset. During
the training phase, hhs evolve to a point where they achieve performances very
close to the general optimum of the datasets of the genetic training group.

• The method selection process has been generalized with the best hh obtained

100

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

since when it is tested with a group of unseen datasets (genetic test group) it
obtains a performance very close to optimal.

• The LSVM, SVM, LR, and CNB classification methods with various configu-
rations of hyperparameters dominate the rules in the final hh. Likewise, these
classification methods also appear as some of the optimal methods for the
datasets of both genetic groups (training and test).

• The Wilcoxon signed-rank test made it possible to discover that the difference
in average performance, obtained with the final hh and the best classification
method on the datasets of the genetic test group, is statistically significant.
Giving, as a result, the behavior of the final hh is better.

• The final hh is capable enough to compete against two state-of-the-art AutoML
systems since the average performances obtained with these three are very
similar. The results of the Wilcoxon signed-rank tests guarantee this since
there is no significant difference among their behaviors.

• The classical ML classification methods used in final hh rules have shown that
despite being simpler, they can compete and even outperform in some cases
the complex methods created by AutoML systems (using a DL approach).

• Of the set of 16 meta-features used to represent the datasets, those that rep-
resent the distribution of the data at document and category level are key to
determining the appropriate classification methods for various datasets.

• The form of representation used for the rules of the hhs allows a better com-
prehension and understanding of how a hh determines which is the most ap-
propriate classification method for a particular dataset.

• There is a correlation between the meta-features associated with the disper-
sion of the data and the amount of information at a level of documents per
category (dptStdAvg and dptEnt respectively), with the classification perfor-
mance obtained by the final hh. In such a way that these can serve as good
indicators of the behavior that this hh will have with unseen datasets.

Finally, there are multiple directions for future research such as developing a
multi-objective model. A model of this type has the purpose of not only consider-
ing the classification performance but also giving importance to the times (training
and testing of the classification methods) and the computational resources required
to achieve such performance. This is because DL methods can achieve better per-
formance than ML methods on some problems but at higher computational time
and cost. Developing a set of diverse solutions that contemplate different objec-
tives is useful, since depending on the problem being addressed and the available
resources, there are solutions that may be more appropriate than others. Other

CHAPTER 5. CONCLUSIONS 101

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

research that could be developed in the future is according to an approach in which
the selection of a classification method is at a lower level, that is, determining the
most appropriate method for each document in a dataset, which leads to consider-
ing new meta-features that represent the data of a document. This would allow for
forming customized solutions according to the provided dataset. In addition, new
meta-features can be considered at different levels, some can be determined from
word vectors or other forms of embeddings; part-of-speech features; as well as some
based on the dataset content in general like n-grams, emojis/emoticons, or senti-
ment words. Finally, another research direction could be to develop a model that
instead of selecting only one classification method, builds an ensemble of the most
appropriate methods according to a hh for a given dataset.

102 CHAPTER 5. CONCLUSIONS

Bibliography

[1] KR Chowdhary. Fundamentals of artificial intelligence. Springer, 2020.

[2] Diksha Khurana, Aditya Koli, Kiran Khatter, and Sukhdev Singh. Natural
language processing: State of the art, current trends and challenges. Multimedia
tools and applications, 82(3):3713–3744, 2023.

[3] Yiming Yang and Xin Liu. A re-examination of text categorization methods.
In Proceedings of the 22nd annual international ACM SIGIR conference on
Research and development in information retrieval, pages 42–49, 1999.

[4] Jochen Hartmann, Juliana Huppertz, Christina Schamp, and Mark Heitmann.
Comparing automated text classification methods. International Journal of
Research in Marketing, 36(1):20–38, 2019.

[5] Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam
Chenaghlu, and Jianfeng Gao. Deep learning–based text classification: a com-
prehensive review. ACM computing surveys (CSUR), 54(3):1–40, 2021.

[6] Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip S
Yu, and Lifang He. A survey on text classification: From traditional to deep
learning. ACM Transactions on Intelligent Systems and Technology (TIST),
13(2):1–41, 2022.

[7] Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Heidarysafa, Sanjana
Mendu, Laura Barnes, and Donald Brown. Text classification algorithms: A
survey. Information, 10(4):150, 2019.

[8] Andrea Gasparetto, Matteo Marcuzzo, Alessandro Zangari, and Andrea Al-
barelli. A survey on text classification algorithms: From text to predictions.
Information, 13(2):83, 2022.

[9] Stijn Hoskens. Choosing the right text classifier: A meta-heuristic framework,
2015.

[10] Juan Carlos Gomez, Stijn Hoskens, and Marie-Francine Moens. Evolutionary
learning of meta-rules for text classification. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pages 131–132, 2017.

103

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[11] Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio
Escalera, Zhengying Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle
Sebag, et al. Analysis of the automl challenge series. Automated Machine
Learning, 177, 2019.

[12] Karansingh Chauhan, Shreena Jani, Dhrumin Thakkar, Riddham Dave, Jiten-
dra Bhatia, Sudeep Tanwar, and Mohammad S Obaidat. Automated machine
learning: The new wave of machine learning. In 2020 2nd International Con-
ference on Innovative Mechanisms for Industry Applications (ICIMIA), pages
205–212. IEEE, 2020.

[13] Hugo Jair Escalante. Automated machine learning—a brief review at the end of
the early years. Automated Design of Machine Learning and Search Algorithms,
pages 11–28, 2021.

[14] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng
Li, Wei-Wei Tu, Qiang Yang, and Yang Yu. Taking human out of learn-
ing applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306, 2018.

[15] Radwa Elshawi, Mohamed Maher, and Sherif Sakr. Automated machine learn-
ing: State-of-the-art and open challenges. arXiv preprint arXiv:1906.02287,
2019.

[16] Matthias Blohm, Marc Hanussek, and Maximilien Kintz. Leveraging auto-
mated machine learning for text classification: Evaluation of automl tools and
comparison with human performance. arXiv preprint arXiv:2012.03575, 2020.

[17] Batta Mahesh. Machine learning algorithms-a review. International Journal of
Science and Research (IJSR).[Internet], 9:381–386, 2020.

[18] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and
research directions. SN computer science, 2(3):160, 2021.

[19] David H Wolpert and William G Macready. No free lunch theorems for opti-
mization. IEEE transactions on evolutionary computation, 1(1):67–82, 1997.

[20] Forough Majidi, Moses Openja, Foutse Khomh, and Heng Li. An empirical
study on the usage of automated machine learning tools. In 2022 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME), pages
59–70. IEEE, 2022.

[21] Hugo Jair Escalante, Manuel Montes, and Luis Enrique Sucar. Particle swarm
model selection. Journal of Machine Learning Research, 10(2), 2009.

104 BIBLIOGRAPHY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[22] Siyu Huang, Xi Li, Zhi-Qi Cheng, Zhongfei Zhang, and Alexander Hauptmann.
Gnas: A greedy neural architecture search method for multi-attribute learning.
In Proceedings of the 26th ACM international conference on Multimedia, pages
2049–2057, 2018.

[23] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level
network transformation for efficient architecture search. In International Con-
ference on Machine Learning, pages 678–687. PMLR, 2018.

[24] Udayan Khurana, Deepak Turaga, Horst Samulowitz, and Srinivasan Parthas-
rathy. Cognito: Automated feature engineering for supervised learning. In 2016
IEEE 16th International Conference on Data Mining Workshops (ICDMW),
pages 1304–1307. IEEE, 2016.

[25] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. Explorekit: Automatic
feature generation and selection. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 979–984. IEEE, 2016.

[26] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Auto-
weka: Combined selection and hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 847–855, 2013.

[27] Brent Komer, James Bergstra, and Chris Eliasmith. Hyperopt-sklearn: au-
tomatic hyperparameter configuration for scikit-learn. In ICML workshop on
AutoML, volume 9, page 50. Citeseer Austin, TX, 2014.

[28] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter. Efficient and robust automated machine
learning. Advances in neural information processing systems, 28, 2015.

[29] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer,
and Frank Hutter. Practical automated machine learning for the automl chal-
lenge 2018. In International Workshop on Automatic Machine Learning at
ICML, pages 1189–1232, 2018.

[30] Jorge G Madrid and Hugo Jair Escalante. Meta-learning of text classification
tasks. In Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications: 24th Iberoamerican Congress, CIARP 2019, Havana, Cuba,
October 28-31, 2019, Proceedings 24, pages 107–119. Springer, 2019.

[31] Jorge G Madrid, Hugo Jair Escalante, and Eduardo Morales. Meta-learning
of textual representations. In Machine Learning and Knowledge Discovery in
Databases: International Workshops of ECML PKDD 2019, Würzburg, Ger-
many, September 16–20, 2019, Proceedings, Part I, pages 57–67. Springer, 2020.

BIBLIOGRAPHY 105

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[32] Jorge Madrid. Autotext: Automl for text classification, 2019.

[33] Washington Cunha, Sérgio Canuto, Felipe Viegas, Thiago Salles, Christian
Gomes, Vitor Mangaravite, Elaine Resende, Thierson Rosa, Marcos André
Gonçalves, and Leonardo Rocha. Extended pre-processing pipeline for text
classification: On the role of meta-feature representations, sparsification and
selective sampling. Information Processing & Management, 57(4):102263, 2020.

[34] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural archi-
tecture search system. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 1946–1956, 2019.

[35] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[36] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[37] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. En-
riching word vectors with subword information. Transactions of the association
for computational linguistics, 5:135–146, 2017.

[38] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy,
Mu Li, and Alexander Smola. Autogluon-tabular: Robust and accurate automl
for structured data. arXiv preprint arXiv:2003.06505, 2020.

[39] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[40] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations. arXiv preprint arXiv:1909.11942, 2019.

[41] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning.
Electra: Pre-training text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555, 2020.

[42] Rushil Desai, Aditya Shah, Shourya Kothari, Aishwarya Surve, and Narendra
Shekokar. Textbrew: Automated model selection and hyperparameter opti-
mization for text classification. International Journal of Advanced Computer
Science and Applications, 13(9), 2022.

106 BIBLIOGRAPHY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[43] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdi-
nov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language
understanding. Advances in neural information processing systems, 32, 2019.

[44] Washington Cunha, Vı́tor Mangaravite, Christian Gomes, Sérgio Canuto,
Elaine Resende, Cecilia Nascimento, Felipe Viegas, Celso França, Welling-
ton Santos Martins, Jussara M Almeida, et al. On the cost-effectiveness of
neural and non-neural approaches and representations for text classification:
A comprehensive comparative study. Information Processing & Management,
58(3):102481, 2021.

[45] Yaakov HaCohen-Kerner. Survey on profiling age and gender of text authors.
Expert Systems with Applications, page 117140, 2022.

[46] Juan Carlos Gomez and Hugo Terashima-Maŕın. Evolutionary hyper-heuristics
for tackling bi-objective 2d bin packing problems. Genetic Programming and
Evolvable Machines, 19:151–181, 2018.

[47] John H Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[48] Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach
to scheduling a sales summit. In Practice and Theory of Automated Timetabling
III: Third International Conference, PATAT 2000 Konstanz, Germany, August
16–18, 2000 Selected Papers 3, pages 176–190. Springer, 2001.

[49] Edmund K Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and John R Woodward. A classification of hyper-heuristic approaches.
Handbook of metaheuristics, pages 449–468, 2010.

[50] John H Drake, Ahmed Kheiri, Ender Özcan, and Edmund K Burke. Recent ad-
vances in selection hyper-heuristics. European Journal of Operational Research,
285(2):405–428, 2020.

[51] Jeffrey EF Friedl. Mastering regular expressions. ” O’Reilly Media, Inc.”, 2006.

[52] W John Wilbur and Karl Sirotkin. The automatic identification of stop words.
Journal of information science, 18(1):45–55, 1992.

[53] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. ” O’Reilly Media,
Inc.”, 2009.

[54] Gerard Salton and Christopher Buckley. Term-weighting approaches in au-
tomatic text retrieval. Information processing & management, 24(5):513–523,
1988.

BIBLIOGRAPHY 107

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[55] Andrew McCallum, Kamal Nigam, et al. A comparison of event models for
naive bayes text classification. In AAAI-98 workshop on learning for text cate-
gorization, volume 752, pages 41–48. Madison, WI, 1998.

[56] Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R Karger. Tackling
the poor assumptions of naive bayes text classifiers. In Proceedings of the 20th
international conference on machine learning (ICML-03), pages 616–623, 2003.

[57] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam filter-
ing with naive bayes-which naive bayes? In CEAS, volume 17, pages 28–69.
Mountain View, CA, 2006.

[58] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric
discrimination: Small sample performance. Technical report, California Univ
Berkeley, 1952.

[59] Philip H Swain and Hans Hauska. The decision tree classifier: Design and
potential. IEEE Transactions on Geoscience Electronics, 15(3):142–147, 1977.

[60] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier
methodology. IEEE transactions on systems, man, and cybernetics, 21(3):660–
674, 1991.

[61] Martin JH Jurafsky D. Speech and Language Processing. Standford, 2023.

[62] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20:273–297, 1995.

[63] Zhi-Hua Zhou. Machine learning. Springer Nature, 2021.

[64] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for
natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

[65] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[66] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. Swag: A large-
scale adversarial dataset for grounded commonsense inference. arXiv preprint
arXiv:1808.05326, 2018.

[67] Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation metrics for
data classification evaluations. International journal of data mining & knowl-
edge management process, 5(2):1, 2015.

108 BIBLIOGRAPHY

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[68] Jason Wang, Kaiqun Fu, and Chang-Tien Lu. Sosnet: A graph convolutional
network approach to fine-grained cyberbullying detection. In 2020 IEEE Inter-
national Conference on Big Data (Big Data), pages 1699–1708. IEEE, 2020.

[69] Hadeer Ahmed, Issa Traore, and Sherif Saad. Detecting opinion spams and
fake news using text classification. Security and Privacy, 1(1):e9, 2018.

[70] Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. From
group to individual labels using deep features. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining,
pages 597–606, 2015.

[71] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th annual meeting of the association for computational lin-
guistics: Human language technologies, pages 142–150, 2011.

[72] Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis
using subjectivity summarization based on minimum cuts. arXiv preprint
cs/0409058, 2004.

[73] Rishabh Misra. News category dataset. arXiv preprint arXiv:2209.11429, 2022.

[74] Issa Annamoradnejad, Jafar Habibi, and Mohammadamin Fazli. Multi-view
approach to suggest moderation actions in community question answering sites.
Information Sciences, 600:144–154, 2022.

[75] Md Hijbul Alam, Woo-Jong Ryu, and SangKeun Lee. Joint multi-grain topic
sentiment: modeling semantic aspects for online reviews. Information Sciences,
339:206–223, 2016.

[76] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the
Journal of machine Learning research, 12:2825–2830, 2011.

[77] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gom-
mers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J Smith, et al. Array programming with numpy. Nature,
585(7825):357–362, 2020.

[78] Robert Gunning. The fog index after twenty years. Journal of Business Com-
munication, 6(2):3–13, 1969.

[79] Michael Affenzeller, Stefan Wagner, Stephan Winkler, and Andreas Beham.
Genetic algorithms and genetic programming: modern concepts and practical
applications. Crc Press, 2009.

BIBLIOGRAPHY 109

Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right Method in
Text Classification Problems

[80] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine learning research, 7:1–30, 2006.

110 BIBLIOGRAPHY

Salamanca, Gto., a 7 de septiembre del 2023.

M. en I. HERIBERTO GUTIÉRREZ MARTIN
COORDINADOR DE ASUNTOS ESCOLARES
P R E S E N T E.-

 Por medio de la presente, se otorga autorización para proceder a los trámites de impresión,

empastado de tesis y titulación al alumno(a) Estrella Ramírez Jonathán de Jesús del Programa de Maestría

en Ingeniería Eléctrica (Instrumentación y Sistemas Digitales) y cuyo número de NUA es: 145860 del cual

soy director. El título de la tesis es: Evolutionary Learning of Selection Hyper-Heuristics for Choosing the Right

Method in Text Classification Problems.

Hago constar que he revisado dicho trabajo y he tenido comunicación con los sinodales asignados

para la revisión de la tesis, por lo que no hay impedimento alguno para fijar la fecha de examen de titulación.

A T E N T A M E N T E

Dr. Gómez Carranza Juan Carlos

DIRECTOR DE TESIS
SECRETARIO

_______________________________ _______________________________
 Dr. Sánchez Yáñez Raúl Enrique Dr. Ruiz Pinales José

 PRESIDENTE VOCAL

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Literature Review

	Theoretical Framework
	Genetic Algorithms
	Basics
	Individuals
	Initial Population
	Crossover
	Mutation
	Fitness
	Selection
	Termination Criterion

	Hyper-Heuristics
	Selection Hyper-Heuristics

	Methods for Data Pre-Processing
	Cleaning Process
	Transformation Process
	Normalization Process

	Machine Learning and Deep Learning Methods
	Multinomial Naïve Bayes
	Complement Naïve Bayes
	Bernoulli Naïve Bayes
	k-Nearest Neighbors
	Decision Tree
	Logistic Regression
	Support Vector Machines
	BERT
	ALBERT

	Evaluation Setup
	Dataset Split
	Evaluation Metrics

	Methodology
	Data Gathering
	Dataset Description

	Data Processing
	Classification Methods
	Meta-Feature Extraction
	Evolutionary Model
	Individuals
	Initialization
	Fitness Evaluation
	Crossover Operator
	Mutation Operator
	Selection
	Termination
	Evaluation of the Best Individual

	Analysis
	Single Run
	Multiple Runs
	Computational Time

	Results
	Conclusions
	Bibliography

