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Chapter 1

Introduction

In topology we are interested in �nding a classi�cation of the objects that we work

with and �nd invariants that allows us to identify them. �e main reason of this is

because in most of the cases we are unable to see the object of study but we need its

properties in order to be capable of work with it.

An invariant for a family of objects A with a certain equivalence relationship is a

function φ from A to a family B, such that if α1 and α2 belong to the same class of

equivalence then φ(α1) = φ(α2). A complete invariant is an invariant φ that satis�es

that φ(α1) = φ(α2) if and only if α1 and α2 belong to the same class of equivalence.

One example of a theory that is based on this search of invariants is knot theory, which

main goal is to �nd a complete invariant that not only di�erentiates but identi�es

uniquely every knot. �e tables of knots diagrams were the beginning of this a�empts

to classify the knots. Also there exist even internet websites [1] specialized in the

classi�cation of known knots and the values of some invariants known for those knot.

As knots, other important objects studied in low dimensional topology are manifolds.

Specially 2- and 3-manifolds. Anm-manifold is aHausdor� spaceM , second-countable,

such that each point x of M has a neighborhood that is homeomorphic with an open

subset of Rm, as de�ned in [2]. A 2-manifold is called a surface and as in the case of

knot theory, there have been many e�orts to classify these mathematical objects.

In [3], we can read about the remarkable work that was made to prove the Classi�ca-

tion�eorem for Compact Surfaces. �is theorem states that every compact connected

closed surface is either a sphere, a connected sum of g tori for g ≥ 1, or a connected
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sum of k projective planes for k ≥ 1. Here the complete invariant used to identify the

surfaces is the Euler-Poincaré Characteristic.

�e proof of this theorem is really complex. First we need some standard surfaces that

can be easily categorized, these are the standard connected sum of g tori, the standard

connected sum of k projective planes and the sphere. �en we need to prove two

things. �e �rst one is to prove that every surface can be triangulated and the second

one is to prove that there are some operations that work on speci�c sets of triangles

that allows us to �nd piecewise linear homeomorphisms from the set of triangles to

the parts of the standard surfaces. �en with these two proofs, you can say that given

any surface, it is possible to �nd a homeomorphism from any surface to a standard

surface. More details about this proof can be found in [3].

�is theorem is crucial as the motivation of this work.

In colloquial words, a 2-stratifold is some kind of generalization of the concept of

surface. As de�ned before a surface is a Hausdor� space, second-countable such that

each point x of the space has a neighborhood that is homeomorphic with an open

subset of R2. But we can go further, we can think of a space that is similar to a surface

inmost of its points, but that also has a collection of disjoint curveswheren half-planes

intersect. In that case we will have an n−valent 2-stratifold.

——

Figure 1.1: An example of a 2-stratifold

Since surfaces can be completely classi�ed, one can wonder if 2-stratifolds can be

completely classi�ed as well. We will focus on the next immediate case to the sur-

faces,which are the trivalent 2-stratifolds.
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2-stratifolds are also important because they appear on the applications of Topological

Data Analysis, since 2-stratifolds can be seen as 2-dimensional simplicial complexes.

Classifying the 2-stratifolds can lead to a be�er understanding of simplicial complexes

such as the ones that appear in [4] and [5]. Some of them are equivalent to trivalent

2-stratifolds graphs, which are de�ned further on this work.

On the other hand 2-stratifolds are a particular case of the mathematical object called

foam space. �is topological spaces are based on the geometry of the bubbles and

foam, and are important in physics. �e study of foam spaces is relevant for the de-

velopment of be�er temperature or impact insulators as stated in [6]. �erefore, the

study of the particular case of the 2-stratifolds can lead to generalizations applicable

to foam spaces.

In Chapter 2, we will give basics de�nitions for understanding this thesis.

Next, Chapter 3 describes our objects of study, trivalent 2-stratifolds with trivial fun-

damental group, along with results that have been already published about them.

�is leads us to Chapter 4, where it is explained how we can see every 2-stratifold as a

graph. Moreover, we are going to explain the algorithm that allows us to build every

trivalent 2-stratifold from two basic graphs called seeds.

�e relation between 2-stratifolds and graphs is similar to the relation between sur-

faces and triangulations, that is why we de�ne an invariant that works over the graph

representation of the 2-stratifolds. �is invariant is the string representation and

it’s completely explained on Chapter 5.

�e construction of 2-stratifolds is an iterative process and during that process we

can calculate their string representation. Part of the work done for this thesis was to

implement the algorithm as a Python program that not only builds the graphs of the

2-stratifolds but also draws them and assigns them their string representation. More

details of this implementation can be read in Chapter 6.

Finally, on Chapter 7 we discuss the conclusions from this work and propose more

questions that could lead us to further work on the same topic, that may be developed

on the future.





Chapter 2

Preamble

In this chapter we are going to de�ne some key concepts that are necessary to under-

stand this thesis. First we are going to talk about basic concepts of topology such as

the de�nition of a 2-stratifold and a brief introduction to the fundamental group of a

2-stratifold. �at would lead us to the main object of study in this work that is the

trivalent 2-stratifolds with trivial fundamental group. Most of these de�nitions come

from [7] and [2]. A�erwards we are going to show some results and de�nitions from

graph theory that are necessary in further chapters.

2.1 2-Stratifolds

We are going to begin de�ning Hausdor� space, we will say that a topological space

X that satis�es for each pair x1, x2 of distinct points of X there exist neighborhoods

U1, U2 of x1 and x2, respectively, that are disjoint, then the space is aHausdor� space.

We will also say that it has a countable basis at some point x ∈ X there is a count-

able collection B of neighborhoods of x such that each neighborhood of x contains at

least one of the elements of B. If a topological space X has a countable basis for its

topology, the X is second-countable

A space X is said to be connected if any two points in X can be connected by a

curve lying wholly within X . If X is a connected topological space, it is pathwise-

connected if and only if for every two points x, y ∈ X there is a continuous function

f : [0, 1] → X such that f(0) = x and f(1) = y. �e spaces studied in this work ful�ll

the property of being locally pathwise-connected. �erefore, the fact that one of these

5
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spaces is connected implies that it is also pathwise-connected, so we will assume that

every connected space is also pathwise-connected.

We mentioned manifolds on Chapter 1. Let’s remember the de�nition, a n-manifold

is a Hausdor� space X , second-countable, such that each point x of X has a neigh-

borhood that is homeomorphic with an open subset of Rn. �e 1-manifolds are o�en

called curves and the 2-manifolds are called surfaces.

Now we can begin to de�ne the main object of study that are the 2-stratifolds.

A 2-stratifold is a compact, connected Hausdor� space X together with a �ltration

∅ = X0 ⊂ X1 ⊂ X2 = X by a closed subspace such that X1 is a closed 1-manifold,

each point x ∈ X1 has a neighborhood homeomorphic to R × CL, where CL is the

open cone onL for some (�nite) setL of cardinality greater than 2 and each x ∈ X2\X1

has a neighborhood homeomorphic to R
2.

As de�ned in [8], given a topological spaceL, the open coneCL is the result of collaps-

ing one face of the cylinderL×[0, 1] to one point. �ereforeCL = (L×[0, 1])/L×{1}.

�e cardinality of the set L mentioned in the de�nition of the 2-stratifold, de�nes the

valence of the points ofX . In particular if the set L has cardinality 3, then we will say

that we have a trivalent point.

One can see this kind of topological space on the real world, for example with bubbles,

a single bubble is a sphere but if you put one near to other when they touch (usually)

they don’t form a bigger bubble, they join together with a wall in the middle as in

Figure 2.1.

Figure 2.1: Bubbles forming a trivalent 2-stratifold

If you add more bubbles, you can manage to get a more complex 2-stratifold as in

Figure 2.2.
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Figure 2.2: Bubbles as a 2-stratifold

�e previous were orientable examples of 2-stratifolds, some that we can see. But

there are also nonorientable 2-stratifolds, some that we can’t embedded in our tridi-

mensional world.

We have said that the main goal is to classify the 2-stratifolds, but trying to do it with

all of them would be ambitious. We must narrow down the set of 2-stratifolds that we

are going to work with.

Let us properly de�ne the valence of the 2-stratifolds.

De�nition 2.1. Given a 2-stratifoldX which contains a closed (possibly disconnected)

1-manifold X1 with empty boundary as a closed subspace. Let C ≈ S1 be a compo-

nent ofX1, it has a neighborhoodN(C) that is homeomorphic to (Y × [0, 1])/(y, 1) ∼

(h(y), 0), where Y is the closed cone on the discrete space {1, 2, ..., d} and h : Y → Y

is a homeomorphismwhose restriction to {1, 2, ..., d} is the permutation p : {1, 2, ..., d} →

{1, 2, ..., d}. �e components of N(C)− C are called the sheets of N(C). �erefore

N(C) will have d sheets and the valence of C is d.

As a remark is useful to say that the space N(C) depends only on the conjugacy class

of p ∈ Sd and therefore is determined by a partition of d. Also for two components

C,C ′ ∈ X1, the neighborhoods N(C), N(C ′) are chosen su�ciently small so that

N(C) is disjoint from N(C ′).

�is de�nition is equivalent to this other version: Given a 2-stratifold X which con-

tains a closed (possibly disconnected) 1-manifoldX1 with empty boundary as a closed

subspace. Let C ≈ S1 be a component of X1 and a point x ∈ C . Consider a regular

neighborhoodN(x) of x. By de�nition of 2-stratifold,N(x)−C is a set of disjoint com-

ponents locally homeomorphic toR2. We will say that x is d-valent if |N(x)−C| = d
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and we will name the components of N(x) − C as sheets. By de�nition, each point

of C has the same valence, therefore we will say that C is d-valent.

�e sheets looks as follows:

Figure 2.3: Sheets of N(C)

If for every connected component C of X1, N(C) has n sheets, we will say that the

2-stratifold is n-valent. In particular we will focus on the case where for every compo-

nent C ofX1,N(C) has exactly 3 sheets, these are called the trivalent 2-stratifolds.

�is is our �rst reduction of cases but we will need another one, which involves the

following de�nitions from [2].

LetX be a space and x, y two points ofX . A path inX from x to y is a continuousmap

f : [0, 1] → X such that f(0) = x and f(1) = y. One can think of it as a continuous

curve in X that connects x and y.

But (unless X is a 1-manifold) there are several ways of connecting every two points,

so we are going to de�ne a relation of equivalence between paths. �is relation is

called path homotopy.

De�nition 2.2. Given two paths f and f ′, from x to y onX , they are said to be path

homotopic if there is a continuous map F : [0, 1]× [0, 1] → X such that

F (s, 0) = f(s) and F (s, 1) = f ′(s),

F (0, t) = x and F (1, t) = y,

for each s ∈ [0, 1] and each t ∈ [0, 1].
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Figure 2.4: Path homotopy

Now we are ready to de�ne the fundamental group of any space X .

De�nition 2.3. Let x0 be a point of X . A path in X that begins and ends at x0 is

called a loop based at x0. �e set of path homotopy classes of loops based at x0, with

the operation composition of paths, is called the fundamental group of X relative

to the base point x0. It is denoted by π1(x0, X).

Figure 2.5: Class representatives

of the fundamental group of the

Torus

Figure 2.6: Class representative

of the fundamental group of the

Sphere

We can see that in the case of the sphere, in Figure 2.6, the representative path can be

contracted with a continuous transformation to the single point x0. As seen in Figure

2.7.

Figure 2.7: Trivial loop
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�is is called the trivial element. When the fundamental group based on x0 ∈ X of

a space X consists on this single element, we say that X is simply connected or

that it has trivial fundamental group. It is implied that if π1(x0, X) is the trivial

fundamental group, for any x ∈ X , π1(x,X) is going to be the trivial fundamental

group.

One can also calculate the fundamental group of 2-stratifolds. We have the following

examples of 2-stratifolds with a nontrivial fundamental groups:

Figure 2.8: Trivalent 2-stratifold

with a nontrivial fundamental

group

Figure 2.9: Trivalent 2-stratifold

with a nontrivial fundamental

group

Again, the possibilities are endless and trying to work with all of them would be over-

whelming. So we are just going to focus on the trivalent 2-stratifolds with trivial

fundamental group.

Now we are able to give a proper de�nition of our object of study.

A trivalent 2-stratifold with trivial fundamental group is a compact, connected

Hausdor� space X together with a �ltration ∅ = X0 ⊂ X1 ⊂ X2 = X by a closed

subspace such that X1 is a closed 1-manifold, each point x ∈ X1 has a neighborhood

homeomorphic to R×CL, where CL is the open cone on L for some (�nite) set L of

cardinality 3 and each x ∈ X2\X1 has a neighborhood homeomorphic to R
2.
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2.2 Introduction to Graph�eory

In this section we are going to introduce the �rst notions and nomenclature necessary

to understand the further theory that we are going to develop. Most of the de�nitions

of this section are from the book [9, Chapter 1].

First is necessary to introduce the de�nition of a graph. A graph is a nonempty set

V of elements called vertices (vertex in singular) together with a set E of subsets of

two vertices, called edges. We will denote as V (G) and E(G) the set of vertices and

edges of a given graph G.

Normally one can draw the graphs as diagrams, representing each vertex as a dot

and every edge as an arc. For example, if an edge is the subset of vertices {u, v}

therefore the representation of that edge in the diagram is an arc that connects the dot

representing u with the dot representing v. We will refer to the diagram as the graph

itself.

Figure 2.10: Diagram of a Graph

Given a graph G, for a vertex v of G, we will de�ne the degree of v as the number of

edges in G containing v, it will be denoted as deg(v). We will also say that if an edge

e contains the vertex v then, e and v are incident to each other. If the degree of v is 1,

then v is called a leaf of G. In Figure 2.10, the vertices v1, v7, v8, v12, v14 are the leaves

of the graph.

If {u, v} is an edge of G, then u and v are adjacent vertices. Also it is said that u and

v are neighbors. An edge containing twice the same vertex is called a loop.
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Let u, v be vertices of G. A u − v walk W in G is a sequence of vertices of G that

starts in u and ends in v, such that consecutive vertices in W are adjacent in G. �e

number of edges encountered in W is the length of W. If the beginning and ending

vertices of a walk are di�erent we have an open walk, otherwise it is a closed walk.

A walk with no repeated edges is called a trail. Conversely, when the walk has no

repeated vertices is called a path. A nontrivial (with more than one vertex) closed

walk in which no edge is repeated is a circuit. And a circuit where all the vertices

(except from the ones in the extremes) are di�erent is called a cycle.

For example, in Figure 2.10, thewalk (v8, v9, v10, v11, v4, v9) is a trail. �ewalk (v12, v13, v14)

is a path. On the other hand, (v9, v10, v11, v4, v9) is a cycle.

For u, v vertices of G, we will say that u is connected to v if there exists a u− v path

inG. And the graphG is a connected graph if every two vertices ofG are connected.

�e graph of Figure 2.10, is not connected since there is no path that connects v5 and

v12.

2.3 Special kinds of graphs

We have mentioned in the de�nition of a graph that it is a collection of vertices with

a collection of subsets of those vertices called edges. We can go further and associate

a number to every edge of a graph, this number would be called a weight and the

resulting graph is called a weighted graph as the one in Figure 2.11.

Figure 2.11: Example of a weighted graph
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One can also associate a number to every vertex of the graph, this process is known as

labeling and the number of a vertex is a label. �is kind of graphs are called labeled

graphs. More information about these graphs can be consulted in [10].

Other interesting kind of graphs are the bipartite graphs. As de�ned in [9], a nontrivial

graphG is bipartite if it is possible to partition V (G) into two subsetsB andW , called

partite sets, such that every edge of G joins a vertex of B and a vertex ofW . We will

normally refer to the set B as the set of black vertices of G and W as the set of white

vertices ofG, denoted as B(G) andW (G), respectively. �e graph in Figure 2.12 is an

example of a bipartite graph.

Figure 2.12: Example of a bipartite graph

Now is time to talk about trees, a tree is a connected graph with no cycles nor loops.

An example can be seen in Figure 2.13.

Figure 2.13: Example of a tree
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An important property of the trees to take in consideration is the fact that for any pair

of vertices u, v on a tree, there exists a unique u−v path. More properties about graphs

are going to be necessary but we will discuss them as we need them.

A tree with a marked vertex is called a rooted tree. And the vertex that is marked is

known as the root of the graph. Once we have a root, we can order the graph pu�ing

the root at the top and the other vertices below it. �is will induce an order on the

graph as in Figure 2.14.

Figure 2.14: Order induced by the root on a rooted tree.

Using this order, we will de�ne that a vertex u is father of a vertex v if u and v are

adjacent and u is nearer to the root than v. In this case we will also say that v is child

of u. If two vertices v andw have the same father, those vertices are called siblings. In

Figure 2.14, v3 is father of v2, v6 is child of v5, and v8, v10 are siblings since they have

the same father v9.

A subgraph H of a graph G is a graph such that V (H) ⊂ V (G) and E(H) ⊂ E(G).

It is denoted as H ⊂ G.

�e barycentric subdivision of G, represented as sd(G), is the graph induced by G

by pu�ing an extra vertex on the medium point of every edge of G.
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Figure 2.15: A graph G and sd(G)





Chapter 3

Trivalent 2-stratifolds with trivial

fundamental group

Our objects of study are the trivalent 2-stratifolds with trivial fundamental group. As

we can recall the de�nition given on Chapter 2 is:

De�nition 3.1. A trivalent 2-stratifold with trivial fundamental group is a com-

pact, connected Hausdor� spaceX together with a �ltration ∅ = X0 ⊂ X1 ⊂ X2 = X

by a closed subspace such that X1 is a closed 1-manifold, each point x ∈ X1 has a

neighborhood homeomorphic to R × CL, where CL is the open cone on L for some

(�nite) set L of cardinality 3 and each x ∈ X2\X1 has a neighborhood homeomorphic

to R
2.

On this chapter we are going to discuss how to build the trivalent 2-stratifolds with

trivial fundamental group and how to have a useful representation of them to work

with. Most of this work was published by J. C. Gómez-Larrañaga, F. González-Acuña

and W. Heil.

3.1 Trivalent 2-stratifolds models

We know how the 2-manifolds look like, but in the case of 2-stratifolds there are few

images of them. We are going to show some pictures of the simpliest 2-stratifolds but

most of them can not be embedded in R
3 so we will need another represention for

them distinct from the picture itself.
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One of the simplest trivalent 2-stratifolds is the sphere S2 with a diskD in the interior

such that the boundary of the disk belongs to the sphere, ∂D ⊂ S2. �is stratifold will

be homeomorphic to the following stratifold:

Figure 3.1: Trivalent 2-stratifold called B111-stratifold

We will refer to each element of the family of all the 2-stratifolds homeomorphic to

Figure 3.1 as a B111-stratifold.

On the other hand, letD1, D2 be two disks and S
1 the circle, one representation of the

B12-stratifold is the result of identify ∂D1 with S1 using the identity map and ∂D2

with S1 so the boundary of D2 loops around S1 twice, as in Figure 3.2.

Figure 3.2: Trivalent 2-stratifold called B12-stratifold.

We will refer to each element of the family of all the 2-stratifolds homeomorphic to

Figure 3.2 as a B12-stratifold.

Nowwe have a representation of the two basic trivalent simply connected 2-stratifolds.

But we are interested in building all the other ones.
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3.2 Relationship between trivalent 2-stratifolds with

graph theory.

�e space X1 de�ned in De�nition 3.1 is called the 1-skeleton of X . �is 1-skeleton

contains a collection of many disjoint simple closed curves. On the other hand,X−X1

is a collection of many disjoint closed 2-manifolds without boundary.

Considered a 2-stratifold (X,X1) there exists an associated bipartite graph GX =

G(X,X1) embedded in X as de�ned in [11].

�is graph is built as follows: for each component Bj of X1, let N(Bj) ⊂ (X,X1) be

a regular neighborhood of Bj and create a black vertex bj . For each componentWi of

M = X − X1 create a white vertex wi. Create an edge that joins a white vertex wi

with a black vertex bj , for every disjoint component of S = Wi ∩ N(Bj). Note that

the number of boundary components ofWi is the number of adjacent edges of wi.

In the general case, we label the graph GX by assigning to the white vertices the

genus of their corresponding 2-manifolds (here we use Neumann’s [12] convention of

assigning negative genus to nonorientable surfaces) and by labeling the edge that joins

wi with bj by k, where k is the degree of the covering map φ|∂Wi
: ∂Wi → Bj ⊂ X1.

A covering map[13] is a surjective open function f : X → Y such that there exists

a discrete space D and for every y ∈ Y an open neighborhood U ⊂ Y , such that

f−1(U) =
⊔

d∈D

Vd ⊂ X and f |Vd
: Vd → U is a homeomorphism for every d ∈ D.

An example of the construction of this graph for a general 2-stratifold is the following:
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Figure 3.3: Example of the graph GX given X a 2-stratifold

Proposition 3.2. [7] IfX is a 2-stratifold with trivial fundamental group, then GX is a

tree, all white vertices of G have genus 0 and all terminal vertices are white.

As a consequence of this proposition, in the case of the trivalent 2-stratifols homotopy

equivalent to S2, every componentW ofX−X1 is going to have genus equal to zero,

therefore we are going to omit the step of labeling the white vertices since all of them

are going to have the label 0. Also, for every black vertex of the associated graph, the

sum of the weights of the incident edges is always going to be 3, since the 2-stratifold

is trivalent. �ere are only two options, the black vertex is either incident to two edges

where one has label 1 and one has label 2, or three edges, each of label 1.

�e graphs corresponding to the B111 and B12 2-stratifolds would be the ones in Fig-

ures 3.4 and 3.5, respectively.

Figure 3.4: Decomposition of the B111 2-stratifold and its graph
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Figure 3.5: Graph corresponding to B12 2-stratifold

�e previous graphs are the B111-tree and B12-tree formally de�ned as

De�nition 3.3. [14]

1. �e B111-tree is the bipartite tree consisting of one black vertex incident to

three edges each of label 1 and three terminal white vertices each of genus 0.

2. �e B12-tree is the bipartite tree consisting of one black vertex incident to two

edges one of label 1, the other of label 2 and two terminal white vertices each of

genus 0.

As stated in [11] if the graph associated to a 2-stratifold is a tree, then the labeled

graph determines X uniquely. Given Proposition 3.2 we have that the function de-

scribed before that builds the graphGX is inyective in our case of study. �erefore the

labeled graph GX is a characterization of X , for X a trivalent 2-stratifold with trivial

fundamental group.

3.3 Operations to build all the simply connected triva-

lent 2-stratifolds

We have now the �rst part, given a trivalent 2-stratifold with trivial fundamental

group, we have described an algorithm that builds the corresponding graph associ-

ated to that 2-stratifold.

Proposition 3.2 has a stronger version proved in [14].
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�eorem 3.4. [14] Let X be a trivalent connected 2-stratifold and the graph GX . �e

following are equivalent:

1. X is simply connected.

2. GX is a tree with all white vertices of genus 0 and all terminal vertices white such

that the components of GX − st(B) are (2, 1)-collapsible trees and the reduced

graph R(GX) contains no horned tree.

For the be�er understanding of this theorem is necessary to recall some de�nitions

from [15]. First, B denotes the union of all the black vertices of degree 3 of GX and

st(B) is the (open) star of B in GX .

A (2, 1)-collapsible tree is a bipartite tree constructed as follows:

Start with a rooted tree T (which may consist of only one vertex), color with white

and label 0 the vertices of T , take the barycentric subdivision sd(T ) of T , color with

black the new vertices (the barycenters of the edges of T ) and �nally label an edge e

of sd(T ) with 2 (resp. 1) if the distance from e to the root r is even (resp. odd). We

allow a one-vertex tree (with white vertex) as a (2, 1)-collapsible tree.

Figure 3.6: Construction of a (2, 1)-collapsible tree, where the squared vertex is the

root.

�e reduced subgraphR(GX) is de�ned for a bipartite labeled treeGX for which the

components of GX − st(B) are (2, 1)-collapsible trees. It is the graph obtained from

St(B)(the closed star of B) by a�aching to each white vertex w of St(B) that is not a

root, a B12-tree as the one in Figure 3.5, such that the terminal edge has label 2.
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Figure 3.7: Construction of a reduced subgraph, where the squared black vertices are

the setB and the squared white vertices are the roots of the (2, 1)-collapsible trees of
GX − st(B).

And last one, a horned tree is a bipartite tree constructed as follows:

Start with a tree T that has at least two edges and all of whose not terminal vertices

have degree 3. Color a vertex of T white (resp. black) if it has degree 1 (resp.3). Trisect

the terminal edges of T and bisect the not terminal edges, obtaining the graph HT .

Color the additional vertices v so that HT is bipartite, that is, v is colored black if v is

a neighbor of a terminal vertex ofHT and white otherwise. �en label the edges such

that every terminal edge has label 2, every not terminal edge has label 1.

Figure 3.8: Construction of a horned tree

Now we can notice that not all the bipartite trees with all white vertices of genus 0, all

terminal vertices white and edges labeled with 1 or 2 come from a simply-connected

trivalent 2-stratifold.

De�nition 3.5. We will say that a weighted graphG is a trivalent-stratifold graph

if it comes from a simply-connected trivalent 2-stratifold X .

In [15], it is proven that with a recursive algorithm that consists of only three opera-

tions one can build every trivalent-stratifold graph. At the end of this section we are

going to enunciate that result but �rst we need to describe the graph operations that

are going to be needed.
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Every operation is described in terms of how it modi�es the trivalent-stratifold graph,

but it has the corresponding action in terms of how it a�ects the trivalent 2-stratifold

associated to the graph.

ConsiderG a bipartite trivalent-stratifold graph, letw be awhite vertex and r1, r2, ..., rn

be the edges incident to w (n ≥ 0) and let bi the black vertex incident to ri (1 ≤ i ≤ n).

De�nition 3.6 (OperationO1). Let 0 ≤ k ≤ n. A�ach one white vertex of a B111-tree

to w, cut o� bk+1, bk+2, ..., bn from w and a�ach them to another white vertex of the

B111-tree.

Figure 3.9: Operation O1 with k 6= n

As pictured in Figure 3.9, consider the 2-stratifold X we can consider the 2-manifold

corresponding to w in X and a closed curve in the interior of that surface, call it

C , that separates the curves C1, C2, ..., Ck from Ck+1, Ck+2, ..., Cn corresponding to

b1, b2, ..., bk and bk+1, ..., bn respectively. Applying the operation O1 consists on at-

taching a disk to X with its boundary equal to C .
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One can simply choose k = n, then the operation O1 looks like simply a�aching a

B111-tree to one white vertex of w. We will refer to this case as apply operation O1

on w. In case that we choose k 6= n we will specify that operation as operation O1

with k on w

�is operation is equivalent to a�aching a dome to a component of X − X1 along a

closed curve. As in Figure 3.10.

Figure 3.10: Operation O1 simple

It is easy to prove that ifX is simply connected, the operationO1 does not change the

fundamental group. And as a consequence we have the next theorem.

�eorem 3.7. [15] LetX be a trivalent 2-stratifold such that each edge of GX has label

1. �en the following statements are equivalent:

1. X is simply connected.

2. GX is a tree (containing at least one black vertex) with all white vertices of label 0

and all terminal vertices white.

3. GX can be constructed from the B111-tree by successively performing operationO1.

Now we can proceed to de�ne operation O2. Using the same terminology as before.
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De�nition 3.8 (Operation O2). A�ach a B12-tree to a white vertex w so that the

terminal edge has label 1.

Figure 3.11: Operation O2

As in the case of operation O1, the operation O2 does not change the fundamental

group of the 2-stratifold.

�e last operation, operation 01∗, allows us to merge two di�erent 2-stratifolds on one.

Let G1 and G2 be two disjoint trivalent-stratifold graphs and w1, w2 be white vertices

of G1 and G2, respectively.

De�nition 3.9 (Operation O1∗). A�ach a B111-tree to G1 ∪G2 so that w1 and w2 are

identi�ed with two distinct white vertices of the B111-tree.
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Figure 3.12: Operation O1∗

For the associated spaces X1, X2, the operation O1∗ identi�es a whole disk on the in-

terior of X1 with a whole disk in the interior of X2. �erefore, this operation does

change the fundamental group and the resulting 2-stratifold has fundamental group

isomorphic to π1(X1) ∗ π1(X2). If both spaces X1, X2 are simply connected, the re-

sulting space would be simply connected as well.

By �eorem 3.4, and how the operations O1, O2 and O1∗ are de�ned, we can assure

that the resulting graph of applying any of this operations to a trivalent-stratifold

graph is a trivalent-stratifold graph. �is is because none of the operations changes

the fundamental group and adding B111 or B12-trees maintains the conditions on the

second part of the theorem.





Chapter 4

�e collection of trivalent-stratifold

graphs

On the previous chapter we have described how to model every simply connected

trivalent 2-stratifold as a graph and also how to get more from one that we already

know is a trivalent-stratifold graph.

�e next question is: Is that enough? On this chapter we are going to show the su�-

cient and necessary conditions to build all the trivalent-stratifold graphs. And we are

going to talk about some of their properties.

4.1 �e collection G

De�nition 4.1. Wewill de�ne G as the collection of all the graphs that can be obtained

from a single white vertex by successively applying operations O1, O2 and O1∗.

Since applying operationO1 andO2 to a white vertex gives us the B111-tree and B12-

tree and it was stated before that the operations do not change the fundamental group,

all the elements of G are trivalent-stratifold graphs.

�eorem 4.2. [15] Let X be a trivalent 2-stratifold. �en X is simply connected if and

only if GX ∈ G.

�is result was �rst proven in [15], but here we are going to follow a slightly di�erent

proof. Nevertheless, we will de�ne some notation �rst.

29
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Given a trivalent-stratifold graph Γ we will denote as O1(Γ) (resp. O2(Γ)) to the set

of all trivalent-stratifold graphs obtained by applying the operation O1 (resp. O2) to

any white vertex of Γ.

Let A be a set of trivalent-stratifold graphs, we will denote

O1(A) =
⋃

Γ∈A

O1(Γ) and O2(A) =
⋃

Γ∈A

O2(Γ)

On the other hand, for two trivalent-stratifold graphs Γ1 and Γ2 we will denote Γ1 ∗Γ2

as the set of all trivalent-stratifold graphs resulted by choosing every pair of white

vertices conformed by a vertex u1 ∈ Γ1 and a vertex u2 ∈ Γ2 and applying operation

O1∗ to Γ1 and Γ2 on u1, u2.

Consider A1 and A2 two set of trivalent-stratifold graphs, we will write

A1 ∗ A2 = {Γ1 ∗ Γ2 : Γ1 ∈ A1 and Γ2 ∈ A2}

Since all the operations O1, O2 and O1∗ are performed on white vertices, it is natural

to think in the number of white vertices of a trivalent-stratifold graph as a way of

classi�cation. So we are going to analyze how the operations a�ect the number of

white vertices of the graphs.

Remark 4.3. For Γ a trivalent-stratifold graph, with k white vertices:

1. Applying operation O1 to any white vertex of Γ results in a trivalent-stratifold

graph with k + 2 white vertices.

2. Applying operation O2 to any white vertex of Γ results in a trivalent-stratifold

graph with k + 1 white vertices.

In the case of operation O1∗:

Remark 4.4. Consider Γ1 and Γ2 two trivalent-stratifold graphs, with k1 and k2 white

vertices, respectively. �e resulting graph of applying operation O1∗ to any pair of

white vertices u, v of Γ1,Γ2, would have k1 + k2 + 1 white vertices.

An advantage of using the number of white vertices instead of the number of black

vertices is the fact that for the tree operations the number of black vertices increases on

1, but the increase on number of white vertices is di�erent depending on the operation.
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As a result of the remarks one can notice, that use any of the previous operations

increase the number of white vertices of the original graph.

Starting with one white vertex, the least increase possible is one white vertex, using

operationO2. �erefore the simplest trivalent-stratifold graph is the B12-tree that has

2 white vertices and is the only one with that number of white vertices.

De�nition 4.5. Let Gi be the set of all the trivalent-stratifold graphs with i white

vertices, for i ≥ 2. We will de�ne G1 = ∅.

By the previous remark G2 = {B12 − tree}. Starting with one white vertex, using

operation O1, we can increase the number of white vertices by 2, obtaining the B111-

tree, also we can use operation O2 on each of the white vertices of the B12-tree to

obtain another 2 di�erent graphs with 3 white vertices. �erefore G3 = {B111 −

tree, O2(G2)}.

Figure 4.1: G2 and G3

Nowwe have all the tools to build the collection G of all the trivalent-stratifold graphs.

�eorem 4.6. [16] For any n an integer greater than 3.

Gn = O1(Gn−2) ∪O2(Gn−1) ∪

{

n−3
⋃

m=2

Gm ∗ Gn−m−1

}

(4.1)

And G = ∪∞

n=2Gn

Before giving the proof of this theorem we need to prove the following lemmas.

Lemma 4.7. [16] Let G be a trivalent-stratifold graph, there exists at least one leaf w of

G such that the weight of the incident edge is 1.
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Proof. First, notice that for B12 and B111-tree there existsw a leaf such that the weight

of the adjacent edge to w is 1.

Let G be a trivalent-stratifold graph, if we perform O1 in one of its vertices, we are

a�aching a B111-tree by one of its white vertices, le�ing 2 white vertices incident to

edges with weight 1 be leaves of G.

On the other hand, if we perform O2 in one of the vertices of G, we are a�aching a

B12-tree to it by the only white vertex whose incident edge weight is 2, leaving the

white vertex incident to the edge with weight 1 as a leaf of G.

Finally, if we performO1∗ onG and other graph, by de�nition we take a B111-tree and

a�ach one white vertex to G, one to the other graph and the last one is free, which is

the leaf whose incident edge has weight 1.

We have proven that applying any of the valid operations on a trivalent-stratifold

graph leaves us with a graph such that it has a leaf w with incident edge of weight

1. Because of �eorem 4.2, given that every trivalent-stratifold is the result of apply-

ing successive operations on a white vertex then the lemma is true for any trivalent-

stratifold on G.

Lemma 4.8. Given any trivalent-stratifold graph, the operation of erasing any black

vertex with its incident edges results on two or three disconnected components that are

either white vertices or a trivalent-stratifold graph.

Proof. Let Γ be a trivalent-stratifold graph. By �eorem 4.2, Γ can be obtained from

applying a succession of operations O1, O2, O
∗

1 to a white vertex. We can notice that

each of this operations adds a unique black vertex to the previous graph. And that

previous graphwas part of G, because it was the result of applying the valid operations,

therefore it was a trivalent-stratifold graph.

And since the following operations are performed on white vertices, it’s equivalent to

performing them on a single white vertex. �erefore when you erase the black vertex

that is connecting them the disconnected components can be obtained as a succession

of operations O1, O2, O
∗

1 to a white vertex or a single white vertex.

Now we can proceed with the proof of the �eorem 4.6.
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Proof. By de�nition G = ∪∞

n=1Gn. Let n be an integer greater than 3. �rough the

Remarks 4.3.1, 4.3.2 and 4.4 it is clear that

O1(Gn−2) ∪O2(Gn−1) ∪

{

n−3
⋃

m=2

Gm ∗ Gn−m−1

}

⊂ Gn

Now we will prove the reverse contention.

Let G be a trivalent-stratifold graph with n > 3 white vertices and w a leaf of G such

that the edge incident to it has weight 1, it exists by Lemma 4.7 and it is white. Let b

the black vertex adjacent to w. If b has degree 2, let v be the other vertex adjacent to

b, when we erase the vertices w, b we get a new graph G′ with n − 1 white vertices

such that a�er performing O2 on G′ in the vertex v we get G and due to the number

of vertices of G′ we have G′ ∈ Gn−1.

If b has degree 3, then b is part of a B111-subtree, let v1 and v2 the vertices adjacent to

b di�erent from w. Without loss of generality, suppose that v1 has degree 1, when we

erase the vertices w, b, v1, we get a new trivalent-stratifold graph G′ with n− 2 white

vertices such that a�er performing operation O1 on v2 the result is G and due to the

number of vertices of G′ we have G′ ∈ Gn−2.

On the other hand if neither v1 nor v2 have degree 1, when we erase the vertices b and

w we get two trivalent-stratifold graphs H and H ′ such that the sum of their white

vertices is n − 1. We can assume that v1 ∈ H and v2 ∈ H ′. �e result of applying

H ∗H ′ on v1 and v2 is the graph G. Since H,H ′ ∈ G we have that H ∈ Gj , H
′ ∈ Gk

for some j, k such that j+ k = n− 1. Since all the trivalent-stratifold graphs are trees

we can assure that H and H ′ are disjoint.

Since these are all the cases we can conclude that the equality is true. And the set Gn

can be constructed as stated on the Equation 6.1.

4.2 Graph isomorphisms

On the case of trivalent-stratifold graphs with 2 or 3 white vertices there is no ambi-

guity on how to obtain them. But when you want to have four or more white vertices

there are more than one way to obtain some graphs. For example the result of ap-

plying operation O2 on any white vertex of the B111-tree and the result of applying
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operation O1 on the white vertex incident to the edge with weight 2 of the B12-tree

result in the same graph.

We have not de�ned what “the same graph” means, but intuitively it means that the

graphs look the same. �ey have the same number of vertices and edges and the edges

have the same weight. �e importance of detecting when two graphs are the same lies

on the fact that two graphs are the same if and only if they come from the same trivalent

2-stratifold. �erefore if we want to classify the trivalent 2-stratifolds is important to

identify and eliminate repetitions.

Now we are going to properly de�ne what “the same graph” means, formally we will

describe them as isomorphic graphs.

De�nition 4.9. Twoweighted treesG andH are isomorphic if there exists a bijective

function φ : V (G) → V (H) such that two vertices u and v are adjacent in G if and

only if φ(u) and φ(v) are adjacent in H . And for every edge, u − v in G, the edge

φ(u) − φ(v) in H has the same weight as u − v. If there is no such function φ as

described above, then G and H are nonisomorphic trees. (De�nition from [9])

De�nition 4.10. Two trivalent-stratifold graphsG andH are isomorphic as trivalent-

stratifold graphs if there is an isomorphismφ asweighted graphs such that, ifB(G), B(H)

are the set of black vertices of G,H and W (G),W (H) are the sets of white vertices

of G,H the functions φ|B(G) : B(G) → B(H) and φ|W (G) : W (G) → W (H) are

bijective.

Lemma4.11. [16] Any two trivalent-stratifold graphs are isomorphic as trivalent-stratifold

graphs if and only if they are isomorphic as weighted trees.

�e isomorphism of trivalent-stratifold graphs is really useful as an equivalence rela-

tion, because every trivalent-stratifold graph is uniquely associated with a 2-strati�ed

space. �erefore if we can count and classify the trivalent-stratifold graphs up to iso-

morphism, we would have a complete classi�cation for the 2-strati�ed spaces with

trivial fundamental group which is the main goal.

But as we have said, for some graphs there are more than one way to build them using

the valid operations. So we need an invariant that identi�es the graphs and doesn’t

depends on the operations.
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4.3 Trivalent-stratifold graphs as rooted trees.

In order of being able of identify di�erences between two graphs, we need to give them

an order and on Section 2.3 we have mentioned that given a tree, selecting a vertex as

its root induces an order to the graph.

We would like to apply this knowledge to the trivalent-stratifold graphs using the fact

that they are trees. But the new query is: How to choose the root? For answering this

question we will need the following de�nitions.

De�nition 4.12. Let v be a vertex of a graph G, its eccentricity e(v) is the length

(without weights) of the largest path from v to another vertex in G. �e radius of G,

rad(G) is the smallest eccentricity among the vertices ofG. For any vertex v, such that

e(v) = rad(G) we say that u is the center ofG. Finally the diameter ofG, diam(G),

is the maximum eccentricity among the vertices of G.

�eorem 4.13 (Existence of the center). [16] LetG be a trivalent-stratifold graph, there

always exists c center of G.

Proof. Let v a vertex ofG outside of a diametrical path ofG, sinceG is a tree, it is true

that e(v) > diam(G)/2, because if you consider the distance from v to the ends of the

diameter, one of them must be longer than half of the diameter.

On the other hand if we look at the diameter ofG, both ends of it must be leaves which

implies that both of them are white. We know that G is bipartite, so the length of the

diameter is even and it has a unique vertex in the middle. Such vertex would be the

center of G.

�is result assure us that using the center of the trivalent-stratifold graph as its root

avoids ambiguities. �e importance of this lies on the fact that two isomorphic trees

could be not isomorphic as rooted trees. For example Figure 4.2.

Figure 4.2: �is is an example of two isomorphic trees that aren´t isomorphic as

rooted trees. On each tree, we marked in bold black the root.
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�e next step is use the order induced by the root to identify di�erences between

trivalent-stratifold graphs.



Chapter 5

String Representation

We have explained how trivalent 2-stratifolds with trivial fundamental group can be

identi�ed as rooted trivalent-stratifold graphs in a unique way. Now we will use this

representation to identify repetitions on the process of generating all the trivalent-

stratifold graphs. On this chapter we will focus on create a characterization that iden-

ti�es isomorphic trivalent-stratifold graphs in a reasonable amount of time, computa-

tional speaking.

As explained on the previous chapter, generating the collectionG is an iterative process

that uses the sets Gn. And generate a set Gn implies an exhaustive application of a

speci�c operation to every white vertex of a previous set Gi (for 2 ≤ i ≤ n− 1). �is

process creates a lots of repetitions, some of them from the application of the same

operation to di�erent vertices, others from the application of two completely di�erent

succession of operations in the right vertices.

For example, the trivalent-stratifold graph in Figure 5.1 can be obtained in at least 4

di�erent ways and it only has four white vertices.

Figure 5.1: Operations generating isomorphic graphs.
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5.1 �e problem explained

We have de�ned a graph as a set of vertices together with a set of edges. In this case we

are not naming neither the vertices nor the edges, because we are only interested on

identifying the trivalent 2-stratifolds with trivial fundamental group without counting

the isomorphisms.

On simple graphs, one can identify by eye if two of them are isomorphic or not. By

the de�nition of isomorphic trivalent-stratifold graphs there are some observations that

are useful to identify if two trivalent-stratifold graphs are not isomorphic. For exam-

ple, the number of white vertices, the number of black vertices, the number of edges

with weight 2 and weight 1, the length of the longest and shortest path, among other

things. �e issue is that two graphs can match on all this characteristics but don’t be

isomorphic. We can see an example in Figure 5.2.

Figure 5.2: Two almost isomorphic graphs

When two trivalent-stratifold graphs match on all the previous characteristics but are

not isomorphic, is normally because in one of the graphs at least one B12-subtree of

the graphs has the weights of its edges on the inverse order from the other graph as

seen in Figure 5.2. On big trivalent-stratifold graphs with many vertices, this subtle

di�erences are di�cult to identify, even having the graphic representation of the graph.

Now talking from a computational perspective, the computer does need to name the

vertices and the edges. So it’s not that simple to build the trivalent-straifold graph iso-

morphism as it is build it by hand. Because the �rst vertex of a graph can be equivalent

to the third one of other graph, but without a renaming of the vertices, the computer

can overlook this equivalence. �at’s why it is needed and algorithm that can build

this isomorphism with lack of ambiguity, in case it exists.
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5.2 �e AHU algorithm

�eAHU algorithm is a known algorithm that allows us to identify if two not weighted

rooted trees with n vertices are isomorphic in O(n) time. �e time means that it’s

lineal only depending on the number of vertices of the trees, which is considered a fast

algorithm. �e AHU algorithm was proposed on the book �e Design and Analysis of

Computer Algorithms [17] and its named by the initials of its authors Aho, Hopcro�

and Ullman.

�e original algorithm presented by Aho, Hopcro� and Ullman is the Algorithm 1.

Algorithm 1 Original AHU Algorithm(T1:rooted tree, T2:rooted tree)

Given two rooted not weighted trees T1, T2;

1. Assign to all leaves of T1 and T2 the integer 0.

2. Inductively, assume that all vertices of T1 and T2 at level i−1 have been assigned
integers. Assume L1 is a list of the vertices of T at level i − 1 sorted by not
decreasing value of the assigned integers. Assume L2 is the corresponding list
T2.

3. Assign to the not leaves of T1 at level i a tuple of integers by scanning the list
L1 from le� to right and performing the following actions: For each vertex v
on list L1 take the integer assigned to v to be the next component of the tuple
associated with the father of v. On completion of this step, each not leaf w of T1

at level i will have a tuple (i1, i2, . . . , ik) associated with it, where i1, i2, . . . , ik
are the integers, in not decreasing order, associated with the sons of w. Let S1

be the sequence of tuples created for the vertices of T1 on level i.

4. Repeat the previous step for T2 and let S2 be the sequence of tuples created for
the vertices of T2 on level i.

5. Sort S1, S2 using lexicographical order. Let S
′

1 and S
′

2 be the sorted sequences of
tuples.

6. If S ′

1 and S
′

2 are not identical, then halt; the trees are not isomorphic. Otherwise,
assign the integer 1 to those vertices of T1 on level i represented by the �rst
distinct tuple onS ′

1, assign the integer 2 to the vertices represented by the second
distinct tuple and so on. As these integers are assigned. Append to the front of
L1 all leaves of T1 on level i. Let L2 be the corresponding list of vertices of T2.
�ese two lists can now be used for the assignment of tuples to vertices at level
i+ 1 by returning to step 3.
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Here is an example of the application of this algorithm

Figure 5.3: AHU Algorithm Applied

�e great advantage of this algorithm is that for two trees it is really fast as I already

mentioned. But for the problem that we are working on, it would be necessary to
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compare every set of two trivalent-stratifold graphs with the same number of vertices

in order to separate the 2-stratifolds that are not isomorphic. But also the algorithm

doesn’t give you a way to identify each graph a�er applying it.

An algorithm that uses the original idea of the authors Aho, Hopcro� and Ullman

of comparing the trees by level is the assignation of Knuth tuples, also known as

parenthical tuples, proposed by Donald E. Knuth on the volume 4, fascicle 4, of his

serie�e Art of Computer Programming [18]. He points out the relationship that exists

between the rooted trees and the nested parenthesis. More over, he states an algorithm

that allows to identify every rooted tree with a unique string of nested parenthesis.

�e algorithm that assigns the Knuth tuples is the following:

Algorithm 2 Assigning Knuth Tuples(T :Rooted tree)

1. Set the tuple () for every leaf of the tree.

2. Inductively assume that all vertices of T at level i − 1 have a string of nested
parenthesis assigned.

3. Given a vertex v at level i, not leave of T . LetL be the tuple of nested parenthesis
of the vertices of T that are children of v at level i− 1.

4. Let L′ be the sorted sequence of the elements of L using lexicographical order.

5. �e string of v is the tuple L′ nested on parenthesis, as (L′).

6. Return to step 2 until all the vertices have an assigned string.

Here is an example of the application of this algorithm:
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Figure 5.4: Assignation of Knuth Tuples

On 1991, Campell and Radford [19] suggested a modern version of this algorithm

where they proposed to use the number “1” instead of the opening parenthesis “(”; and

the number “0” instead of the closing parenthesis “)”. Generating a string of numbers

that represents in a unique way each rooted not weighted tree. �is is the algorithm

commonly known as the AHU algorithm. Here is the pseudo-code on Algorithm 3

and an example can be seen in Figure 5.5

Algorithm 3 AHU(v: vertex)

if v is childless then
Give v the tuple name “10”

return “10”
else

Set L = ∅
for all w child of v do

tag = AHU(w);
Append tag to L

end for

Sort L using binary order
Set temp = Concatenation of tags in L
Give v the tuple name “1temp0”

end if
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Figure 5.5: Example of labels given by running the AHU to a rooted tree

Based on this idea, we thought that this algorithm could be applied to our problem

with a few modi�cations. Taking into account that we needed to identify the weights

of the edges on the �nal string.

5.3 Characterizing weighted trees with a string

One fundamental property that is necessary to apply the AHU Algorithm is that the

tree must have a root. �is is important because this gives you an order of the tree.

Because the root is the vertex at the top and then the other vertices are arranged by

levels.

Since the trivalent-stratifold graphs can be seen as rooted trees, something important

to say is that (except for the root) every vertex has a unique father, even when some

fathers have more than one child. �e AHU algorithm result is obtained from the

bo�om to the top (being the root the top of the tree), this is the same as saying that

the algorithm is a result of going from child to father. During the application of the

AHU Algorithm, given a vertex v, we will say that a change of level is when you pass

from the children of v to v when applying the algorithm.

On the Algorithm 3 when assigning a tuple to a vertex, the process consist on taking

the tuples of its children, sort them andwrite them between a 1 and a 0. In our proposal,

instead of writing a 1 and a 0 for every vertex, one must check which is the weight of

the edge that connects this vertex to its father. Since this edge is unique, there’s no

place to ambiguity.

�e trivalent-stratifold graphs only have two type of edges, edges with weight 1 and

with weight 2. �erefore we only need two di�erent ways of represent the weights.



44

We decided that if the edge connecting the vertex to its father had weight 1 it would

be represented with ‘01’ and if it had weight 2 it would be represented with ‘23’. �e

pseudo-code of this modi�cation is Algorithm 4.

Algorithm 4 AHU-modi�ed(v:vertex)

if v is childless then
if v has no father or Weight[v, father(v)] = 1 then

Give v the tuple name “01”;
else

Give v the tuple name “23”;
end if

return�e tuple name of v
else

Set L = ∅
for all w child of v do

tag = AHU-modified(w);
Append tag to L

end for

Sort L using base four order
Set temp = Concatenation of tags in L
if v has no father or Weight[v, father(v)] = 1 then

Give v the tuple name “0temp1”;
else

Give v the tuple name “2temp3”;
end if

return �e tuple name of v
end if

�is algorithm stills run inO(n) time, in other words, it is linear. And for every rooted

trivalent-stratifold graph, when this algorithm is applied to the root it would return a

string or tuple which uniquely identi�es the graph.

On the previous chapter, we have proved that every trivalent-stratifold graph has a

center and de�ning this center as the root would lead us to a unique representation of

the trivalent-stratifold graph as a rooted tree.

De�nition 5.1. Given a trivalent-stratifold graph G we call the output of applying

Algorithm 4 to the center of G as the string representation of G.

�eorem 5.2. Given two trivalent-stratifold graphs, they are isomorphic if and only if

they have the same string representation.

By Algorithm 4 we know that for every trivalent-stratifold graph there exists a unique

string representation of it. We are only missing that given a string representation
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it builds a unique trivalent-stratifold graph. �is two parts will give us a bijection

between the trivalent-stratifold graphs and the string representations. Let’s notice

that Algorithm 5 builds a trivalent-stratifold graph from a string representation.

Algorithm 5 String to TG(S: string, father: vertex)

if father is NONE then

Draw a vertex v;
State father as v;

end if

if �e �rst element of S is 0 then
Set Close as 1;

else

Set Close as 3;
end if

Set i as 2
while�e i-th element of S is di�erent from Close do

if �e i-th element of S is 0 then
Draw a vertex w connected to father with weight 1;

else

Draw a vertex w connected to father with weight 2;
end if

Set P as the string S without its �rst element;
Set i = String to TG(P, w) + 2;

end while

return i;

Since the Algorithm 4 de�nes an injective function from the rooted trivalent-stratifold

graphs to the string representations and the Algorithm 5 de�nes its inverse function,

the �eorem 5.2 is proven.

Now we have a unique way to represent every trivalent-stratifold graph that the com-

puter can easily recognize. �is would be helpful during the implementation of the

algorithm that builds all the trivalent-stratifold graphs because it would help us to

erase the repetitions of graphs.

Both algorithms can be extended for n-colored trees in general, also it can be extended

for trees with a greater amount of weights, it is only needed to add more labels to

identify the di�erent weights.





Chapter 6

Computational Implementation

Wehave so far explained the theory that is necessary to build and count all the trivalent-

stratifold graphs without isomorphisms. On this chapter we will explain the pseudo-

code that is necessary to implement this algorithm as a program.

Dr. Jesús Rodrı́guez Viorato and I implemented this program on Python. �e com-

plete code can be found on https://github.com/MyHerket/Trivalent

StratifoldsGraphs [20]. �is program was implemented using the classes cre-

ated by Yair Hernández [21] as a base.

6.1 StringRepresentation of aTrivalent-StratifoldGraph

On Chapter 4 we have proven that the center of every trivalent-stratifold graph exists.

But we haven’t proposed a way to obtain it. In [17] pages 176 to 179, Aho, Hopcro� and

Ullman describe the algorithm Depth-�rst search whose purpose is to �nd the largest

path in a tree. It is proven that the number of operations that this algorithm needs

to �nish is the maximum number between the number of vertices and the number of

edges of the tree. �is is helpful because that means that the algorithm is linear, just

as the AHU Algorithm and its modi�cations.

�e algorithm Depth-�rst search visits every vertex going deeper on each branch be-

fore continuing to another branch. Here is the pseudo-code of the algorithm presented

by Aho, Hopcor� and Ullman.
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https://github.com/MyHerket/Trivalent_Stratifolds_Graphs
https://github.com/MyHerket/Trivalent_Stratifolds_Graphs
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Algorithm 6 Depth-�rst search(v:vertex)

if v is childless then return v
else

Set length = 0 and longestPath = ∅
for all w child of v do

Set path =Depth-first search(w) and L as the length of path.
if L > length then

Set length = L and longestPath = path
end if

end for

return v ∪ longestPath
end if

By applying the algorithm twice, one on any vertex and the second one on the begin-

ning of the longest path found, we can assure that we will �nd the longest path of the

tree, also de�ned as the diameter of the tree. Since the middle vertex of the diameter

is the center of any trivalent-stratifold graph, this is an excellent way of �nding the

vertex that would be root of the trivalent-stratifold graph.

�erefore, the algorithm to �nd the center of a trivalent-stratifold graph is the Algo-

rithm 7.

Algorithm 7 center(G: trivalent-stratifold graph)

Set v a vertex of G
Set longestPath =Depth-first search(v)
Set w as the last vertex of the path longestPath.
Set longestPath =Depth-first search(w)
Set center as the middle vertex of longestPath
return center

To prove that we can �nd a diameter with two runs of DFS or Depth-�rst Search algo-

rithm we proceed as follows. Given a treeGwith center c, let v a vertex ofG. Running

the �rst DFS algorithm from v would give us the longest path from v to any other ver-

tex, let w be the end of this path. It is known that w would be the end of a diameter

of G. �en, running the second DFS algorithm from w would give us the longest path

from w, which is also the diameter of G. �is proof relies in the fact that for every

pair of vertices in a tree, there exists a unique path that connects them. �is property

of uniqueness and existence lead us to the fact the a�er applying the DFS algorithm

from any vertex, we would end in the end of a diameter.
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�e Algorithm 7 runs in twice the number of operations that the Algorithm 6 needs

plus a constant. As we have said Algorithm 6 runs in linear time, meaning that Algo-

rithm 7 is linear as well.

Now that we have found a fast way to �nd the center of any trivalent-stratifold graph

and turn it into a rooted trivalent-stratifold graph. By applying Algorithm 4 to a rooted

trivalent-stratifold graph, we can obtain its string representation that uniquely iden-

ti�es the graph.

�e complete pseudo-code of this sequence of steps is the Algorithm 8 whose output is

the string representation of the graph and the Figure 6.1 is a visual example of applying

this algorithm.

Algorithm 8 TG to string(G: trivalent-stratifold graph)

Set c as the output of center(G);
Set c as the root of G.
AHU-modified(c);
return the tuple name of c;

Figure 6.1: Generating the string representation given a trivalent-stratifold graph.

�e squared vertex is the center of the graph.
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6.2 �e collection G

On Chapter 4 we have de�ne the sequence of steps to build the collection G of all the

trivalent-stratifold graphs. But computational speaking we need to build the collec-

tions Gm one by one. In other words, we can only build a �nite amount of trivalent-

stratifold graphs.

We need to recall some de�nitions from Chapter 4.

1. �e B111-tree is the bipartite tree consisting of one black vertex incident to

three edges each of label 1 and three terminal white vertices each of genus 0.

2. �e B12-tree is the bipartite tree consisting of one black vertex incident to two

edges one of label 1, the other of label 2 and two terminal white vertices each of

genus 0.

�e pseudo-code of the implementation of �eorem 4.6, which states how to build the

collection G, is the Algorithm 9.

�eorem 4.6 For any n an integer greater than 3.

Gn = O1(Gn−2) ∪O2(Gn−1) ∪

{

n−3
⋃

m=2

Gm ∗ Gn−m−1

}

(6.1)

And G = ∪∞

n=2Gn

On Algorithm 9 there are some steps that are “add the graph to the list if the graph

is not already there”. In order to identify if the graph is on the list or not, we used

an object class that allows us to save the string representation of the graph. Once we

obtain the new graph that we wanted to add to the list, we ran the Algorithm 8 to get

the string representation and then used a hash, function se�ing the string as the key,

to optimize the identi�cation of repeated graphs.
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Algorithm 9 Construct TG(m:integer)

Create Complete list a list withm− 1 empty lists;
Set the B12-tree as the �rst element of Complete list[0];
Set the B111-tree as the �rst element of Complete list[1];
for all w white vertex of B12-tree do

Set Γ as the result of applying O2 to the B12-tree in the vertex w;
Add Γ to Complete list[1];

end for

for n in [3,m] do
for all g graph in Complete list[n− 2] do

for all w white vertex of g do

Set Γ as the result of applying O2 to g in the vertex w.
Add Γ to Complete list[n− 1] if it’s not already there.

end for

end for

for all g graph in Complete list[n− 3] do
for all w white vertex of g do

Set Γ as the result of applying O1 to g in the vertex w.
Add Γ to Complete list[n− 1] if it’s not already there.

end for

end for

for i in [0, n− 1] do
if n− i− 4 ≥ 0 then

for all pair (u, v) where u is a white vertex of a graph in
Complete list[i], v is a white vertex of a graph in Complete list[n− i− 4] do

Set Γ as the output of applying O1∗ using the vertices u, v;
Add Γ to Complete list[n− 1] if it’s not already there.

end for

end if

end for

end for

A�er running the program in Python for 11 white vertices we could count the number

of graphs created and the number of graphs without isomorphism (labeled as total).

�e following table shows the results of this process. �e numbers labeled as created

is the total number of graphs created a�er applying the steps on �eorem 4.6.
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n Total Created

2 1 1
3 3 3
4 6 11
5 18 37
6 51 150
7 167 573
8 551 2267
9 1954 8997
10 7066 36498
11 26486 149708

Table 6.1: Number of distinct graphs we got for each value n (the number of white

vertices) and the number of graphs that were created to construct them all.

Even when the algorithms used on this process run in linear time, they depend on

the number of vertices of the graphs. And as the number of white vertices grow, the

number of black vertices grow as well. Also the number of graphs grow exponentially,

that’s why evenwhen the algorithm is ‘good and fast’ we can’t run it for a large amount

of white vertices. �e memory on the computer won’t allow us.

6.3 More optimization

We have mentioned that there are some operations that lead us to the same graph.

One example of this is �gure 5.1 where the same operation on 3 di�erent vertices of

the same graph lead us to the same result.

�is phenomenon occurs because of the autosymmetries of the graph that we are

working on.

De�nition 6.1. Given G a rooted trivalent-stratifold graph, we say that two vertices

u, v ∈ G are symmetric if there exists an automorphism φ : G → G (as rooted

weighted graphs) such that φ(u) = v.

We can notice that given a rooted trivalent-stratifold graph, two vertices are symmetric

if they have the same string representation. Because the string representation of any

vertex depends solely on the descendants of it. Also it is necessary that the fathers of

both vertices are symmetrical as well or that they are the same vertex. Both of this

observations imply that the process of detecting symmetrical vertices can be iterated
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recursively, being successful when the fathers of the two vertices coincide or having

failed in other case.

We used this idea in order to detect symmetrical vertices while building the collection

G to avoid the repetitions of applying the same operation to symmetrical vertices. And

this reduced the number of generated graphs by around 20% as we can see on Table

6.2.

n Created Reduction

4 11 0,00%
5 32 13,51%
6 122 18,67%
7 467 18,50%
8 1781 21,44%
9 7099 21,10%
10 28852 20,95%
11 119168 20,40%

Table 6.2: Number of created graphs a�er considering symmetrically distinct white

vertices.

One can try other ways of optimizing the algorithm but because the number of ele-

ments on the collections Gn grow exponentially the algorithm would still run in expo-

nential time.

6.4 Search Engine for Trivalent-Stratifold Graphs

As a result of the implementation of the program on Python, Dr. Rodrı́guez-Viorato

and I were able to draw every trivalent-stratifold graph with 10 or less white vertices.

And uploaded the images on a search engine for future consultation.

�is search engine is hosted athttp://trivalent-stratifolds.com [22].

And has the following home screen:

http://trivalent-stratifolds.com
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Figure 6.2: Home screen of the Search Engine for Trivalent-Stratifold Graphs

To have the general idea of the shape of the graph we conclude that the number of

leaves, white and black vertices were important. Also, the length of the largest and

shortest leaf paths of the graph. �at’s why include this information on the search

engine.

On the search engine, we identify every graph with a unique tag, this tag is di�erent

from the string representation because for graphs with a great number of vertices this

string can be really long and also it doesn’t gives you a lot of information by itself

without building the graph. On the other hand, the tag gives you the characteristics

mentioned on the previous paragraph.

Given a graph G, denote W (G), B(G), L(G) the sets of white vertices, black vertices

and leaves of G, respectively.

�e tag of G has the following structure:

tag(G) = [ |W (G)|, |B(G)|, |L(G)|, length(shortest leaf path(G)), length(largest leaf

path(G)), ID number(G)]

where | · | is the size of the set ·.

On Chapter 5 Section 5.1, we mentioned that even when two graphs have the same

values on the �rst �ve characteristics of the tag, the trivalent-stratifold graphs could

be not isomorphic because of the distribution of weights on the edges. �at’s why we

need the sixth value that is an ID number.
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�e ID number is assigned as follows. For every set

A = {G :






















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










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











G is a trivalent-stratifold graph,

|W (G)| = a1,

|B(G)| = a2,

|L(G)| = a3,

length(shortest leaf path(G)) = a4 and

length(largest leaf path(G)) = a5

where ai ∈ N for 1 ≤ i ≤ 5. We will sort the elements of A using their string

representation and the lexicographical order. �erefore, for two graphs G1, G2 ∈ A,

G1 < G2 if the string representation of G1 is minor than the string representation of

G2 lexicographically. �en the ID number of a graph is its position in the sorted set,

where the �rst position corresponds to the smallest element of the set.

By this method, we can assure that the ID number has no ambiguities during the assig-

nation and can be applied for greater sets of trivalent-stratifold graphs.

On the search engine, one can look for all the graphs that share a speci�c characteristic.

And not only does it show you the elements, it also tells you the size of the set. For

example, all the trivalent-stratifold graphs with 4 white vertices. �e interface also

tells you that there are only 6 graphs with this characteristic. As shown on �gure 6.3

Figure 6.3: Example of use of the Search Engine
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�e search engine also allows the user to look for a trivalent-stratifold graph by its

tag or by its string representation. And by selecting any image one can see all the

information associated to that graph and even download the image.

Figure 6.4: Example of a trivalent-stratifold graph with its associated information.

Figure 6.5: [4, 3, 3, 6, 6, 1]

We will now proceed to describe an image

of a trivalent-stratifold graph showed on

the search engine.

On the image we can see gray vertices rep-

resenting the white vertices and black ver-

tices representing the black vertices of the

graph. �e bold edges are the edges with

weight 2 and the other ones have weight 1.

�e number on the gray vertices represents the order in which this vertices were added

to the graph. �e analogous occurs with the le�ers on the black vertices. Remember

that every graph is obtained as the result of an iterative process. Andwith this numbers

and le�ers one can retrieve one sequence of operations which output is the graph in

the screen.



Chapter 7

Conclusions & Future Work

By the implementation of the String Representation to identify the trivalent-stratifold

graphs we can assure that this work has a satisfactory conclusion.

As stated onChapter 1 ourmain goal was to be able to classify the trivalent 2-stratifolds

with trivial fundamental group. By the identi�cation of every trivalent 2-stratifold

with a trivalent-stratifold graph and then with a string representation we were able

to reach that goal. We not only classify them, we also counted them (for few vertices)

and gave them a useful nomenclature to identify each of them.

Also the implementation of the search engine, would be helpful for the ones who are

interested on this subject and want to work with a speci�c set of this trivalent 2-

stratifolds with trivial fundamental group. More graphs can be added in the future

with the help of a more powerful computer.

More over, if there is a way of building the trivalent-stratifold graphs with n white

vertices, without using the ones with less white vertices. �at would be a great opti-

mization on the application of the algorithms described on Chapter 6 and more graphs

would be classi�ed.

�is work can be extended to use the string representation to identify graphs that

come from 2-stratifolds with trivial fundamental group, not necessarily trivalent. It

is important that the 2-stratifold have trivial fundamental group because that’s the

property that give us a graph that is a tree. But for a di�erent fundamental group it

would be possible to look for di�erent ways of implementing the observations here

described.
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