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Introduction

Topological Data Analysis (TDA) is a recent development in data analysis where the focus is

on the geometry of a data sample, and whose primary tools come from algebraic topology. In

TDA, the main goal is to infer geometric and topological information of a topological space

using data sampled from the space. Nevertheless, there is an obstacle when dealing with finite

points embedded in a metric space. The natural way to endow a topology on a finite set is to

give it the subspace topology, which, in the case of metric spaces, coincides with the discrete

topology. A common approach in TDA avoids this problem by ”approximating” the space with

balls centered at each of the sampled points. Then, using a range of different radii in order to

induce a filtration, one computes the so called ”persistent homology” [7].

While this method is adequate when considering one space at the time, unfortunately the

process is not functorial. That is, given a map between two different sets of finite points, there

is no canonical map between the corresponding unions of balls, nor between the corresponding

persistent homology groups. Without this functorial property, many tools such as the Mayer-

Vietoris sequence and homotopy invariance are lost in this setting.

There has also been increasing interest in computing homology at a fixed scale. Several

computations are accomplished in [11], [1], and [3]. Since neither the appropriate exact nor

spectral sequences have been developed in this setting, the techniques in these papers are built

directly on the definition, which makes these homologies hard to compute. The papers implic-

itly encode the scale into the homology, which also fails to preserve the functoriality (from Top

to Ab).

In this thesis, we will develop Čech homology and cohomology theories for closure spaces,

also known as Čech spaces. Closure spaces, as with topological spaces, are uniquely deter-

mined by a neighborhood system at each point, but with closure spaces we can arrange for

every neighborhood to contain a ball of non-zero radius. This gives us a way to encode a scale

into the space itself. We will see that encoding the scale to the space instead of the homology

will be the key to achieving functoriality. We will go in more detail on closure spaces in general

in the first chapter using the book [2] as a guide. We then construct Čech homology and coho-

mology. Our primary goal for these theories is for them to have functoriality, excision and ho-

motopy invariance properties, but we check all the Eilenberg-Stenrod axioms for (co)homology.

Finally, once the Eilenberg-Steenrod axioms are established, we derive a Mayer-Vietoris theo-
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rem for Čech cohomology in the context of closure spaces in a similar way as described in [5].

A systematic approach to the algebraic topology of Čech spaces was started in [9], although the

possibility is mentioned sporadically in the literature [8].

Further work will focus on develop a Mayer-Vietoris spectral sequence and implementing

it for computations of several spaces of interest.
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Chapter 1

Closure Spaces

In this chapter we will introduce the basic definitions and properties of closure spaces, which

will be used in the following chapters. These can be found in the chapter III of [2].

Definition 1.1. A closure space (X, c) is a set X along with an map c : P (X) −→ P (X) that

satisfies:

C1) c (Ø) = Ø

C2) For all U ⊂ X , U ⊂ c (U)

C3) For all U1, U2 ⊂ X , c (U1 ∪ U2) = c (U1) ∪ c (U2)

We say that c is the closure operator of X . If there is no ambiguity, we will refer to c as the closure

of X .

Definition 1.2. The interior operator of X is an map ι : P (X) −→P (X) defined by

i (U) := X \ c (X \ U)

for all U ⊂ X .

Observation 1. The interior operator i satisfies the following properties, derived from the clo-

sure axioms (C1), (C2) and (C3):

I1) i (X) = X

By definition and (C1)

i (X) = X \ c (X \X) = X \ c (Ø) = X \Ø = X

I2) For all U ⊂ X , then i (U) ⊂ U

Let U ⊂ X . Using (C2) we have that X \ U ⊂ c (X \ U) and so

i (U) = X \ c (X \ U) ⊂ X \ (X \ U) = U

1



I3) For all U1, U2 ⊂ X , we have i (U1 ∩ U2) = i (U1) ∩ i (U2)

Let U1, U2 ⊂ X . Using De Morgan’s laws we have that X \ (U1 ∩U2) = (X \U1)∪ (X \U2).

It follows, using (C3), that

i (U1 ∩ U2) = X \ c (X \ (U1 ∩ U2))

= X \ c ((X \ U1) ∪ (X \ U2))

= X \ [c ((X \ U1)) ∪ c ((X \ U2))]

= [X \ c ((X \ U1))] ∩ [X \ c ((X \ U2))]

= i (U1) ∩ i (U2)

Lemma 1.1. Given a set X and an operator i : P (X) −→P (X) that satisfies (I1), (I2), (I3), then there

is a unique closure operator c : P (X) −→P (X) such that i is the interior operator in the closure space

(X, c).

Proof. If c1 and c2 are closure operators such that i is the interior operator of both c1 and c2, then

for any U ⊂ X we have that

i (X \ U) = X \ c1 (U) = X \ c2 (U)

Thus, we have that c1 (U) = c2 (U), which proves that uniqueness of the closure operator.

Now, for any U ⊂ X , define

c (U) = X \ i (X \ U)

To prove that c is a closure operator, we have to show that it satisfies (C1), (C2), and (C3).

• Proof of (C1)

Note that

c (Ø) = X \ i (X \Ø) = X \ i (X) = X \X = Ø

Therefore, c satisfies (C1).

• Proof of (C2)

For any A ⊂ X , using (I2), we have that i (X \ A) ⊂ X \ A; therefore,

A = X \ (X \ A) ⊂ X \ i (X \ A) = c (A)

• Proof of (C3)
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Using (I3) we have that

c (U1 ∪ U2) = X \ i (X \ (U1 ∪ U2))

= X \ i ((X \ U1) ∩ (X \ U2))

= X \ (i (X \ U1) ∩ i (X \ U2))

= (X \ i (X \ U1)) ∪ (X \ i (X \ U2))

= c (U1) ∪ c (U2)

We conclude that indeed c is indeed a closure operator.

Definition 1.3. A function f : (X, cX) −→ (Y, cY ) between closure spaces is said to be continuous

if

f(cX (A)) ⊂ cY (f(A))

for all A ⊂ X .

Proposition 1.2. Given a function f : (X, cX) −→ (Y, cY ) between closure spaces the following are

equivalent:

1) f is continuous.

2) For all B ⊂ Y , cX (f−1 (B)) ⊂ f−1 (cY (B)).

3) For all B ⊂ Y , f−1 (iY (B)) ⊂ iX (f−1 (B)), with iX and iY are the interior operators for X and

Y , respectively.

Proof.

1)⇒ 2)

Suppose f is continuous. Given B ⊂ Y define A := f−1 (B). Remember that f(A) =

f(f−1 (B)) ⊂ B. Using the continuity of f we conclude that

f(cX (A)) ⊂ cY (f(A)) ⊂ cY (B) .

Therefore,

cX
(

f−1 (B)
)

= cX (A)

⊂ f−1 (f (cX (A)))

⊂ f−1 (cY (B))
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2)⇒ 3)

Given B ⊂ Y , by defintion

f−1 (iY (B)) = f−1 (Y \ cY (Y \B))

= f−1 (Y ) \ f−1 (cY (Y \B))

= X \ f−1 (cY (Y \B))

⊂ X \ cX
(

f−1 (Y \B)
)

= X \ cX
(

f−1 (Y ) \ f−1 (B)
)

= X \ cX
(

X \ f−1 (B)
)

= iX
(

f−1 (B)
)

3)⇒ 2)

Given B ⊂ Y ,

cX
(

f−1 (B)
)

= X \ iX
(

X \ f−1 (B)
)

= X \ iX
(

f−1 (Y ) \ f−1 (B)
)

= X \ iX
(

f−1 (Y \B)
)

⊂ X \ f−1 (iY (Y \B))

= f−1 (Y ) \ f−1 (iY (Y \B))

= f−1 (Y \ iY (Y \B))

= f−1 (cY (B))

2)⇒ 1)

Let A ⊂ X , we have that

cX (A) ⊂ cX
(

f−1 (f (A))
)

⊂ f−1 (cY (f (A))) .

Therefore

f (cX (A)) ⊂ f
(

f−1 (cY (f (A)))
)

⊂ cY (f (A))

Definition 1.4. Given a closure space (X, c), and a subset A ⊂ X . A subset U ⊂ X is called a

neighborhood of A if

A ⊂ i (U)

The collection of all neighborhoods of A is called the neighborhood system of A in X , and we
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denote it byN(A). If A = {x}, i.e., it’s just the set of a single point x ∈ X , then its neighborhood

system will be denoted by Nx.

Definition 1.5. A filter (definition 12.B2, [2]) on a set X is a non empty collection F of subsets

of X such that

• If U ∈ F and V ⊂ X such that U ⊂ V , then V ∈ F .

• If U, V ∈ F , then U ∩ V ∈ F .

If Ø /∈ F , we say that F is a proper filter.

We say that a subset B ⊂ F is a base of the filter F if for all U ∈ F there is V ∈ B such that

V ⊂ U .

If γ ⊂P (X) is a non empty collection of subsets of X such that all finite intersections form

a base of the filter F , we say that γ is a subbase of F .

Proposition 1.3. A non empty collection of subsets B ⊂P (X) is a base for a filter on X if and only if

for all U, V ∈ B there is W ∈ B such that W ⊂ U ∩ V .

Proof. Suppose that B is a base for a filter F . Let U, V ∈ B. Since B ⊂ F , we have that

U ∩ V ∈ F . Using that B is a base. there is W ∈ B such that W ⊂ U ∩ V .

Now, suppose that for any U, V ∈ B there is W ∈ B such that W ⊂ U ∩ V . Define

F := {U ⊂ X|U ′ ⊂ U, for some U ′ ∈ B}

In order to see that F is a filter:

• Let U ∈ F and V ⊂ X such that U ⊂ V . By definition of F there is U ′ ∈ B such that

U ′ ⊂ U ⊂ V . Thus, V ∈ F .

• Let U, V ∈ F , then there are U ′, V ′ ∈ B such that U ′ ⊂ U and V ′ ⊂ V . By hypothesis, there

is W ∈ B such that W ⊂ U ′ ∩ V ′ ⊂ U ∩ V . Thus, U ∩ V ∈ F .

Theorem 1.4. Let (X, c) be a closure space and let A ⊂ X be a subset. Then the neighborhood system

N(A) of A is a filter on X whose intersection contains A.

Proof. First note that N(A) is nonempty since i (X) = X ⊃ A. Now,

• Let U, V ∈ N(A). By hypothesis, A ⊂ i (U) and A ⊂ i (V ). Using the property (I3) of the

interior operator we have that

i (U ∩ V ) = i (U) ∩ i (V )

Thus, A ⊂ i (U ∩ V ), and so U ∩ V ∈ N(A).
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• Let U ∈ N(A) and V ⊂ X such that U ⊂ V . By hypothesis, A ⊂ i (U). Note that

i (U) = i (U ∩ V ) = i (U) ∩ i (V ) ⊂ i (V )

Thus, A ⊂ i (V ) and so V ∈ N(A).

Definition 1.6. Consider the neighborhood system of a A in (X, c). A (sub-)base of this filter is

called a (sub-)base of the neighborhood system of A in X. If A = {x}, for some x ∈ X , the term local

(sub-)base at x will be used instead.

Observation 2. Consider a closure space (X, c) and a subset A ⊂ X . Using the definition for

bases and subbases of filters, we obtain the following properties:

• A collection V of subsets of X is a base of the neighborhood system of A in X if and only

if each V ∈ V is a neighborhood of A and every neighborhood of A contains a V ∈ V .

• A collectionW of subsets of X is a subbase of the neighborhood system of A in X if and

only if all finite intersections of elements inW is a base of the neighborhood system of A.

Observation 3. Let Bx be a local base at x. Then the following are immediate from the defini-

tions:

(B1) Bx 6= Ø.

(B2) For each U ∈ Bx, x ∈ U .

(B3) For each U1, U2 ∈ Bx there is U ∈ Bx such that U ⊂ U1 ∩ U2.

We have seen that a closure can be induced by the interior. Similarly we have that we can

define the closure with the neighborhoods at each point.

Theorem 1.5. (Corrolary 14.B7[2]) Let (X, c) be a closure space, A ⊂ X a subset, and consider a point

x ∈ X . Then x ∈ c (A) if and only if A ∩ U 6= Ø, for each U ∈ Bx, where Bx is a local base at x.

Proof. Suppose there is U ∈ Bx such that U ∩ A = Ø. Then U ⊂ X \ A, and so

i (U) ⊂ i (X \ A) = X \ c (A)

Using that x ∈ i (U), it follows that x /∈ c (A).

Now suppose that x /∈ c (A). Using that X \ c (A) = i (X \ A), we conclude that X \ A is

a neighborhood of x. Since Bx is a local base, there is U ∈ Bx such that U ⊂ X \ A, and so

U ∩ A ⊂ (X \ A) ∩ A = Ø.
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As in the case for the closure operator, we have a characterization of the interior operator

using a local basis.

Theorem 1.6. Let (X, c) be a closure space, A ⊂ X a subset, and consider a point x ∈ X . Then

x ∈ i (A) if and only if there is U ∈ Bx such that U ⊂ A, where Bx is a local base at x.

Proof. Suppose x ∈ i (A), then A ∈ Nx. Since Bx is a local base of the neighborhood system Nx,

there is U ∈ Bx such that U ⊂ A.

Now, suppose that there is U ∈ Bx such that U ⊂ A. It follows that then i (U) ⊂ i (A). Since

U ∈ Bx ⊂ Nx, we have that U is a neighborhood of x, i.e., x ∈ i (U) ⊂ i (A).

We’ve shown that for a closure space there is a special filter on each point called the neigh-

borhood filter. The converse is also true, i.e., given a filter for each point we can obtain a closure

such that these filters are the local neighborhood systems. Since a filter can be recover with a

base for it, we can consider the base instead of the whole filter. This serves as a motivation for

con the following theorem.

Theorem 1.7. (Theorem 14B.10 [2]) Let X be a set and for each x ∈ X let Bx be a collection of subsets

of X satisfying the conditions (B1), (B2) and (B3) of Observation 3. Then there is an unique closure

operator c for X such that, for each x ∈ X , Bx is a local base at x for (X, c).

Proof. The Theorem 1.5 suggests us that we should define an operator c : P (X) −→P (X) by

c (U) := {x ∈ X| V ∩ U 6= Ø, ∀V ∈ Bx}

We must prove that in fact c is a closure operator and that Bx are local bases at x in (X, c), for

each x ∈ X .

• Proof of (C1)

Note that for all x ∈ X and V ∈ Bx, V ∩Ø = Ø. Thus, c (Ø) = Ø.

• Proof of (C2)

Let U ⊂ X . Using (B2), we have that, if x ∈ U and V ∈ Bx, then x ∈ V . Therefore,

x ∈ V ∩ U and so x ∈ c (U). Thus U ⊂ c (U).

• Proof of (C3)

Let V1, V2 ⊂ X . Suppose that x ∈ c (V1) ∪ c (V2). By definition, for each V ∈ Bx, we have

that V1 ∩ V 6= Ø and V2 ∩ V 6= Ø. Thus, (V1 ∪ V2) ∩ V 6= Ø, and so x ∈ c (V1 ∪ V2).

Now, suppose x /∈ c (V1)∪c (V2). By definition there areW1,W2 ∈ Bx such that V1∩W1 = Ø

and V2 ∩W2 = Ø. Using (B3), there is W ∈ Bx such that W ⊂ W1 ∩W2. It follows that

(V1 ∪ V2) ∩W = (V1 ∩W ) ∪ (V2 ∩W ) ⊂ (V1 ∩W1) ∪ (V2 ∩W2) = Ø

7



Thus, x /∈ c (V1 ∪ V2).

This proves that c is in fact a closure for X .

Now we need to show that each Bx is a local base at x.

Let x ∈ X and U ∈ Bx. We know that U ∩ (X \U) = Ø and so x /∈ c (X \ U). This means that

x ∈ X \ c (X \ U) = i (U)

Thus, U is a neighborhood of x.

Now, let W be a neighborhood of x. This means that x /∈ c (X \W ). By definition of c, there

is U ∈ Bx such that

U ∩ (X \W ) = Ø

Therefore, U ⊂ W .

In conclusion, for each x ∈ X , Bx is a local base at x for (X, c).

The following is an immediate corollary, using the definition of the filter.

Corollary. (Corollaries 14 B.11 [2])

1. For each x ∈ X , let Nx be a filter on X such that x ∈ ∩Nx. Then there is an unique closure

operator for X such that Nx is the neighborhood system at x in (X, c), ∀x ∈ X .

2. For each x ∈ X , let γx be a nonempty family of subset of X such that x ∈ ∩γx. Then there is an

unique closure operator for X such that, for each x ∈ X , γx is a local subbase at x in (X, c).

Proposition 1.8. (Theorem 16 A.4 [2]) Let f : (X, cX) −→ (Y, cY ) be a map between closure spaces.

Then, f is continuous if and only if, for each x ∈ X and V ∈ Nf(x), we have that f−1 (V ) ∈ Nx, i.e., the

inverse image of a neighborhood of f(x) is a neighborhood of x.

Proof. First fix x ∈ X . Suppose f is continuous. Using Proposition 1.2, if V ∈ Nf(x), i.e.,

f(x) ∈ iY (V ), then

x ∈ f−1 (f(x))

⊂ f−1 (iY (V ))

⊂ ix
(

f−1 (V )
)

Thus, f−1 (V ) ∈ Nx.

Now, suppose that, for each V ∈ Nf(x), we have that f−1 (V ) ∈ Nx, and consider U ⊂ X

such that f(x) /∈ cY (f(U)). It follows that

f(x) ∈ Y \ cY (f(U)) = iY (Y \ f(U))

8



and so, Y \ f(U) is a neighborhood of f(x). By hypothesis, f−1 (Y \ f(U)) is a neighborhood of

x. Note that f−1 (Y \ f(U)) ∩ U = Ø. It follows that f(x) /∈ cY (f(U)) implies that x /∈ cX (U).

Thus, if x ∈ cX (U), then f(x) ∈ cY (f(U)). Since x was any element of X , we have that

f(cX (U)) ⊂ cY (f(U)) ,

i.e, f is continuous.

The tools we just described above will be helpful for the following constructions of closure

spaces.

Definition 1.7. Let X be a set and two closure operators c1, c2 for X . If the identity map IdX :

(X, c1) −→ (X, c2) is continuous, we say that c2 is weaker (coarser) than c1 and that c1 is stronger

(finner) than c2. This means that for any U ⊂ X

c1 (U) = IdX(c1 (U)) ⊂ c2 (IdX(U)) = c2 (U) .

We denote this relation by c2 ≤ c1.

Now consider two closure spaces (X, cX) , (Y, cY ). We would like to construct a closure on

the corresponding Cartesian product X × Y . For each (x, y) ∈ X × Y , define the collection of

the sets

γ(x,y) = πx
−1 (Nx) ∪ πy

−1 (Ny) = {πx
−1 (U) |U ∈ Nx} ∪ {πy

−1 (V ) |V ∈ Ny}

where πx, πy are the respective projections. By Corollary 1, this collection induces a closure cX,Y

such that each γ(x,y) is a local subbase at (x, y). Thus, the finite intersections of its elements are

a local base, i.e.,

B(x,y) = {U × V | U ∈ Nx, V ∈ Ny}

is a local base at (x, y).

Definition 1.8. Given two closure spaces (X, cX) and (Y, cY ), we define a closure operator cX,Y

for X × Y as above. We say this closure is the product closure for X × Y .

Lemma 1.9. The natural projections

πx : (X × Y, cX,Y ) −→ (X, cX) and πy : (X × Y, cX,Y ) −→ (Y, cY )

are continuous.

Proof. Let (x, y) ∈ X × Y , U ∈ Nx, and V ∈ Ny. Then πx
−1 (U) = U × Y ∈ N(x,y) and πy

−1 (V ) =

X × V ∈ N(x,y). Using Proposition 1.8, we have that πx and πy are continuous.

9



Proposition 1.10. Let (X × Y, cX,Y ) be the product of two closure spaces (X, cX) , (Y, cY ). Then for

all A ⊂ X and B ⊂ Y :

• cX,Y (A×B) = cX (A)× cY (B).

• iX,Y (A×B) = iX (A)× iY (B).

Proof. Given A ⊂ X and B ⊂ Y . Consider (x, y) ∈ cX,Y (A×B). Remember that B(x,y) :=

{U × V |U ∈ Nx, V ∈ Ny} is a local base at (x, y) in the product closure, where Nx and Ny are

the neighborhood systems at x and y respectively. Using Theorem 1.5, we have that for any

U ∈ Nx and V ∈ Ny

(A×B) ∩ (U × V ) 6= Ø

It follows that

A ∩ U 6= Ø and B ∩ V 6= Ø

This means that x ∈ cX (A) and y ∈ cY (B), i.e.,

(x, y) ∈ cX (A)× cY (B)

Thus, cX,Y (A×B) ⊂ cX (A)× cY (B). Similarly, we have that cX (A)× cY (B) ⊂ cX,Y (A×B).

Now suppose (x, y) ∈ iX,Y (A×B). Then there is U × V ∈ B(x,y) such that U × V ⊂ A × B,

with U ∈ Nx and V ∈ Ny. It follows that U ⊂ A and V ⊂ B, and so

iX,Y (A×B) ⊂ iX (A)× iY (B)

Similarly we have that iX (A)× iY (B) ⊂ iX,Y (A×B).

Proposition 1.11. Given two continuous functions between closure spaces f : (Z, cz) −→ (X, cX) and

g : (Z, cz) −→ (Y, cY ) there is a unique continuous function (f, g) : (Z, cz) −→ (X × Y, cX,Y ) such that

πx(f, g) = f and πy(f, g) = g, i.e., the following diagram commutes

Z

X X × Y Y

f
(f,g)

g

πx πy

Proof. We know, from the category of sets, there is a unique map (f, g) such that πx(f, g) = f

and πy(f, g) = g defined as

(f, g)(z) = (f(z), g(z))

So we need to prove that (f, g) is continuous.
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Let z ∈ Z, Uz ∈ Nf(z) and Vz ∈ Ng(z). Then

f(z) ∈ iX (Uz) and g(z) ∈ iX (Vz)

Using Proposition 1.8, we have that f−1 (Uz) , g
−1 (Vz) ∈ Nz. Note that

(f, g)−1 (Uz × Vz) := {w ∈ Z| (f, g)(w) ∈ Uz × Vz}

= {w ∈ Z| f(w) ∈ Uz, g(w) ∈ Vz}

= f−1 (Uz) ∩ g
−1 (Vz) ∈ Nz

This means that the inverse image of the local base B(f(z),g(z)) is a subset of the neighborhoods of

z. Remember that Nz is a filter and that the inverse image of the union of elements of B(f(z),g(z))

is the union of the inverse images of elements of B(f(z),g(z)). Thus, the inverse image of a neigh-

borhood of (f(z), g(z)) is a neighborhood of z. Using proposition 1.8, we conclude that (f, g) is

a continuous function.

Corollary. Given two closure spaces (X, cX) , (Y, cY ), the product closure cX,Y is the coarsest closure

operator for X × Y such that the natural projections

πx : (X × Y, cX,Y ) −→ (X, cX) and πy : (X × Y, cX,Y ) −→ (Y, cY )

are continuous.

Proof. Let c be a closure for X × Y such that the projections πx and πy are continuous. Using

Proposition 1.11, there is a unique continuous map between (X × Y, c) and (X × Y, cX,Y ) that

commutes with the natural projections.

(X × Y, c)

(X, cX) (X × Y, cX,Y ) (Y, cY )

πx
(πx,πy)

πy

πx πy

Since the identity is the only map that makes the diagram commutative, we have that

IdX×Y : (X × Y, c) −→ (X × Y, cX,Y )

is continuous, and so cX,Y is coarser than c.

Since c was arbitrary and cX,Y is itself a closure for X × Y such that the natural projections

πx and πy are continuous, we have that cX,Y is the coarsest closure operator for X × Y such that

the natural projections πx and πy are continuous.

Now consider a closure space (X, c). For A ⊂ X we would like to define a closure for A

11



compatible with the closure for X . So, for each a ∈ A consider the collection

Ma := {U ∩ A| U ∈ Na}

where Na is the neighborhood system at a. We will show thatMa satisfies (B1), (B2), and (B3):

• Proof of (B1)

Since X ∈ Na, we have that A ∈Ma, and soMa 6= Ø.

• Proof of (B2)

For each V ∈Ma there is U ∈ Na, a neighborhood of a, such that V = U ∩A. Since a ∈ U ,

we have that a ∈ U ∩ A = V .

• Proof of (B3)

If V1, V2 ∈Ma, there are U1, U2 ∈ Na such that Vα = Uα∩A, for α = 1, 2. Since U1∩U2 ∈ Na,

we have that

V1 ∩ V2 = (U1 ∩ A) ∩ (U2 ∩ A) = (U1 ∩ U2) ∩ A ∈Ma

Using Theorem 1.7, there is a unique closure cA for A such that eachMa is a local base at a.

Definition 1.9. Let (X, cX) be a closure space and a subset A ⊂ X . Define a closure operator cA

for A as above. We say cA is the subspace closure for A.

Proposition 1.12. Let (X, cX) be a closure space. Consider A ⊂ X and the natural inclusion ι : A −→

X . Then the subspace closure and interior operators defined on A satisfies:

• cA (U) = cX (U) ∩ A, for all U ⊂ A.

• iA (U) = iX (U ∪ (X \ A)) ∩ A, for all U ⊂ A.

Proof. • Let U ⊂ A. Consider a ∈ cA (U) ⊂ A. Given V ′ ∈ Na a neighborhood of a in X . If

Ma is the local base as in the definition of the subspace closure, then V := V ′ ∩ A ∈ Ma

and

Ø 6= V ∩ U = (V ′ ∩ A) ∩ U = V ′ ∩ (A ∩ U) = V ′ ∩ U

Thus, a ∈ cX (U) ∩ A, and so

cA (U) ⊂ cX (U) ∩ A

Now, let a ∈ cX (U) ∩ A. Given V ∈ Ma there is V ′ ∈ Na such that V = A ∩ V ′. It follows

that

Ø 6= U ∩ V ′ = (U ∩ A) ∩ V ′ = U ∩ (A ∩ V ′) = U ∩ V

Thus, a ∈ cA (U), and so cX (U) ∩ A ⊂ cA (U).

12



• From the definition of the interior, we have that A \ iA (U) = cA (A \ U). Note that

X \ iX (U ∪ (X \ A)) = cX (X \ (U ∪ (X \ A)))

= cX ((X \ U) ∩ (X \ (X \ A)))

= cX ((X \ U) ∩ A))

= cX (A \ U)

Then

A \ iX (U ∪ (X \ U)) = A ∩X \ iX (U ∪ (X \ U))

= A ∩ cX (A \ U)

= cA (A \ U)

= A \ iA (U)

Thus, iA (U) = iX (U ∪ (X \ U)) ∩ A.

Corollary. The natural inclusion ι : (A, cA) −→ (X, cX) is continuous.

Proof. For any U ⊂ A

ι (cA (U)) = cA (U) = cX (U) ∩ A ⊂ cX (U) = cX (ι (U))

and so the inclusion ι is continuous.

Proposition 1.13. Let (X, cX) be a closure space and a subsetA ⊂ X . Given a function between closure

spaces f : (Z, cz) −→ (A, cA), if cA is the subspace closure for A and ι : (A, cA) −→ (X, cX) is the natural

inclusion. Then f is continuous if and only if ιf is continuous.

(X, cX)

(Z, cz) (A, cA)
f

ιf
ι

Proof. We have shown that ι is continuous. Thus, if f is continuous, then ιf is continuous.

Suppose that ιf is continuous. Let z ∈ Z and V ∈ Mf(z), there is V ′ ∈ Nf(z) = N(ιf)(z) such

that V = V ′ ∩A. Using Proposition 1.8, we have that f−1 (V ′) is a neighborhood of z. Note that

f−1 (V ′) = f−1 (V ′) ∩ f−1 (A) = f−1 (V ′ ∩ A) = f−1 (V )
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Therefore, f is continuous.

Corollary. The subspace closure cA is the coarsest closure operator such that the natural inclusion

ι : (A, cA) −→ (X, cX)

is continuous.

Proof. If c is a closure forA such that ι : A −→ X is continuous. Using the following commutative

diagram

(X, cX)

(A, c) (A, cA)
IdA

ι
ι

and Proposition 1.13, we have that IdA : (A, c) −→ (A, cA) is continuous, i.e., cA is coarser than c.

Since c is arbitrary, we conclude that cA is the coarsest closure that makes the natural inclusion

continuous.
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Chapter 2

Čech (co)homology

In this chapter we will define the Čech (co)homology for closure spaces.

2.1 Interior Covers

In order to construct the Čech (co)homology for closure spaces, first we need to discus what

covers means in the context of closure spaces.

Definition 2.1. Given a closure space (X, c), a collection of subsets U ⊂ P(X) is an interior

cover of X if

X =
⋃

U∈U

i (U)

We denote by Γ(X) to the collection of all interior covers of X . If A is a subspace of X , and

UA ⊂ U is such that

A ⊂
⋃

U∈UA

i (U) ,

then we say that the pair (U ,UA) is an interior cover of the pair (X,A). We denote by Γ(X,A)

to the collection of all interior covers of the pair (X,A)

Definition 2.2. Let U , V ∈P (X), two collections of subsets ofX . We say that V is a refinement

of U if every set V ∈ V is contained in some U ∈ U . We denote this relationship by U < V .

Remark. We have that Γ(X) is a partially ordered set with the ”refinement” relation describe be-

fore. Also note that this partial order can be extended to the interior covers of the pair (X,A).

Let (U,UA) , (V,VA) ∈ Γ(X,A), then we say that (V,VA) is a refinement of (U,UA) if U < V

and UA < VA. With this relation, we have that in fact Γ(X,A) is a partial order.

Example 2.1. Let G = (V,E) be an undirected graph without loops, i.e., {x, x} /∈ E, for each

x ∈ V . Then we can define a closure operator over V , using E. We start by defining the closure
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operator on each point x ∈ V as

c (x) = {y ∈ V : {x, y} ∈ E, or y = x}

and then extending it over unions, i.e.,

c (A) =
⋃

a∈A

c (a) .

Observation 4. From the definition and the fact that G is undirected, we have that for any

x, y ∈ V

x ∈ c (y)⇔ y ∈ c (x) (2.1)

Furthermore using the definition on the interior and closure operators, if U ⊂ V , then we have

that

i (U) = V \ c (V \ U)

= V \





⋃

y∈V \U

c (y)





=
⋂

y∈E\U

E \ c (y) (2.2)

In this particular example, the following is true for any point x ∈ V and subset U ⊂ V :

x ∈ i (U)⇔ c (x) ⊂ U

This also shows that x ∈ i (c (x)).

(⇒) Suppose that

x ∈ i (U) =
⋂

y∈V \U

V \ c (y)

Then, for each y ∈ V \U we have that x ∈ V \ c (y). Using (2.1), we have that x ∈ V \ c (y)

if and only if y ∈ V \ c (x). Thus, for each y ∈ V \ U we have that y ∈ V \ c (x), i.e.,

V \ U ⊂ V \ c (x). Therefore, c (x) ⊂ U .

(⇐) Now suppose that c (x) ⊂ U . Then we have that V \ U ⊂ V \ c (x), i.e., for each y ∈ V \ U

we have that y ∈ V \ c (x). Finally, using (2.1) and (2.2), we conclude that

x ∈
⋂

y∈V \U

V \ c (y) = i (U)
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Now let U be any interior cover of V . Define

V := {c (x) |x ∈ X}

Since U is an interior cover, we have that for each x ∈ E there is U ∈ U such that x ∈ i (U).

Using the previous result, we have that c (x) ⊂ U , and so V is a refinement of U .

Note that V is itself an interior cover. Since V is also a refinement for all interior covers, we

conclude that V is the supremum over all interior covers. This will be useful since we are going

to use inverse (and direct) limits in order to define the Čech (co)homology.

Definition 2.3. Given a closure space (X, c) and an interior cover U of X, we define the nerve of

the cover U to be the simplicial complex KU whose vertices are the elements of U , and where

the set of n simplices is
{

{U0, . . . , Un}|
n
⋂

i=0

Ui 6= Ø

}

.

Definition 2.4. Given a pair (X,A), and a cover (U,UA) ∈ Γ(X,A). Define the subcomplex of KU

associated with the subspace A to be the subcomplex LUA
of KU such that a simplex {U0, . . . , Un}

of KU is also a simplex of LUA
if and only if each Uj ∈ UA, and U0 ∩ . . . ∩ Un ∩ A 6= Ø.

Remark. This construction associates to each pair (X,A) of closure spaces, such that A ⊂ X ,

and cover (U,UA) ∈ Γ(X,A) a pair of simplicial complexes that we are going to use in order to

define the Čech homology (and cohomology) of the space.

Definition 2.5. Given a pair of simplicial complexes (K,L), we denote Hn(K,L) and Hn(K,L)

to be the nth homology and cohomology groups of the pair (K,L).

Definition 2.6. Given a closure space pair (X,A) along with a interior cover (U,UA), we define

Hn(X,A; U,UA) := Hn(KU , LUA
), and Hn(X,A; U,UA) := Hn(KU , LUA

),

the nth homology and cohomology groups of the pair (X,A) relative to the cover (U,UA).

Definition 2.7. A simplicial complex K is called acyclic if it has the same (co)homology groups

as the single point space.

2.2 Homomorphisms on refinements

Definition 2.8. Let f, g : (K1, L1) −→ (K2, L2) be simplicial maps between simplicial pairs. We

say that they are contiguous if for every simplex S in K1 there is a simplex S ′ in K2 containing

both f(S) ∪ g(S). Furthermore, if S is in L1, then S ′ is in L2.
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Definition 2.9. Let C : K −→ K ′ be a map (which may not be a simplicial map) between simpli-

cial complexes. We say thatC is a carrier function if, for each simplex S ofK, C(S) is a nonempty

subcomplex of K ′ and if, for every face S ′ of S, C(S ′) is a subcomplex of C(S).

If, for every simplex S of K, the complex C(S) is acyclic, we say that C is an acyclic carrier.

Definition 2.10. If f : K −→ K ′ is a simplicial map such that for any S ′ ⊂ S we have that

f(S ′) ⊂ C(S), then C is called a carrier of f .

The following result can be found in [10], but the proof will be omitted since the theory

necessary is outside of the scope of this Thesis.

Theorem 2.1 (5.8, Chaper VI [10]). Let f, g : K1 −→ K2 be simplicial maps with an acyclic carrier C.

Then f∗ = g∗ and f ∗ = g∗ .

The following is going to be an essential result that will be used constantly after and is a

direct result of the previous Theorem.

Lemma 2.2 ([10]). Let f, g : (K1, L1) −→ (K2, L2) be simplicial maps that are contiguous. Then f and

g are homotopic, and so they induce the same homomorphisms on simplicial homology groups.

Proof. For each simplex S of K1 define C(S) as the least simplex of K2 that contains both f(S)

and g(S). Since each simplex is acyclic, we have that C is an acyclic carrier. Thus, using Theo-

rem 2.1 we conclude that in fact

f∗ = g∗ and f ∗ = g∗ .

Proposition 2.3. Give a closure space pair (X,A) and two interior covers (U,UA) , (V,VA) ∈ Γ(X,A).

If (U,UA) < (V,VA), then there exists a simplicial map π1
U V : (KV , LVA

) −→ (KU , LUA
), defined up to

contiguity.

Proof. Let V be a vertex in KV , i.e., V ∈ V . Since U < V , there is some set U ∈ U such that

V ⊂ U . So we can define π1
U V on the vertices of KV , choosing such a U for each V ∈ V .

Now we need to show that π1
U V can be extended to a simplicial map. Take vertices V0 , . . . , Vn

of a simplex of KV , and let U0 , . . . , Un be the respective images under π1
U V . Note that

Ø 6= V0 ∩ . . . ∩ Vn ⊂ U0 ∩ . . . ∩ Un

Therefore U0 , . . . , Un are vertices of a simplex of KU . Now consider LUA
, LVA

the subcomplexes

ofKU , KV associated withA, respectively. If V0 , . . . , Vn are vertices of a simplex of LVA
, it means

that

Ø 6= A ∩ V0 ∩ . . . ∩ Vn ⊂ A ∩ U0 ∩ . . . ∩ Un
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so we have that U0 , . . . , Un are vertices of a simplex in LUA
. Thus π1

U V can be extended as

desired.

Now, for each V ∈ V , we define another map by making a second choice W ∈ U such that

V ⊂ W . Let π2
U V be this map sending V to W . Let V0 , . . . , Vn vertices of a simplex of KV and let

π1
U V (Vj) = Uj, π

2
U V (Vj) = Wj , with j = 1, . . . , n. Note that each Vj ⊂ Uj, Vj ⊂ Wj , so

Ø 6= V0 ∩ . . . ∩ Vn ⊂ U1 ∩ . . . ∩ Un ∩W0 . . . ∩Wn

and thus follows that π1
U V , π

2
U V are contiguous and each maps the pair (KV , LVA

) to (KU , LUA
).

Corollary. The simplicial maps π1
U V and π2

U V induce the same homomorphism on homology

πU V ∗ : Hn (X,A; V,VA) −→ Hn (X,A; U,UA)

and the same homomorphism on cohomology

π∗
V U

: Hn (X,A; U,UA) −→ Hn (X,A; V,VA)

We call them the homomorphisms associated with the pair of covers (U,UA) < (V,VA).

Note. We only write on the subindex one of the elements of the pair for clarity on the notation.

Theorem 2.4. Let U ,V ,W ∈ Γ(X) such that U < V < W , then

πU V ∗πV W ∗ = πU W ∗ and π∗
W V

π∗
V U

= πW U ∗

Proof. Take W ∈ W to be a vertex of KW . Since V < W , there exists a V ∈ V such that W ⊂ V .

Also U < V implies there’s U ∈ U such that V ⊂ U . Thus, we may define π1
V W (W ) := V ,

π1
U V (V ) := U , and π1

U W (W ) := U . If this is done for each vertex of KW , then we have that

π1
U V π

1
V W = π1

U W

is satisfy in the vertices and so, when extended by linearity, it will be satisfied on all KW . Then

the induced homomorphisms on (co)homology are equal.

Corollary. For any (U,UA) ∈ Γ(X,A), the homomorphisms πU U ∗ and π∗
U U

are the respective identity

maps.
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2.3 Inverse Limits

The definition of limit (direct or inverse) can be applied in a more general context using Cate-

gory Theory. Nevertheless, we will be taking a more elementary approach using directed sets

and Abelian groups, and so we’ll just be calling them groups.

We will follow the order from [12], but many of the proofs and some of the conclusions will

differ to siut the context of this Thesis, and with a more emphasis to the universal properties of

the inverse limit.

Definition 2.11. A directed set is a partially ordered set (D,<) with the additional condition that

for each pair of elements α, β ∈ D there is a element γ ∈ D such that α, β < γ. We will denote

(D,<) by D when the context is clear.

If A and D are directed sets, a map f : A −→ D is an order-preserving function from A to D if,

for all a, b ∈ A such that a <A b, then f(a) <D f(b).

A directed set (D′, <D′) is a subset of (D,<D), denoted by D′ ⊂ D, if D′ ⊂ D as a set, and the

natural inclusion is an order-preserving map.

A subset D′ is cofinal in D if, for each a ∈ D, there is b ∈ D′ such that a < b.

Definition 2.12. An inverse system of groups is a set of groups Gα, indexed by a directed set

A such that for all α, β ∈ A with α < β there’s a homomorphism παβ : Gβ −→ Gα. These

homomorphisms satisfy the conditions

1. παα = IdGα
for all α ∈ A.

2. παβπβγ = παγ , whenever α < β < γ.

We will denote an inverse system of groups by {Gα, παβ, A}. When the context allows it, this

will abbreviated by {Gα, παβ} or simply {Gα}.

Let {Gα} be an inverse system of groups. An element of the Cartesian product g ∈
∏

α∈A
Gα is

specified by it’s value in each coordinate, i.e., g = (gα), with gα ∈ Gα. Consider the subset

G :=

{

(gα) ∈
∏

α∈A

Gα

∣

∣

∣

∣

gα = παβ(gβ), whenever α < β

}

⊂
∏

α∈A

Gα

Let g, h ∈ G, with g = (gα) and h = (hα). If α < β, then we have that

gα − hα = παβ(gβ)− παβ(hβ) = παβ(gβ − hβ)

and so g − h ∈ G. Thus, G is a subgroup of
∏

α∈A
Gα.
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Definition 2.13. The group G defined above is called the inverse limit of the system {Gα}. We will

denote it by

G = lim
←
A

{Gα, παβ}.

If there’s no confusion, we will abbreviated this to G = lim
←
A

{Gα} or simply G = lim
←
{Gα}.

Example 2.2. If A consists of one element α, then lim
←
{Gα} = Gα.

Example 2.3. If A is an index set with a maximum element, i.e., there is β ∈ A such that for any

α ∈ A, α < β. Then lim
←
A

{Gα} = Gβ .

Definition 2.14. For each β ∈ A, there are natural homomorphisms

πβ : lim
←
{Gα} −→ Gβ

corresponding to the composite lim
←
{Gα}

ι
−→

∏

α∈A
Gα

π
−→ Gβ of the natural inclusion ι follow by

the natural projection π. We say that πβ is the projection of lim
←
A

{Gα, παβ} into Gβ .

Remark. Let g = (gα) ∈ G, and α < β. Then, by construction,

πα(g) = gα = παβ(gβ) = παβ(πβ(g))

This means πα = παβπβ , whenever α < β.

Theorem 2.5 (Universal Property of inverse limits). Consider the inverse system of groups {Gα, παβ, A}.

Given a group H and homomorphisms {fα : H −→ Gα}α∈A such that

fα = παβfβ

whenever α < β, there exits a unique homomorphism f : H −→ lim
←
{Gα}, such that

παf = fα, (2.3)

i.e., the following diagram commutes

lim
←
{Gα}

H Gα

πα

fα

f

Proof. Let h ∈ H , define gα := fα(h). Now, take g = (gα) ∈
∏

α∈A
Gα. Note that, by hypothesis,

gα = fα(h) = παβ(fβ(h)) = παβ(gβ).
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Thus, g ∈ lim
←
A

{Gα, παβ}, and we define f(h) := g = (gα) as constructed above.

Now we’ll show that f is a homomorphism. Take h1, h2 ∈ H , then

f(h1 + h2) = (fα(h1 + h2))α∈A

= (fα(h1) + fα(h2))α∈A

= (fα(h1))α∈A + (fα(h2))α∈A

= f(h1) + f(h2).

Thus, f is an homomorphism.

Finally we’ll show that f is unique. Suppose f ′ : H −→ lim
←
A

{Gα, παβ} satisfies the condition

(2.3). Given h ∈ H , we define g := (f − f ′)(h). Note that the coordinates of g are

gα = πα(g)

= πα((f − f ′)(h))

= πα(f(h)− f ′(h))

= πα(f(h))− πα(f ′(h))

= fα(h)− fα(h)

= 0.

and so g = 0. It follows that f = f ′.

Now consider B ⊂ A, with B a directed set. Take all the groups Gβ , with β ∈ B. Note

that the relations between the homomorphisms πβγ remain even with the restricted indexes.

This allows us to consider a new inverse system {Gβ, πβγ , B}. Thus we have two inverse limits

lim
←
A

{Gα, παβ} and lim
←
B

{Gβ, πβγ}. Since there are homomorphisms {πβ : lim
←
A

{Gα, παβ} −→ Gβ}β∈B

such that for any β, γ ∈ B, with β < γ, we have that

πβ = πβ,γπγ,

i.e., the following diagram commutes

lim
←
A

{Gα, παβ} Gγ

Gβ

πγ

πβ

πβγ

If π′β is the natural projection from the inverse limit lim
←
B

{Gβ, πβγ} into Gβ , then by Theorem 2.5
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there’s a unique homomorphism πBA : lim
←
A

{Gα, παβ} −→ lim
←
B

{Gβ, πβγ}, such that

π′βπBA = πβ,

i.e., the following diagram commutes

lim
←
B

{Gβ, πβγ}

lim
←
A

{Gα, παβ} Gγ

π′
β

πBA

πβ

Definition 2.15. The homorphism πBA is called the projection map of lim
←
A

{Gα, παβ} into lim
←
B

{Gβ, πβγ}.

Remark. If C ⊂ B ⊂ A are directed set, the uniqueness of the projection maps implies

πCA = πCBπBA.

Now we will show that in order to compute an inverse limit we only need to use a cofinal

subset of the directed (index) set.

Theorem 2.6. Let {Gα, παβ, A} be an inverse system of groups, and let B be a cofinal subset of A. Then

there is a homomorphism

πAB : lim
←
B

{Gβ, πβγ} −→ lim
←
A

{Gα, παβ}

Furthermore, πAB is an isomorphism whose inverse is the projection map πBA.

Proof. Take any α ∈ A. Since B is cofinal, there is a β ∈ B such that α < β. Thus, consider the

composition

fα := παβπ
′
β : lim

←
B

{Gβ, πβγ}
π′

β
−→ Gβ

παβ
−−→ Gα

We write it as fα since the election on β does not change the resulting map. In order to see this,

consider β1, β2 ∈ B such that α < βi, i = 1, 2, using that B is an ordered set, there exists a β ∈ B

such that βi < β, and so the following diagram commutes

Gβ1

lim
←
B

{Gβ, πβγ} Gβ Gα

Gβ2

παβ1

π′
β1

π′
β

π′
β2

παβ

πβ1β

πβ2β
παβ2
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Note when α ∈ B, we can simply take β = α. Now let α1, α2 ∈ A, such that α1 < α2. Then there

are β1, β2 ∈ B such that αi < βi, i = 1, 2. Using that B is a directed set, there exists β ∈ B such

that βi < β, i = 1, 2. It follows that

πα1α2fα2 = πα1α2(πα2β2π
′
β2

)

= πα1α2πα2β2π
′
β2

= πα1α2πα2β2(πβ2βπ
′
β)

= πα1α2(πα2β2πβ2β)π′β

= πα1α2πα2βπ
′
β

= (πα1α2πα2β)π′β

= πα1βπ
′
β

= (πα1β1πβ1β)π′β

= πα1β1(πβ1βπ
′
β)

= πα1β1π
′
β1

= fα1

i.e, the following diagram commutes

Gβ2 Gα2

lim
←
B

{Gβ, πβγ} Gβ

Gβ1 Gα1

πα2β2

πα1α2

π′
β2

π′
β

π′
β1

fα2

fα1

πβ2β

πβ1β

πα2β

πα1β

πα1β1

Thus, {fα : lim
←
B

{Gβ, πβγ} −→ Gα}α∈A is an inverse system of homomorphisms. Using the univer-

sal property of the inverse limit, for this inverse system of homomorphisms, there is a unique

homomorphism

πAB : lim
←
B

{Gβ, πβγ} −→ lim
←
A

{Gα, παβ}
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such that παπAB = fα, i.e., the following diagram commutes

lim
←
A

{Gα, παβ}

lim
←
B

{Gβ, πβγ} Gα

πα

πAB

fα

Now consider α ∈ A and β ∈ B as above. Using the properties of πAB and πBA, we have that

πα(πABπBA) = (παπAB)πBA

= fαπBA

= (παβπ
′
β)πBA

= παβ(π′βπBA)

= παβπβ

= πα

and that

π′β(πBAπAB) = (π′βπBA)πAB

= πβπAB

= fβ

= πββπ
′
β

= π′β

This means that the following diagrams commute

lim
←
A

{Gα, παβ}

lim
←
B

{Gβ, πβγ}

lim
←
A

{Gα, παβ} Gα

πα

fα

πAB

πα

πBA

Idlim
←
A

{Gα}

and

lim
←
B

{Gβ, πβγ}

lim
←
A

{Gα, παβ}

lim
←
B

{Gα, παβ} Gα

fα

πα

πBA

fα

πAB

Idlim
←
B

{Gβ}

Thus, using the uniqueness of the universal property of the inverse limit, we have that

πBAπAB = Idlim
←
B

{Gβ} and πABπBA = Idlim
←
A

{Gα}
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Now let {Gα, παβ, A} and {Hγ, κγη, B} be two inverse systems of groups. If φ : B −→ A is an

order preserving map, that is, for every γ, η ∈ B such that γ < η then φ(γ) < φ(η). For conve-

nience of notation, we will write φ(γ) = γ′, φ(η) = η′. Consider a family of homomorphisms

{fγ : Gγ′ −→ Hγ}γ∈B such that the follonwing diagram commutes

Gη′ Hη

Gγ′ Hγ

fη

πγ′η′ κγη

fγ

whenever γ < η.

Definition 2.16. Such a family of homomorphisms {fγ : Gγ′ −→ Hγ}γ∈B is called an inverse system

of homomorphisms of the system {Gα, παβ, A} into {Hγ, κγη, B} corresponding to the order preserving

map φ : B −→ A. We will denote this family by {fγ : Gγ′ −→ Hγ}, when B is clear from context.

We will extend the result in Theorem 2.5 to an inverse system of homomorphisms.

Theorem 2.7. Given {fγ : Gγ′ −→ Hγ} an inverse system of homomorphisms of the system {Gα, παβ, A}

into {Hγ, κγη, B} corresponding an order preserving the map φ : B −→ A. There exists a unique

homomorphism

f : lim
←
A

{Gα, παβ} −→ lim
←
B

{Hγ, κγη}

such that

κγf = fγπγ′ ,

i.e., the following diagram commutes

lim
←
A

{Gα, παβ} lim
←
B

{Hγ, κγη}

Gγ′ Hγ

f

πγ′ κγ

fγ

Proof. Given γ ∈ B, consider the composition

lim
←
A

{Gα, παβ}
πγ′

−−→ Gγ′
fγ
−→ Hγ

Using the universal property of the inverse limits, there is an unique f as desire. Furthermore,
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consider a subset B′ ⊂ B and define A′ := φ(B′) ⊂ A. Then the following diagram commutes

lim
←
A

{Gα, παβ} lim
←
B

{Hγ, κγη}

lim
←
A′

{Gα′ , πα′β′} lim
←
B′

{Hγ′ , κγ′η′}

f

πA′A κB′B

f ′

where f ′ is induced by the inverse system of homomorphisms {fγ′ : Gψ(γ′) −→ Hγ′}γ′∈B′ corre-

sponding to ψ : B′ −→ A′.

Definition 2.17. The homomorphism f constructed above is called the inverse limit of the inverse

system of homomorphisms {fγ : Gγ′ −→ Hγ}.

Theorem 2.8. Consider three inverse systems {Gα, παβ, A}, {Hγ, κγη, B}, {Kσ, µσθ, C}. Let ψ : C −→

B and φ : B −→ A be two order preserving maps. For convenience of notation, write ψ(σ) = σ′, φ(γ) =

γ′. If {fγ : Gγ′ −→ Hγ}γ∈B and {gσ : Hσ′ −→ Kσ}σ∈C are inverse systems of homomorphisms corre-

sponding to φ and ψ. Then

{gσfσ′ : Gσ′′ −→ Kσ}

is an inverse system of homomorphisms corresponding to φψ : C −→ A. Furthermore, if f, g, h are the

inverse limits of {fγ}, {gσ}, {hσ := gσfσ′}, respectively; then

h = gf

Proof. Consider σ < θ. Then we have the following diagram

Gθ′′ Hθ′ Kθ

Gσ′′ Hσ′ Kσ

fθ′

πσ′′θ′′ κσ′θ′

gθ

µση

fσ′ gσ

By hypothesis, the two squares are commutative, so the diagram is commutative. Thus {fσ′gσ :

Gσ′′ −→ Kσ} is an inverse system of homomorphisms corresponding to φψ : C −→ A.

Using the following commutative diagram

lim
←
A

{Gα, παβ} lim
←
B

{Hγ, κγη} lim
←
C

{Kσ, µσθ}

Gσ′′ Hσ′ Kσ

f

πσ′′ κσ′

g

µσ

fσ′ gσ
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we have that

µσ(gf) = (µσg)f

= (gσκσ′)f

= gσ(κσ′f)

= gσ(fσ′πσ′′)

= (gσfσ′)πσ′′

= hσπφψ(σ)

= µσh

Thus, using the uniqueness of the universal property of the inverse limit, we conclude that

h = gf .

2.4 Čech Homology definition

We will have a inverse systems of groups indexed by Γ(X), with homomorphisms defined by

the refinements. Using this we will be able to define the Čech homology of a closure space.

First, we need to show that in fact Γ(X) is a directed set.

Lemma 2.9. For a given closure space pair (X,A), the set of all interior covers Γ(X,A) is a directed set.

Proof. Let (U,UA) , (V,VA) ∈ Γ(X,A). First, define

W := {U ∩ V | U ∈ U , V ∈ V }

This is an interior cover of X , since

⋃

W∈W

i (W ) =
⋃

U∈U

⋃

V ∈V

i (U ∩ V )

=
⋃

U∈U

⋃

V ∈V

[i (U) ∩ i (V )]

=
⋃

U∈U



i (U) ∩





⋃

V ∈V

i (V )









=
⋃

U∈U

[i (U) ∩X]

=
⋃

U∈U

i (U)

= X
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Now, define WA := {U ∩ V | U ∈ UA, V ∈ VA}. Using that

⋃

W∈WA

i (W ) =
⋃

U∈UA

⋃

V ∈VA

i (U ∩ V )

=
⋃

U∈UA

⋃

V ∈VA

[i (U) ∩ i (V )]

=
⋃

U∈UA



i (U) ∩





⋃

V ∈VA

i (V )









⊃
⋃

U∈U

[i (U) ∩ A]

=





⋃

U∈U

i (U)



 ∩ A

⊃ A,

we conclude that the pair (W,WA) is an interior cover of the pair (X,A). Also note that W is a

common refinement of both U and V , i.e., U < W and V < W , because for each W ∈ W there

are U ∈ U , V ∈ V such that W = U ∩ V , and so W ⊂ U and W ⊂ V . Similarly, we have that

WA is a common refinement of borh UA and VA. Thus, we conclude that (W,WA) < (U,UA) and

(W,WA) < (V,VA).

Recall that for each (U,UA) ∈ Γ(X,A) there is a groupHn(X,A; U,UA), and for a refinement

(U,UA) < (V,VA) there is a homomorphism πU V ∗ : Hn(X,A; V,VA) −→ Hn(X,A; U,UA). Thus,

{Hn(X,A; U,UA), πU V ∗,Γ(X,A)} is an inverse system of groups.

Definition 2.18. The nth Čech homology group is the inverse limit of the inverse system defined

above, i.e.,

Ȟn (X,A) := lim
←

Γ(X,A)

{Hn(X,A; U,UA), πU V ∗}

If A = Ø, then Ȟn (X,A) is written as Ȟn (X).

Observation 5. Even though Γ(X) and Γ(X,Ø) are different directed systems, we have that

each U ∈ Γ(X) has a corresponding (U ,Ø) ∈ Γ(X,Ø). Also, note that for any (U,UØ) ∈

Γ(X,Ø) the cover (U ,Ø) is a refinement of (U,UØ). Thus, we can consider Γ(X) as a cofinal

subset of Γ(X,Ø), and so if a limit process is over Γ(X,Ø), then we will consider the limit over

Γ(X).

2.5 Direct limits

The notion of direct limit is dual to the inverse limit, in the sense that, categorically, a direct limit

is an inverse limit in the opposite category, and vice-versa. An important difference, however,
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is that direct limits preserve exact sequences, which will allow us to define a Mayer Vietoris for

cohomology and inverse limits do not.

Now, we will follow the structure of [12], but with a different take to the proofs, since they

rely on an inductive argument and we will take a more categorical one.

Definition 2.19. A direct system of groups is a set of groups Gα, indexed by a directed set A,

such that, for all α, β ∈ A with α > β there exists a homomorphism παβ : Gβ −→ Gα. These

homomorphisms satisfy the conditions

1. παα = IdGα
for all α ∈ A.

2. παβπβγ = παγ , whenever α > β > γ.

We will denote this by {Gα, π
αβ, A}. When context allows it, we will simply write {Gα, π

αβ}, or

{Gα}.

Now remember that in the context of (abelian) groups, the direct sum of a collection of

groups {Gα}α∈A is

⊕

α∈A

Gα := {(gα) ∈
∏

α∈A

Gα

∣

∣

∣

∣

gα = 0, but for finite many α ∈ A} ⊂
∏

α∈A

Gα

along with the natural inclusions ιβ : Gβ −֒→
⊕

α∈A
Gα defined by ιβ(gβ) = (gα)α∈A, where gα = 0 if

α 6= β.

Similar to the universal property of the product of groups, we have a corresponding prop-

erty for the direct sum.

Theorem 2.10 (Universal Property of the coproduct). Given a group H and a collection of groups

{Gα}α∈A, indexed by a set A. If for each α ∈ A there is an homomorphism fα : Gα −→ H , then there

exists a unique homomorphism f :
⊕

α∈A
Gα −→ H such that

fια = fα,

i.e., the following diagram commutes

⊕

α∈A
Gα

Gα H

f
ια

fα

Now, consider a direct system {Gα, π
αβ, A}. Let R be the subgroup of

⊕

α∈A
Gα generated by

elements of the form xβ − π
αβ(xβ), for all α > β. Define

G :=
⊕

α∈A

Gα/R
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Definition 2.20. The direct limit of the direct system {Gα, π
αβ, A} is the group G defined as above.

We’ll denote it by lim
→
A

{Gα, π
αβ}, lim

→
{Gα, π

αβ}, or simply lim
→
{Gα}, when A or παβ are clear from

context.

Note that the limit process identifies the element xβ ∈ Gβ with the elements παβ(xβ) ∈ Gα,

whenever α > β.

Definition 2.21. For each β ∈ A, there is a natural homomorphism πβ : Gβ −→ lim
→
{Gα, π

αβ}

corresponding to the composite

Gβ
ιβ
−→

⊕

α∈A

Gα
p
−→ lim

→
{Gα, π

αβ},

where ιβ is the natural inclusion and p is the natural projection. We say πβ is the inclusion of Gβ

into lim
←
{Gα}.

Theorem 2.11 (Universal Property of direct limits). Let {Gα, π
αβ, A} de a direct system of groups.

Given a group H and homomorphisms {fα : Gα −→ H}α∈A such that

fβ = fαπ
αβ

whenever α > β. Then there exists a unique homomorphism f : lim
→
{Gα} −→ H , such that

fπα = fα, (2.4)

i.e., the following diagram commutes

lim
→
{Gα}

Gα H

f
πα

fα

Proof. Using the universal property of the coproduct, there is a unique homomorphism

f̂ :
⊕

α∈A

Gα −→ H

such that f̂ iα = fα, i.e., f̂(xα) = fα(xα), for each xα ∈ Gα. Consider β ∈ A such that β < α. Let
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xβ ∈ Gβ , then παβ(xβ) ∈ Gα and so

f̂(xβ − π
αβ(xβ)) = f̂(xβ)− f̂(παβ(xβ))

= fβ(xβ)− fα(παβ(xβ))

= fβ(xβ)− (fαπ
αβ)(xβ))

= fβ(xβ)− fβ(xβ)

= 0

since, by hypothesis, fβ = fαπ
αβ . It follows thatR ⊂ ker(f̂), withR as defined in 2.20. Using the

universal property of the quotient group, we have a unique homomorphism f : lim
→
{Gα} −→ H

such that for each β ∈ A the following diagram commutes

lim
→
{Gα}

⊕

α∈A
Gα H

Gβ

f

f̂

πβ

fβ

We will show an alternative construction for the direct limit, which will result more useful

and eventually necessary in order to see that direct limits preserve exact sequences.

Consider the disjoint union of sets ⊔α∈AGα. Each point ⊔α∈AGα can be thought as a pair

(xα, α) such that xα ∈ Gα. Define a relation between these pairs by (xα, α) ∼ (xβ, β) if there is

δ > α, β such that πδα(xα) = πδβ(xβ). This is an equivalence relation:

• For each α ∈ A, παα(xα) = παα(xα), and so (xα, α) ∼ (xα, α). Thus, the relation is reflexive.

• Let (xα, α) ∼ (xβ, β). This means that there is δ > α, β such that πδα(xα) = πδβ(xβ). Thus,

(xβ, β) ∼ (xα, α), i.e., the relation is symmetric.

• Let (xα, α) ∼ (xβ, β) and (xβ, β) ∼ (xγ, γ). By definition, there are δ > α, β and λ > β, γ

such that

πδα(xα) = πδβ(xβ), and πλβ(xβ) = πλγ(xγ).
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Since A is a directed set, there exists η > δ, λ, and it follows that

πηα(xα) = πηδ(πδα(xα))

= πηδ(πδβ(xβ))

= πηβ(xβ)

= πηλ(πλβ(xβ))

= πηλ(πλγ(xγ))

= πηγ(xγ)

Thus, the relation is transitive.

Let Ĝ be the set of the equivalence classes on
⊔

α∈A
Gα with the equivalence relation described

above, i.e.,

Ĝ =

(

⊔

α∈A

Gα

)

/∼

Now we will describe a group operation on Ĝ. Let [xα, α], [xβ, β] ∈ Ĝ, define

[xα, α] + [xβ, β] := [πδα(xα) + πδβ(xβ), δ]

for some δ ∈ A such that δ > α, β. In order to see that this operation is well defined, first we

need to prove that the election of δ does not affect the result. Let δ1, δ2 ∈ A such that δ1 > α, β

and δ2 > α, β. Using that A is a directed set, there is δ ∈ A such that δ > δ1, δ2 and

πδδ1(πδ1,α(xα) + πδ1β(xβ)) = πδδ1πδ1α(xα) + πδδ1πδ1β(xβ)

= πδα(xα) + πδβ(xβ)

= πδδ2πδ2α(xα) + πδδ2πδ2β(xβ)

= πδδ2(πδ2α(xα) + πδ2β(xβ))

Thus πδ1α(xα) + πδ1β(xβ) ∼ πδ2α(xα) + πδ2β(xβ).

Then we need to prove that the election of the representatives does not matter for the oper-

ation. Let (xα1 , α1) ∼ (xα2 , α2) and (xβ1 , β) ∼ (xβ2 , β). Then there are α > α1, α2 and β > β1, β2

such that

πα,α1(xα1) = πα,α2(xα2), and πβ,β1(xβ1) = πβ,β2(xβ2).
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Using that A is a directed set, there is δ > α, β. It follows that

πδα1(xα1) + πδβ1(xβ1) = πδα(παα1(xα1)) + πδβ(πββ1(xβ1))

= πδα(παα2(xα2)) + πδβ(πββ2(xβ2))

= πδα2(xα2) + πδβ2(xβ2)

Thus, this operation is well defined. Furthermore, we have that:

• This operation is commutative, since

[xα, α] + [xβ, β] = [πδα(xα) + πδβ(xβ), δ] = [πδβ(xβ) + πδα(xα), δ] = [xβ, β] + [xα, α]

• For any α, β ∈ A, [0, α] = [0, β], which is the identity element because

πδα(0) = πδβ(0) = 0

and (xα, α) ∼ (πδα(xα), δ), for any δ > α.

• The inverse of [xα, α] is [−xα, α].

• For each α ∈ A, there is a map τα : Gα −→ Ĝ defined by τα(xα) = [xα, α], which is the

inclusion from Gα into Ĝ. Furthermore, τα is an homomorphism, since

[xα, α] + [yα, α] = [παα(xα) + παα(yα), α] = [xα + yα, α]

• If α, β ∈ A are such that α > β, then ταπαβ = τβ , i.e., the following diagram commutes

Ĝ

Gβ Gα

τβ

παβ

τα

This construction is equivalent to the direct limit in the sense that they are isomorphic to

each other. For this, we will show the following result.

Proposition 2.12. Let {Gα} be a direct system of groups, and define Ĝ as above. If τα : Gα −→ Ĝ is the

inclusion from Gα into Ĝ, then Ĝ also satisfies the universal property of the direct limit.

Proof. Given a group H and homomorphisms {fα : Gα −→ H}α∈A such that

fβ = fαπ
αβ
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whenever α > β. Define f̃ : Ĝ −→ H by f̃([xα, α]) = fα(xα). This is well defined since, if

(xα, α) ∼ (xβ, β), there is a δ > α, β such that πδα(xα) = πδβ(xβ), and so

fα(xα) = fδ(π
δα(xα)) = fδ(π

δβ(xβ)) = fδ(xδ)

Directly of the definition of τα and f̃ , we have that f̃ τα = fα. In order to see that f̃ is a homo-

morphism, note that, for any δ > α, β, we have

f̃([πδα(xα) + πδβ(xβ), δ]) = fδ(π
δα(xα) + πδβ(xβ))

= fδ(π
δα(xα)) + fδ(π

δβ(xβ))

= fα(xα) + fβ(xβ)

= f̃([xα, α]) + f̃([xβ, β])

Suppose there exists another f̃ ′ : Ĝ −→ H such that f̃ ′τα = fα. Then

f̃ ′([xα, α]) = f̃ ′(τα(xα)) = fα(xα)

Thus, f̃ ′ = f̃ .

The universal property will give us the desired isomorphism.

Corollary. lim
→
{Gα} ∼= Ĝ

Proof. Using the universal property of direct limits, there are τ : lim
→
{Gα} −→ Ĝ, and π : Ĝ −→

lim
→
{Gα}, such that τπα = τα, and πτα = πα, for each α ∈ A. Note that τπ : Ĝ −→ Ĝ satisfies

(τπ)τα = τ(πα) = τα, (2.5)

i.e., the following diagram commutes

Ĝ

lim
→
{Gα}

Gα Ĝ

π

Id
Ĝ

τ

τα

πα

τα

Using the uniqueness of the universal property, we conclude that τπ = IdĜ. Similarly, we have

that πτ = Idlim
→
{Gα}.

The following lemmas will be used to prove that direct limits preserve exact sequences.
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Lemma 2.13. For each element x ∈ lim
→
{Gα} there is a β ∈ A and a xβ ∈ Gβ such that

x = πβ(xβ)

Proof. Using the corollary 2.5, for each x ∈ lim
→
{Gα}, we have that τ(x) ∈ Ĝ. Therefore, there is

β ∈ A and xβ ∈ Gβ such that

τ(x) = [xβ, β] = τβ(xβ)

Thus,

πβ(xβ) = π(τβ(xβ)) = π(τ(x)) = x

Lemma 2.14. For each β ∈ A there is α > β such that ker(πβ) ⊂ ker(παβ),i.e., if xβ ∈ Gβ is such that

πβ(xβ) = 0 there is α > β such that παβ(xβ) = 0.

Proof. Consider π, τ as in the corollary 2.5. Let xβ ∈ ker(πβ). Then

[xβ, β] = τβ(xβ) = τ(πβ(xβ)) = τ(0) = [0, β′]

where β′ ∈ A can be any index different from β. This means that (xβ, β) ∼ (0, β′), and so there

is α > β, β′ such that

παβ(xβ) = παβ
′

(0) = 0

Now consider B ⊂ A, as directed sets. Take all the groups Gβ , with β ∈ B. Note tha the

corresponding restrictions maps are preserve, and so {Gβ, π
βγ , B} is a new direct system of

groups. Remember that for each β ∈ B there is a homomorphism πβ : Gβ −→ lim
→
A

{Gα, π
αβ}, such

that πγ = πβπβγ , whenever β > γ. Using the universal property of direct limits we have that

there is a unique

πAB : lim
→
B

{Gβ, π
βγ} −→ lim

→
A

{Gα, π
αβ}

such that πABπβ
′
= πβ , where πβ

′
: Gβ −→ lim

→
B

{Gα} is the natural inclusion of Gβ into lim
→
B

{Gα}.

Definition 2.22. πAB is called the inclusion map of lim
→
B

{Gβ} into lim
→
A

{Gα}.

Remark. Let C ⊂ B ⊂ A be directed sets. The uniqueness of the definition implies

πAC = πABπBC .

Theorem 2.15. Let {Gα, π
αβ, A} be a direct system of groups, and letB be a cofinal set inA. Then there
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is a homomorphism

πBA : lim
→
A

{Gα, π
αβ} −→ lim

→
B

{Gβ, π
βγ}

Furthermore, πBA is an isomorphism whose inverse is πAB.

Proof. Fix α ∈ A. Since B is cofinal, there is β ∈ B such that β > α. Thus, consider the

composition fα := πβ
′
πβ,α corresponding to the composite

Gα −→ Gβ1 −→ lim
→
B

{Gβ, π
βγ}

Note that the election of β does not affect the composition. In order to proof this , consider

β1, β2 ∈ B with α < βi, i = 1, 2. Using that B is a directed set, there is β ∈ B such that

β > β1, β2, and so

πβ
′
1πβ1α = (πβ

′

πββ1)πβ1α = πβ
′

πβα = πβ
′

(πββ2πβ2α) = πβ
′
2πβ2α,

i.e., the following diagram commutes

Gβ1

Gα Gβ lim
→
B

{Gβ′ , παβ}

Gβ2

πββ1

π
β′

1
πβ1α

πβ2α

πβ

πββ2

π
β′

2

Note that, when α ∈ B, we can simply take β = α. Also, this homomorphism satisfies that

if α1 > α2, then there is β ∈ B such that β > α1, α2. It follows that

fα1π
α1α2 = (πβ

′

πβα1)πα1α2

= πβ
′

πβα2

= fα2

Using the universal property of the direct limit, there exists a unique homomorphism

πBA : lim
→
A

{Gα, π
αβ} −→ lim

→
B

{Gβ, π
βγ}

such that πBAπα = fα = πβ
′
πβα, for each α ∈ A.
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Note that for each α ∈ A, there is a β ∈ B such that β > α and so

(πABπBA)πα = πABfα

= πAB(πβ
′
πβα)

= πβπβα

= πα,

i.e., the following diagram commutes

lim
←
A

{Gα, παβ}

lim
←
B

{Gβ, πβγ}

Gα lim
←
A

{Gα, παβ}

πBA

Idlim
←
A

{Gα}

πAB

πα

πα

fα

Thus, using the uniqueness of the universal property of direct limits we have that πABπBA =

Idlim
→
A

{Gα}.

Now, for each β ∈ B we can take fβ = πβ
′
πββ = πβ

′
. It follows that

(πBAπAB)πβ
′

= πBAπβ = fβ = πβ
′

,

and so, using the same argument as before, we have that πBAπAB = Idlim
→
B

{Gβ}.

Let {Gα, π
αβ, A} and {Hγ, κ

γη, B} be direct systems of groups. Consider φ : A −→ B an

order preserving map. For convenience of notation, we’ll write φ(α) = α′ and φ(β) = β′. Let

{fα : Gα′ −→ Hα, α ∈ A} be a family of homomorphisms such that the following diagram

commutes

Gβ Hβ′

Gα Hα′

fβ

παβ κα′β′

fα

whenever α > β.

Definition 2.23. Such a family of homomorphisms {fα : Gα −→ Hα′ , α ∈ A} is called an direct

system of homomorphisms of the system {Gα, π
αβ, A} into the system {Hγ, κ

γη, B} corresponding to the

map φ : A −→ B. We will denote this family by {fα : Gα −→ Hα′}, when A is clear from context.
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Theorem 2.16. Let {fα : Gα −→ Hα′} be a direct system of homomorphisms of the system {Gα, π
αβ, A}

into {Hγ, κ
γη, B} corresponding an order preserving the map φ : A −→ B. Then there exists a unique

homomorphism

f : lim
→
A

{Gα, π
αβ} −→ lim

→
B

{Hγ, κ
γη}

such that, for each α ∈ A,

fπα = κα
′

fα

where α′ = φ(α), i.e., the following diagram commutes

Gα Hα′

lim
→
A

{Gα, π
αβ} lim

→
B

{Hγ, κ
γη}

fα

πα
κα′

f

Proof. Given α ∈ A, consider the composite κα
′
fα corresponding to

Gα
fα−→ Hα′

κα′

−−→ lim
→
B

{Hγ, κ
γη}

Using the universal property of the inverse limits, there is a unique f as desire.

Definition 2.24. This is called the direct limit of the direct system of homomorphisms {fα}.

Observation 6. Let A′ ⊂ A. Define B′ := φ(A′). Then the following diagram commutes

lim
→
A′

{Gα′ , πα
′β′
} lim

→
B′

{Hγ′ , κγ
′η′
}

lim
→
A

{Gα, π
αβ} lim

→
B

{Hγ, κ
γη}

f ′

πAA′
κBB′

f

where f ′ is induced by the inverse system of homomorphisms {fα′ : Gα′ −→ Hα′′ , A′} corre-

sponding to the restriction ψ : A′ −→ B′.

Theorem 2.17. Let {Gα, π
αβ, A}, {Hγ, κ

γη, B}, {Lσ, µ
σθ, C} be three direct systems of groups. Let

φ : A −→ B and ψ : B −→ C be two order preserving maps. For convenience of notation, write φ(α) =

α′, ψ(γ) = γ′. If {fα : Gα −→ Hα′} and {gγ : Hγ −→ Lγ′} are systems of homomorphisms corresponding

to φ and ψ, and if, for each α ∈ A, hα is the composite corresponding to Gα −→ Hα′ −→ Lα′′ . Then

{hα : Gα −→ Lα′′}

is a direct system of homomorphisms corresponding to ψφ : A −→ C. Furthermore, if f, g, and h are the
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direct limits of {fα}, {gγ}, and {hα}, respectively, then

h = gf

Proof. Consider α > β. Then we have the following diagram

Gβ Hβ′ Lβ′′

Gα Hα′ Lα′′

fβ

παβ κα′β′

gβ′

µα′′β′′

fα
gα′

By hypothesis, the two squares are commutative, and so the diagram is commutative. Thus

{hα := gα′fα : Gα −→ Lα′′} is a direct system of homomorphisms corresponding to ψφ : A −→ C.

Now, let α ∈ A. Using the following commutative diagram

Gα Hα′ Lα′′

lim
→
A

{Gα, π
αβ} lim

→
B

{Hγ, κ
γη} lim

→
C

{Lσ, µ
σθ}

fα

πα
κα′

gα′

µα′′

f g

we have that (gf)πα = µα
′′
hα = hπα. Therefore, using the uniqueness of h, as the direct limit of

homomorphisms, we have that in fact gf = h.

Theorem 2.18. Consider the same conditions as above. Write A′ := φ(A) ⊂ B and A′′ = ψ(A′) ⊂ C.

Also, suppose that for each α ∈ A the sequence

Gα
fα−→ Hα′

g′
α−→ Lα′′ (2.6)

is exact, i.e., ker(gα′) = Im (fα). Then, the sequence

lim
→
A

{Gα}
f
−→ lim

→
A′

{H ′α}
g
−→ lim

→
A′′

{Lα′′}

is exact, i.e., ker(g) = Im (f), where f, g are the direct limit of {fα, A}, {gα′ , A′}.

Proof. From Theorem 2.17, we have that the composite gf is the direct limit of the homomor-

phisms {0 = gα′fα, A}, and so gf = 0, i.e., Im (f) ⊂ ker(g).

Now, we will prove the other inclusion. Let y ∈ ker(g) ⊂ lim
→
A′

{H ′α, π
αβ}. Recall, from the

Lemma 2.13, there are γ′ ∈ A′ and yγ′ ∈ Hγ′ such that y = κγ
′
(yγ′). It follows that

0 = g(y) = g(κγ
′

(yγ′)) = µγ
′′

(gγ′(yγ′))

40



Thus, gγ′(yγ′) ∈ ker(µγ
′′
). Using the Lemma 2.14, there is a β′′ ∈ A′′ such that β′′ > γ′′ and

ker(µγ
′′
) ⊂ ker(µβ

′′γ′′
). Thus, we have that

0 = µβ
′′γ′′

(gγ′(yγ′)) = gβ′(κβ
′γ′

(yγ′)),

and so κβ
′γ′

(yγ′) ∈ ker(g′β). Using the exactness at Hβ′ in the sequence (2.6) for β ∈ A, there is

xβ ∈ Gβ such that fβ(xβ) = κβ
′,γ′

(yγ′). If we define x = πβ(xβ) ∈ lim
→
A

{Gα}, then we have that

f(x) = f(πβ(xβ)) = κβ
′

(fβ(xβ)) = κβ
′

(κβ
′γ′

(yγ′)) = κγ
′

(yγ′) = y

Thus, ker(g) ⊂ Im (f).

2.6 Čech Cohomology definition

We fixed a coefficient group for the simplicial cohomology, which for convenience it will be

omitted. Let (X,A) be a pair. We have shown in the Lemma 2.9 that Γ(X) is a directed set.

Recall that for a given (U,UA) ∈ Γ(X,A), there is a simplicial pair (KU , LUA
), where KU is

the nerve of U and LUA
is the subcomplex of KU associated with the subspace A. Also, if

(V,VA) ∈ Γ(X,A) is a refinement of (U,UA), i.e., (U,UA) < (V,VA), then there is a simplicial

map π1
U V : (KV , LVA

) −→ (KU , LUA
), and so

π∗
V U

: Hn(KU , LUA
) −→ Hn(KV , LVA

)

is the induced homomorphism on the nth cohomology groups. Write

Hn(X,A; U ) = Hn(KU , LUA
)

Thus, {Hn(X,A; U,UA), π∗
V U

,Γ(X,A)} is a direct system of groups.

The definition of the Çech cohomology is similar to the Čech homology, but instead of taking

the inverse limit we take the direct limit of the directed system described above.

Definition 2.25. Write Ȟn (X,A) = lim
→

Γ(X,A)

{Hn(X,A; (U,UA)), π∗
U ′U
}. We call this the nth Čech

cohomology group of (X,A). If A = Ø, we write Ȟn (X).
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Chapter 3

Eilenberg-Steenrod Axioms

In 1945, Eilenberg and Steenrod [6] defined the axioms for homology as a way to give a more

natural language for the homology groups in order to simplify their use. One should note that

they lacked the definition of functor and natural transformation, but the notions appear as part

of the axioms. As a part of their work, they sought to characterize different homology theories.

In particular, two homology theories that satisfy the axioms and are isomorphic for the one

point space, are isomorphic for any simplicial complex [6].

In this chapter, our main interest is to prove that the Čech (co)homology we defined in the

previous chapter satisfies the functoriality, homotopy invariance and excision properties, but

since the remaining properties are easy to establish, we will prove them as well. A first proof of

the Eilenberg-Steenrod axioms for Čech homology on topological spaces was given by Dowker

in 1952 [4]. The treatment given here is based on the books [12], [5], and [10].

Definition 3.1. A closure space pair (X,A; c) is a set pair (X,A), where (X, c) is a closure space

and A ⊂ X is endowed with the subspace closure, which is defined by

cA (U) := c (U) ∩ A, for U ⊂ A

We will refer to the closure space pair by (X,A), when c is understood. Also, if A = Ø, we will

write the pair (X,Ø) just as X .

Definition 3.2. Given two closure space pairs (X,A; cX) and (Y,B; cY ) and a function between

set pairs f : (X,A) −→ (Y,B), i.e., f (A) ⊂ B. If f : X −→ Y is a continuous function, we say that

f : (X,A) −→ (Y,B) is continuous.

Remark. If f : (X,A) −→ (Y,B) is continuous, then f |A: A −→ B is a continuous function.
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Proof. For any C ⊂ A, we have that

f (cA (C)) = f (cX (C) ∩ A)

⊂ f (cX (C)) ∩ f (A)

⊂ cY (f (C)) ∩B

= cB (f (C))

We’ll denote the category of closure space pairs by Cl. In the following chapter, we will

consider the closure space I = [0, 1] with the usual topology. Also, given a closure space pair

(X,A), we will write the closure space (X,A)× I = (X × I, A× I) with the product closure.

Since the constant functions c0, c1 : (X,A) −→ I , defined by c0(x) = 0 and c1(x) = 1, and the

identity IdX : (X,A) −→ (X,A) are continuous, then we have that g0, g1 : (X,A) −→ (X,A) × I

defined by

g0(x) = (x, 0) and g1(x) = (x, 1) (3.1)

are continuous.

Observation 7. The category Cl is an example of an admissible category for (co)homology theory

[5].

Definition 3.3. Let f0, f1 : (X,A) −→ (Y,B) be two continuous maps. We say that they are

homotopic in Cl if there is a continuous function

H : (X,A)× I −→ (Y,B)

such that f0 = Hg0 and f1 = Hg1, with g0, g1 defined in (3.1), i.e.,

f0(x) = H(x, 0) and f1(x) = H(x, 1)

We will denote by f0 ∼ f1 when the functions are homotopic, and we say H is a homotopy.

Let {Hn : Cl −→ Ab} be a sequence of functors from the category of closure space pairs Cl to

the category of Abelian groups Ab, and let δn(X,A) : Hn(X,A) −→ Hn−1(A) be a natural trans-

formation, which we will call the boundary map. The Eilenberg-Steenrod axioms, as defined in

[5] for admissible categories, are:

1. (Homotopy Invariance): If f, g : (X,A) −→ (Y,B) are homotopic maps in Cl, then the

induced maps on (co)homology are the same.

43



2. (Exactness): Given a pair (X,A) with inclusions ι : A −→ X and j : X −→ (X,A). For

homology, there are homomorphism ∂n such that the sequence

. . . −→ Hn(A)
ι∗
−→ Hn(X)

j∗
−→ Hn(X,A)

∂
−→ Hn−1(A) −→ . . .

is exact, and ∂ commutes with homomorphisms induced by continuous maps.

For cohomology, there are homomorphisms δ such that the sequence

. . .←− Hn(A)
ι∗
←− Hn(X)

j∗
←− Hn(X,A)

δ
←− Hn−1(A)←− . . .

is exact, and δ commutes with homomorphisms induced by continuous maps.

3. (Dimension): If P is one-point space. For homology,

Hn(P ) ∼=











0, n 6= 0

Z, n = 0

For cohomology,

Hn(P ) ∼=











0, n 6= 0

Z, n = 0

4. (Excision): For a pair (X,A), if U ⊂ X is such that c (U) ⊂ i (A). Let ι : (X \ U,A \

U) −→ (X,A) be the natural inclusion. Then the induced homomorphism in (co)homology

isomorphisms.

First we will prove that the Čech homology and cohomology groups we defined on 2.18

and 2.25 are homology and cohomology theories. Thus, we need to prove these groups are

functorial.

3.1 Functoriality

We will first show that there exists homomorphisms at the level of interior covers. These ho-

momorphisms will define direct and indirect systems of homomorphisms for the case on coho-

mology and homology, respectively.

Lemma 3.1. Let f : (X,A) −→ (Y,B) be a continuous map between closure space pairs. If Γ(X,A) and

Γ(Y,B) are the sets of interior covers of (X,A) and (Y,B), respectively. Then there is an induced order

preserving map f−1 : Γ(Y,B) −→ Γ(X,B) defined by f−1 (U,UA) := (f−1 (U ) , f−1 (UA)), where

f−1 (U ) := {f−1 (U) | U ∈ U } and f−1 (UA) := {f−1 (U) | U ∈ UA}
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Proof. First, fix an interior cover (U,UB) ∈ Γ(Y,B) of (Y,B). We will show that f−1 (U,UB) is

an interior cover of (X,A).

Recall from 1.2, that for any U ⊂ Y , f−1 (iY (U)) ⊂ iX (f−1 (U)). It follows that

X = f−1 (Y )

= f−1





⋃

U∈U

iY (U)





=
⋃

U∈U

f−1 (iY (U))

⊂
⋃

U∈U

iX
(

f−1 (U)
)

Therefore, we have that in fact f−1 (U ) is an interior cover of X . Now, since f(A) ⊂ B, we have

that

A ⊂ f−1 (B)

⊂ f−1





⋃

U∈UB

iY (U)





=
⋃

U∈UB

f−1 (iY (U))

⊂
⋃

U∈UB

iX
(

f−1 (U)
)

Thus, (f−1 (U ) , f−1 (UA)) is an interior cover of (X,A).

Now, we need to show that f−1 is an order preserving map. Let (U,UB) , (V,VB) ∈ Γ(Y,B)

such that (U,UB) < (V,VB), i.e., for each V ∈ V there is U ∈ U such that V ⊂ U , and for each

V ∈ VB there is U ∈ UB such that V ⊂ U . Since f−1 (V ) ⊂ f−1 (U), we have that f−1 (U ) <

f−1 (V ), and similarly f−1 (UB) < f−1 (VB), i.e., f−1 (U,UB) < f−1 (V,VB). Therefore, f−1 is in

fact an order preserving map.

Proposition 3.2. Let f : (X,A) −→ (Y,B) be a continuous map between closure space pairs, and

(U,UB) ∈ Γ(Y,B), an interior cover of (Y,B). Consider (U ′ ,U ′
A) := f−1 (U,UB), which is an

interior cover of (X,A). If (KU , LUB
) is the simplicial pair corresponding to the nerve of U and the

subcomplex of KU corresponding to B ⊂ Y ; and (KU ′ , LU ′
A
) is the simplicial pair corresponding to the

nerve of U ′ and the subcomplex of KU ′ corresponding to A ⊂ X . Then there exists a simplicial map

f 1
U : (KU ′ , LU ′

A
) −→ (KU , LUB

)

Proof. In order to construct the simplicial map, we will define the map in the vertices, then we

extend it by linearity. Given U ′ a vertex in KU ′ , using the definition of U ′, there exists a U ∈ U ,
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which may not be unique, such that U ′ = f−1 (U). If we fix a choice of U , then we can define

f 1
U (U ′) := U .

In order to verify that we can extend f 1
U to a simplicial map, let U ′0 , . . . , U

′
n be vertices of

a simplex in KU ′ and let U0 , . . . , Un be their respective images under f 1
U . By definition of the

nerve of a cover, we have that U ′0 ∩ . . . ∩ U
′
n 6= Ø, and so

Ø 6= f (U ′0 ∩ . . . ∩ U
′
n) ⊂ f (U ′0) ∩ . . . ∩ f (U ′n) ⊂ U0 ∩ . . . ∩ Un,

since f (U ′i) = f (f−1 (Ui)) ⊂ Ui. It follows that Ui are vertices of a simplex in KU . Therefore f 1
U

can be extended to a simplicial map.

Now we will show that f 1
U(LU ′

A
) ⊂ LUB

. Let U ′0, . . . , U
′
n are vertices of a simplex in LU ′

A
,

i.e., they are vertices of a simplex in KU ′ that satisfy U ′0∩ . . .∩U
′
n∩A 6= Ø. Using that f (A) ⊂ B

and taking U0, . . . , Un as above, we have that

Ø 6= f (U ′0 ∩ . . . ∩ U
′
n ∩ A) ⊂ f (U ′0) ∩ . . . ∩ f (U ′n) ∩ f (A) ⊂ U0 ∩ . . . ∩ Un ∩B

It follows that the Ui are vertices of a simplex in LUB
. So the simplicial map f 1

U constructed

before is a map from the pair (KU ′ , LU ′
A
) to the pair (KU , LUB

).

Now, we will prove that the choice made in the construction of f 1
U doesn’t affect the induced

homomorphism on homology groups.

Lemma 3.3. Let f : (X,A) −→ (Y,B) be a continuous function and let (U,UB) be a interior cover of

(Y,B), and let f 1
U , f

2
U be defined as above, but making different choices for each map f 1

U , f
2
U . Then f 1

U , f
2
U

are contiguous, as maps of simplicial pairs.

Proof. Let U ′0, . . . , U
′
n be vertices of a simplex in KU ′ , and let U0, . . . , Un and V0, . . . , Vn be their

respective images under f 1
U and f 2

U , i.e., f−1 (Ui) = f−1 (Vi) = U ′i . It follows that

f−1 (U0 ∩ . . . ∩ Un ∩ V0 ∩ . . . ∩ Vn) = f−1 (U0)∩. . .∩f
−1 (Un)∩f−1 (V0)∩. . .∩f

−1 (Vn) = U ′0∩. . .∩U
′
n 6= Ø

and so U0 ∩ . . . ∩Un∩V0 ∩ . . . ∩Vn 6= Ø. Using the definition of the nerve of a cover, we have that

U0, . . . , Un, V0, . . . , Vn are vertices of a simplex of KU . Therefore, for any simplex S ∈ KU ′ , the

corresponding images f 1
U (S) and f 2

U (S) are contained in some simplex of KU . Furthermore, if

the U ′i are vertices of a simplex in LU ′
A

, then

Ø 6= U ′0 ∩ . . . ∩ U
′
n ∩ A = f−1 (U0 ∩ . . . ∩ Un ∩ V0 ∩ . . . ∩ Vn ∩B)

By a similar reasoning, we have that U0, . . . , Un, V0, . . . , Vn are vertices of a simplex in LUB
. Thus,

for any simplex S in LU ′
A

, f 1
U (S) and f 2

U (S) are contained in some simplex of LUB
. This proof

that in fact f 1
U , f

2
U are contiguous as maps of pairs.
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Since contiguous simplicial maps induced the same homomorphism on (co)homology groups,

using lemma 2.2, we have thatf induces well-defined homomorphisms in homology

fU∗ : Hn(X,A; U ′ ,U ′
A) −→ Hn(Y,B; U,UB)

and in cohomology

f ∗
U

: Hn(Y,B; U,UB) −→ Hn(X,A; U ′ ,U ′
A).

Definition 3.4. We call fU∗ and f ∗
U

the induced homomorphisms associated with the interior cover U

and the continuous map f for homology and cohomology, respectively.

Observation 8. If IdX : (X,A) −→ (X,A) is the identity function and (U,UA) ∈ Γ(X,A). Then

(IdX)
U∗

and (IdX)∗
U

are the identity.

Now we will prove the induced homomorphisms respect the composition of functions,

given suitable interior covers.

Theorem 3.4. Let f : (X,A) −→ (Y,B) and g : (Y,B) −→ (Z,C) be continuous and let (W,WC) ∈

Γ(Z,C), an interior cover of (Z,C). If we define (V,VB) := g−1 (W,WC), then we can define the

induced simplicial maps such that

(gf)1
W

= g1
W f

1
V .

Proof. For convenience write h = gf . From proposition 3.2, there exists induced simplicial maps

f 1
V and g1

W . Write (U,UA) := f−1 (V,VB). Given U a vertex of KU , we have that V := f 1
V(U) is a

vertex of KV such that U = f−1 (V ), and W := g1
W(V ) is a vertex of KW such that g−1 (W ) = V .

It follows that

U = f−1
(

g−1 (W )
)

= (gf)−1 (W ) = h−1 (W ) ,

and so we can define h1
W(U) := W . Therefore, we have that

h1
W = g1

W f
1
V .

We have shown there are induced homomorphisms, which satisfy functorial properties,

given an interior cover. Now we will show these homomorphisms define inverse and direct

systems for homology and cohomology, respectively. Thus, we will prove the following lemma.

Lemma 3.5. Let f : (X,A) −→ (Y,B) be continuous, and let (U,UB) , (V,VB) ∈ Γ(Y ). Define

(U ′ ,U ′
A) := f−1 (U,UB) , (V ′ ,V ′A) := f−1 (V,VB). If (U,UB) < (V,VB), then the following
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diagram of simplicial pairs commutes

(KV ′ , LV ′
A
) (KV , LVB

)

(KU ′ , LU ′
A
) (KU , LUB

)

f1
V

π1
U ′V ′ π1

U V

f1
U

Proof. Using Lemma 3.1 and that (U,UB) < (V,VB), we have that (U ′ ,U ′
A) < (V ′ ,V ′A). Now

let V ′ ∈ V ′, then there exists V ∈ V such that V ′ = f−1 (V ). Using that V is a refinement of U ,

there exists U ∈ U such that V ⊂ U . If we define U ′ := f−1 (U), then we have that

V ′ = f−1 (V ) ⊂ f−1 (U) = U ′

Therefore, we can define the simplicial maps f 1
V(V ′) := V , π1

U V (V ) := U , f 1
U(U ′) := U , and

π1
U ′V ′ (V ′) := U ′. It follows that for all vertices of KV ′ , we can define the maps such that

π1
U V f

1
V = f 1

Uπ
1
U ′V ′ (3.2)

After extending by linearity, we have the equation (3.2) holds for the whole complex KV ′ .

In order to prove that the Čech homology and cohomology we defined is a functor, we will

use the following theorem.

Theorem 3.6. Let f : (X,A) −→ (Y,B) be a continuous function. Then there exists unique homomor-

phisms

f∗ : Ȟn (X,A) −→ Ȟ∗ (Y,B) and f∗ : Ȟn (Y,B) −→ Ȟ∗ (X,A)

such that for all (U,UB) ∈ Γ(Y ) the following diagrams commute

Ȟn (X,A) Ȟn (Y,B)

Hn(X,A; U ′ ,U ′
A) Hn(Y,B; U,UB)

f∗

π
U ′

∗
πU ∗

fU ∗

(3.3)

and

Hn(Y,B; U,UB) Hn(X,A; U ′ ,U ′
A)

Ȟn (Y,B) Ȟn (X,A)

f
∗
U

π
∗
U

π
∗

U ′

f∗

(3.4)

where πU∗, πU ′ ∗ are the natural projections from the inverse limits, and f ∗
U
, π∗

U ′ are the natural inclu-

sions from the direct limits.
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Proof. Recall the definitions of the Čech homology and cohomology as inverse and direct limits,

respectively. We will use systems of homomorphisms in order to define the desired functions.

Consider (U,UB) , (V,VB) ∈ Γ(Y,B) such that (U,UB) < (V,VB). Using Lemma 3.5 and taking

homology, we have the following diagram commutes

Hn(X,A; V ′ ,V ′A) Hn(Y,B; V,VB)

Hn(X,A; U ′ ,U ′
A) Hn(Y,B; U,UB)

fV ∗

π
U ′V ′

∗
πU V ∗

fU ∗

It follows that {fU∗ : Hn(X,A; U ′ ,U ′
A) −→ Hn(Y,B; U,UB), (U,UB) ∈ Γ(Y,B)} is an inverse

system of homomorphisms. Thus, using Theorem 2.7, there exists a unique homomorphism

f∗ : Ȟn (X,A) −→ Ȟn (Y,B)

that satisfies 3.3.

Similarly by taking cohomology, we have that

Hn(Y,B; U,UB) Hn(X,A; U ′ ,U ′
A)

Hn(Y,B; V,VB) Hn(X,A; V ′ ,V ′A)

f
∗
U

π
∗
V U

π
∗

V ′U ′

f
∗
V

and so {f ∗
U

: Hn(Y,B; U,UB) −→ Hn(X,A; U ′ ,U ′
A), (U,UB) ∈ Γ(Y,B)} is a direct system of

homomorphisms. Therefore, using Theorem 2.16, there exists a unique homomorphism

f ∗ : Ȟ∗ (Y,B) −→ Ȟ∗ (X,A)

that satisfies 3.4.

With this last Theorem, we will show that the Čech Homology and Cohomology we defined

are functors, since the induced homomorphisms satisfy the functorial properties.

Theorem 3.7. Let f : (X,A) −→ (Y,B) and g : (Y,B) −→ (Z,C) be continuous functions. Then, using

the corresponding induced homomorphisms defined in Theorem 3.6 satisfy that

(gf)∗ = g∗f∗ and (gf)∗ = f ∗g∗

Furthermore,

(IdX)∗ = IdȞ∗(X,A) and (IdX)∗ = IdȞ∗(X,A)
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Proof. Recall that {Hn(X,A; (U,UA)), (U,UA) ∈ Γ(X,A)}, {Hn(Y,B; (U,UB)), (U,UB) ∈ Γ(Y,B)}

and {Hn(Z,C; (W,WC)), (W,WC) ∈ Γ(Z,C)} are inverse systems, and both g−1 : Γ(Z,C) −→

Γ(Y,B) and f−1 : Γ(Y,B) −→ Γ(X,C) are order preserving maps. Also, using Lemma 3.5,

we have that both {fU∗ : Hn(X,A; U ′ ,U ′
A) −→ Hn(Y,B; U,UB), (U,UB) ∈ Γ(Y,B)} and

{gU∗ : Hn(Y,B; W ′ ,W ′
B) −→ Hn(Z,C; W,WC), (W,WC) ∈ Γ(Z,C)} are inverse systems of ho-

momorphisms. Thus, using Theorem 2.8, we have that in fact

(gf)∗ = g∗f∗ .

The case for cohomology is similar, since the Lemma 3.5 is on the simplicial maps and using

Theorem 2.17, we have that

(gf)∗ = f ∗g∗ .

Finally, using Observation 8 and by taking homology, we have that for all (U,UA) ∈ Γ(X,A) the

induced maps (IdX)
U∗

and (IdX)∗
U

are the corresponding identities. Therefore, using Theorem

3.6, we have that (IdX)∗ = IdȞ∗(X,A) and (IdX)∗ = IdȞ∗(X,A).

3.2 Homotopy invariance

Theorem 3.8. If f, g : (X,A) −→ (Y,B) are homotopic maps in Cl, then the induced maps on homology

and cohomology are the same.

3.2.1 Proof of Theorem 3.8

Lemma 3.9. Let V ∈ Γ(I) be a finite open cover of connected sets. Then KV is acyclic (recall definition

2.7).

Proof. We will suppose there is no inclusions between different sets of the cover V . If V1, V2 ∈

V are such that V1 ⊂ V2. Let V ′ be the cover V without V1. Then V ′ < V , since V ′ is a

subcollection of V , and V < V ′ because V2 ∈ V ′ and V1 ⊂ V2. Thus, KV and KV ′ are isomorphic

on (co)homology, and so, in order to prove the lemma we will focus on covers such that no

inclusions between different sets.

Now, with the hypothesis we set before, we can take V = {V0 , . . . , Vn} such that Vj = (aj, bj),

and that aj < aj+1 and bj < bj+1, with a0 = 0 and bn = 1. For each i = 0 , . . . , n, consider the

simplicial maps fi : KV −→ KV defined on the vertices by

fi(Vj) =











Vj ,for j ≤ i

Vi ,for j > i
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We will show that fi and fi+1 are contiguous. Let S be a simplex of KV . If the indices of the

vertices of S are less or equal than i, then fi(S) = fi+1(S). If some of the indices of the vertices

of S are more than i, then Vi+1 is a vertex of fi+1(S), and there are two possibilities: Vi is a vertex

of fi+1(S) or it isn’t a vertex. In the first case, we have that fi+1(S) has all the vertices of fi(S).

In the second case, let {Vj0 , . . . , Vjk} be the vertices of S such that jl < i, for l = 0 , . . . , k. Since

each element of V are connected, there are a, b ∈ I such that a < ai, b < bi, and

k
⋂

l=0

Vjl = (a, b)

Using that fi+1(S) is a simplex, we have that (a, b) ∩ Vi+1 6= Ø, and so a < ai < ai+1 < b < bi.

Thus, (a, b)∩ Vi ∩ Vi+1 6= Ø. It follows that {Vj0 , . . . , Vjk , Vi, Vi+1} are vertices of a simplex in KV .

Therefore, fi+1 and fi are contiguous.

Finally, note that fn is the identity map and that f0 is a constant map. Since fn∗ = f0∗ and

fn
∗ = f0

∗ , we conclude that KV is acyclic.

Definition 3.5. A finite cover V = {V0, . . . , Vn} of I it’s called regular if each one of the elements

is open and connected, and if we can index the sets such that

• Vi ∩ Vi+1 6= Ø for i = 0, . . . , n− 1

• Vi ∩ Vj = Ø for j < i− 1, for i = 1, . . . , n

• 0 ∈ V0, 1 ∈ Vn, and 0 /∈ V1, 1 /∈ Vn−1.

Lemma 3.10. The set of all regular covers of I is a cofinal subset Γ(I), the set of all interior covers of I .

Proof. Let V ∈ Γ(I). Since I is a topological space, we have that iI (iI (A)) = iI (A). It follows

that V ′ = {iI (V ) |V ∈ V } is also an interior cover of I , which is also a refinement of V , because

iI (V ) ⊂ V for all V ⊂ I .

Using that I is compact and that V ′ is an open cover of I , we can consider there is a finite

refinement of open intervals. The result will be proved with induction. Suppose that there are

different intervals {U0 , . . . , Uk}, ordered from left to right, with Ui ∩ Uj = Ø, except when j =

i+ 1, such that each Uj is contain in an element of V ′. If 1 6= Uk, then we have that Uj = (aj, bj),

for each 0 < j ≤ k, with U0 = [0, b0). Thus, there is Vk+1 ∈ V ′ such that bk ∈ Vk+1. Since Vk+1 is

open, there is an open interval Uk+1 := (ak+1, bk+1) ⊂ Vk+1, with bk−1 < ak+1 < bk < bk+1, and so

Uj ∩ Uk+1 = Ø, except with j = k. Since {bj} is an increasing sequence, we can cover I with a

finite number of term, and the cover {U0 , . . . , Un} is a regular cover.

Definition 3.6. Let (U,UA) ∈ Γ(X,A) be a cover. Suppose for each U ∈ U there is a regular

cover {VU,0, . . . , VU,nU
} =: VU ∈ Γ(I). Consider the interior cover (W,WA×I) of (X × I, A × I)
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defined by

W := {U × V | U ∈ U , V ∈ VU} and WA := {U × V | U ∈ UA, V ∈ VU}

We will call this an interior cover of X × I stacked over (U,UA). Also, we will refer to VU as the

stack corresponding at U .

For convenience, we will write U × VU,i ∈ W by (U, i), for each U ∈ U and i ∈ {0, . . . , nU}.

Lemma 3.11. The subset of stacked covers is cofinal in Γ(X × I, A× I).

Proof. First we are going to reference some tools we have shown before. Recall from Theorem

1.6 that for any local base B(x,t), if W ⊂ X × I , then we have that (x, t) ∈ iX,I (W ) if and only if

there isB ∈ B(x,t) such thatB ⊂ W . Also recall from the Definition 1.8 that for any (x, t) ∈ X×I ,

B(x,t) = {U × V | U ∈ Nx, V ∈ Nt}

is a local base at (x, t), where Nx, Nt are the neighborhood systems of x ∈ X and t ∈ I . Finally,

from Proposition 1.10, for any U ⊂ X and V ⊂ I , we have that iX,I (U × V ) = iX (U)× iI (V ).

Let (W,WA×I) ∈ Γ(X × I, A× I). Fix x ∈ X , then we have that for each t ∈ I , there is

W ∈ W such that (x, t) ∈ iX,I (W ), since W is an interior cover. Thus, there are Ux,t ∈ Nx and

Vx,t ∈ Nt such that Ux,t × Vx,t ⊂ W . Let V ′x be the collection of all the sets of the form Vx,t, with

t ∈ I . Then V ′x is an interior cover of I .

Using that regular covers are cofinal in Γ(I), there exits a regular cover Vx = {V0, . . . , Vnx
}

of I that is a refinement of V ′x. It follows that for each j ∈ {0, . . . , nx} there is tj ∈ I such that

Vj ⊂ Vx,tj . Also, for each tj choose Wj ∈ W such that (x, tj) ∈ iX,I (Wj), and Ux,tj ∈ Nx such

that Ux,tj × Vj ⊂ Ux,tj × Vx,tj ⊂ Wj . We now define Ux :=
nx
⋂

j=0
Ux,tj ∈ Nx, since the neighborhood

system is a filter. It follows that Ux × Vj ⊂ Wj , for each j = 0, . . . , nx. Also, if x ∈ A, we can

suppose that Wj ∈ WA×I .

Let U be the collection of all the sets Ux we defined above. We have that U is an interior

cover of X , since each Ux is a neighborhood of x. For each (x, t) ∈ X × I , there is Ux ∈ Nx and

Vj ∈ Vx such that (x, t) ∈ iX (Ux) × iI (Vj) = iX,I (Ux × Vj). Similarly, we have the same result

for any (x, t) ∈ A× I . Therefore, if we define

W
′ := {Ux × Vj|x ∈ X,Vj ∈ Vx} and W

′
A×I := {Ux × Vj|x ∈ A, Vj ∈ Vx},

we have that (W ′ ,W ′
A×I) an interior cover stacked over (U,UA), which is a refinement of

(W,WA×I).

Lemma 3.12. Let (W,WA×I) ∈ Γ(X × I, A× I) be a stacked covering over (U,UA) ∈ Γ(X,A). If the

nerve KU is a (finite) simplex, then the nerve KW is acyclic.
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Proof. Without loss of generality, we suppose that U ∈ U implies U 6= Ø. For each U ∈ U , let

VU be the corresponding stack. Define

V = {V ⊂ I|U × V ∈ W }

and note that this forms a cover of I . Let s be a simplex ofKW with vertices {U0×V0, . . . , Un×Vn}

in W . Note that for each i ∈ {0, . . . , n} there is a ji ∈ {0, . . . , nUi
} such that Vi = VUi,ji . Then

n
⋂

i=0

(Ui × Vi) =

(

n
⋂

i=0

Ui

)

×

(

n
⋂

i=0

Vi

)

=

(

n
⋂

i=0

Ui

)

×

(

n
⋂

i=0

VUi,ji

)

.

Since, by hypothesis, KU is a simplex, we have that

n
⋂

i=0

Ui 6= 0

Therefore, (U0 × V0)∩ . . .∩ (Un × Vn) 6= Ø if and only if V0 ∩ . . .∩ Vn 6= Ø. Thus KW = KV . Since

V is a finite open cover of I by connected sets, its nerve is acyclic.

Lemma 3.13. Let (W,WA×I) ∈ Γ(X × I, A× I) be a covering stacked over the covering (U,UA) ∈

Γ(X,A). Consider the simplicial maps

l, u : (KU , LU) −→ (KW , LW)

defined for U ∈ U by

l(U) = (U, 0), and u(U) = (U, nU)

Then, the induced maps on (co)homology are the same, i.e.,

l∗ = u∗ and l∗ = u∗

Proof. Given a simplex S ofKU , consider the subcomplexC(S) ofKW consisting of all simplexes

whose vertices have the form (U, i) such that U is a vertex of S. Define

U
′ := {U ∈ U |U vertex of S} and X ′ =

⋃

U∈U ′

U

Thus, we have that S is the nerve of the covering U ′ of X ′, and C(S) is the nerve of a covering

W ′ stacked over U ′. Using Lemma 3.12, C(S) is acyclic. Thus, C is an acyclic carrier, and so,

using 2.1, we have that l∗ = u∗ and l∗ = u∗.
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Theorem 3.14. Let g0, g1 : (X,A) −→ (X × I, A× I) be defined by

g0(x) = (x, 0) and g1(x) = (x, 1)

Then the induced homomorphisms on (co)homology are the same, i.e.,

g0∗ = g1∗ and g0∗ = g1∗

Proof. Since the set of stacked coverings is cofinal, we will prove the result considering them.

Let (W,WA×I) ∈ Γ(X × I, A× I) be a stacked cover over (U,UA) ∈ Γ(X,A). Consider the cov-

ers of (X,A) given by (U0,U0A) := g0
−1 (W,WA×I) and (U1,U1A) := g1

−1 (W,WA×I). By defini-

tion of a stacked cover, we have that for any U ∈ U there is a regular cover VU := VU,0 , . . . , VU,nU

of I . Recall, from the definition of a regular cover, that 0 ∈ VU,i if and only if i = 0, and so (x, 0) ∈

U×VU,i if and only if x ∈ U and i = 0. Similarly, we have that (x, 1) ∈ U×VU,i if and only if x ∈ U

and i = nU . With this we can consider the maps gjW : (KUj
, LUjA

) −→ (KW , LW) as inclusions,

for j=0,1,, because they can be defined on the vertices by g0W(U) = (U, 0) and g1W(U) = (U, nU).

Thus we will consider (KU0 , LU0A
) and (KU1 , LU1A

) as subcomplexes of (KW , LAA×I
). Now, con-

sider the map π0 : (KW , LWA×I
) −→ (KU0 , LU0A

) defined on the vertices by π0(U, i) = (U, 0).

For convenience, we will refer to π0 as the restriction corresponding to (KU1 , LU1A
). On the

other hand, we have a simplicial map η : (KU , LUA
) −→ (KU1 , LU1A

) defined on the vertices by

η(U) = (U, nU). Since W is stacked, we have that (U0,U0A) = (U1,U1A) = (U,UA) as covers of

X , and so the simplicial maps π0, η, and ηπ0 correspond to the simplicial maps induced by the

refinement U0 < U1, U1 < U , and U0 < U . It follows that the maps u, l, defined in Lemma

3.13, can be written as u = g1Wη and l = g0Wπ0η. Thus, we have the following commutative

diagram on homology

H∗(KU1 , LU1A
)

H∗(KU , LUA
) H∗(KW , LWA×I

)

H∗(KU0 , LU0A
)

π0 ∗

g1W ∗η∗

(π0η)
∗

u∗

l∗

g0W ∗

since u∗ = l∗. Using that η∗ is an isomorphism, we have that g1W∗
= g0W∗

π0 ∗. We also have the
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following commutative diagram, for j = 0, 1,

Ȟ∗ (X,A) Ȟ∗ (X × I, A× I)

H∗(KUj
, LUjA

) H∗(KW , LWA
)

gj ∗

πUj κW

gjW ∗

where πU and κW are the natural projections from the respective inverse limits. As we stated

before, π0 correspond to the simplicial maps induced by the refinement U0 < U1, and so

π0 ∗πU1 = πU0 . It follows that

κWg1∗ = g1W∗
πU1 = g0W∗

π0 ∗πU1 = g0W∗
πU0 = κWg0∗

By uniqueness of the inverse limit of homomorphisms, we conclude that g1∗ = g0∗ .

Similarly, on cohomology we have the following commutative diagram

H∗(KU1 , LU1)

H∗(KW , LW) H∗(KU , LU)

H∗(KU0 , LU0)

η∗

u∗

l∗

g1
∗
W

g0
∗
W

(π0η)∗

π0
∗

from which we have that g1
∗
W

= π0
∗g0
∗
W

, since u∗ = l∗ and η∗ is an isomorphism. For j = 0, 1, we

have the following commutative diagram

H∗(KW , LWA×I
) H∗(KU , LUA

)

Ȟ∗ (X × I, A× I) Ȟ∗ (X,A)

gj
∗
W

κW π
Uj

gj
∗

where πUj and κW are the natural inclusions from the direct limit. It follows that

g1
∗κW = πU1g1

∗
W

= πU1π0
∗g0
∗
W

= πU0g0
∗
W

= g0
∗κW

Thus, by uniqueness of the direct limit of homomorphisms, we have that g1
∗ = g0

∗ .
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3.3 Exactness axiom

Theorem 3.15. Consider a pair (X,A) with inclusions ι : A −→ X and j : X −→ (X,A). Then, for each

n > 1, there exists homomorphisms

∂n : Hn(X,A) −→ Hn−1(A) and δn : Hn(A) −→ Hn+1(X,A)

such that the sequence on homology

. . . −→ Hn(A)
ι∗
−→ Hn(X)

j∗
−→ Hn(X,A)

∂
−→ Hn−1(A) −→ . . .

is a partial sequence, and the sequence on cohomology

. . .←− Hn(A)
ι∗
←− Hn(X)

j∗
←− Hn(X,A)

δ
←− Hn−1(A)←− . . .

is exact. Furthermore, if f : (X,A) −→ (Y,B) is a continuous function, then the following diagrams

commute

Hn(X,A) Hn−1(A)

Hn(Y,B) Hn−1(B)

∂

f∗ f∗

∂

and

Hn(A) Hn+1(X,A)

Hn(B) Hn+1(Y,B)

δ

f∗ f∗

δ

3.3.1 Proof of Theorem 3.15

Let (U,UA) ∈ Γ(X,A) be a covering of (X,A). For the simplicial pair (KU , LUA
), along with the

inclusion maps jU : (KU ,Ø) −→ (KU , LUA
) and hU : (LUA

,Ø) −→ (KU ,Ø), there is an homology

exact sequence

· · · −→ Hn(LUA
)
hU ∗−−→ Hn(KU)

jU ∗−−→ Hn(KU , LUA
)
∂′

U

−−→ Hn−1(LUA
) −→ · · · (3.5)

and a cohomology exact sequence

· · · ←− Hn(LU)
h

∗
U

←−− Hn(KU)
j

∗
U

←− Hn(KU , LU)
δ′

U

←−− Hn−1(LU)←− · · · (3.6)

Now, we will prove that {hU∗, (U,UA) ∈ Γ(X,A)}, {jU∗, (U,UA) ∈ Γ(X,A)}, and {∂′U , (U,UA) ∈

Γ(X,A)} are inverse systems; and that {h∗
U
, (U,UA) ∈ Γ(X,A)}, {j∗

U
, (U,UA) ∈ Γ(X,A)}, and

{δ′U , (U,UA) ∈ Γ(X,A)} are direct systems

Let (V,VA) ∈ Γ(X,A) such that (U,UA) < (V,VA). First, we have a simplicial map π1
U V :

(KV , LVA
) −→ (KU , LUA

). Since π1
U V (LVA

) ⊂ LUA
, we have that the following commutative
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diagram

LVA
KV

LUA
KU

h
V

π1
U V

π1
U V

h
U

and so, on homology {hU∗, (U,UA) ∈ Γ(X,A)} is an inverse system and on cohomology

{h∗
U
, (U,UA) ∈ Γ(X,A)} is an direct system. Similarly, we have the following commutative

diagram

KV (KV , LVA
)

KU (KU , LUA
)

j
V

π1
U V

π1
U V

j
U

Thus, we have that {jU∗, (U,UA) ∈ Γ(X,A)} and {j∗
U
, (U,UA) ∈ Γ(X,A)} are inverse and

direct systems, respectively. Using the properties of the exactness axiom of simplicial homology,

we have that the following commutative diagram

Hn(KV , LVA
) Hn−1(LVA

)

Hn(KU , LUA
) Hn−1(LUA

)

∂′
V

πU V ∗ πU V ∗

∂′
U

We conclude that {∂′U , (U,UA) ∈ Γ(X,A)} is an inverse system. Similarly, from the exactness

axiom of simplicial cohomology, we have that the following diagram commutes

Hn(LUA
) Hn+1(KU , LUA

)

Hn(LVA
) Hn+1(KV , LVA

)

δ′
U

π
∗
U V

π
∗
U V

δ′
V

Therefore, {δ′U , (U,UA) ∈ Γ(X,A)} is an direct system.

If we write the subscript corresponding to the direct set Γ(X,A) whenever the limit pro-

cess differs from the direct set we defined the respective Čech homology for the groups and

homomorphisms on the sequence (3.5), we have the following sequence

. . . −→ Ȟn (A)Γ(X,A)

h∗Γ(X,A)
−−−−−→ Ȟn (X)Γ(X,A)

j∗Γ(X,A)
−−−−−→ Ȟn (X,A)

∂′
∗−−→ Ȟn−1 (A)Γ(X,A) −→ . . . (3.7)

which is of order two, since for each (U,UA) ∈ Γ(X,A) the maps ∂′U jU∗ = jU∗hU∗ = hU∗∂
′
U =

0. Similarly, we are going to write the subscript after taking direct limits of the groups and
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homomorphisms in the sequence (3.6), and we obtain the following sequence

. . .←− Ȟn (A)Γ(X,A)

h∗
Γ(X,A)

←−−−−− Ȟn (X)Γ(X,A)

j∗
Γ(X,A)

←−−−−− Ȟn (X,A)
δ′∗

←− Ȟn−1 (A)Γ(X,A) ←− . . . (3.8)

which is exact by using the Theorem 2.18.

Now, we want to relate Ȟn (A)Γ(X,A), Ȟn (X)Γ(X,A), Ȟ
n (A)Γ(X,A), and Ȟn (X)Γ(X,A), with the

respective groups without the subscript. In order to achieve it, we define two maps

ψ : Γ(X,A) −→ Γ(X)

(U,UA) 7−→ U

and

φ : Γ(X,A) −→ Γ(A)

(U,UA) 7−→ ι−1 (UA)

It follows from the definition of interior cover of a pair that ψ is well defined and that is an

order preserving map. Also note that ψ is surjective, since for any U ∈ Γ(X), the pair (U ,U ) ∈

Γ(X,A) is such that ψ(U ,U ) = U . Note that for each (U,UA) ∈ Γ(X,A), we have that (IdX)
U

:

KU −→ KU , and so

{(IdX)
U∗

: Hn(KU) −→ Hn(KU), (U,UA) ∈ Γ(X,A)}

is an inverse system of isomorphisms of the system {Hn(KU), πU V ∗,Γ(X)} into {Hn(KU), πU V ∗,Γ(X,A)}

corresponding to the order preserving map ψ. Similarly, we have that {(IdX)∗
U

: Hn(KU) −→

Hn(KU), (U,UA) ∈ Γ(X,A)} is an direct system of isomorphisms of the system {Hn(KU),Γ(X,A)}

into {Hn(KU),Γ(X)} corresponding to the order preserving map ψ. Thus, we conclude that

IdX ∗ : Ȟn (X) −→ Ȟn (X)Γ(X,A) and that IdX
∗ : Ȟn (X)Γ(X,A) −→ Ȟn (X) are isomorphisms.

Now, consider the inclusion θ : (A,A) −→ (X,A). Let (U,UA) ∈ Γ(X,A), and write (U ′ ,U ′
A) :=

θ−1 (U,UA). From Proposition 3.2, we have that (U ′ ,U ′
A) ∈ Γ(A,A), and from the definition

of the interior cover, we also have that U ′
A is an interior cover of A. For convenience, write

V := U ′
A = θ−1 (UA) = ι−1 (UA). Consider the simplicial pair (KU ′ , LU ′

A
) corresponding to

(U ′ ,U ′
A). From the definition of the subcomplex LU ′

A
, we have that KV = LU ′

A
. Now, using

the simplicial map θ1
U : (KU ′ , LU ′

A
) −→ (KU , LUA

), we have that θ1
U(KV) = θ1

U(LU ′
A
) ⊂ LUA

, and
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so, we can factor the simplicial map θ1
U as

LUA
KU

KV

h
U

ℓ1
U

θ1
U

where ℓ1
U is the restriction of the codomain of the simplicial map θ1

U , and hU is the inclusion

from the sumcomplex LUA
to KU .

Now, define the map kU : LUA
−→ KV by kU(U) := U ∩ A, for each vertex U in LUA

. We will

prove that kU is a simplicial map. Let U0 , . . . , Un be vertices of a simplex in LUA
, then

Ø 6= U0 ∩ . . . ∩ Un ∩ A = (U0 ∩ A) , . . . , (Un ∩ A) = kU(U0) , . . . , kU(Un)

Thus, we have that kU(U0) , . . . , kU(Un) are vertices of a simplex of KV , and so kU can be ex-

tended to a simplicial map as desired.

Note that kUℓ
1
U = IdKV

, because for any vertex V in KV there is a vertex U = ℓ1
U(V ) in LUA

such that

V = θ−1 (U) = U ∩ A = kU(U) = kU(ℓ1
U(V ))

We also have that ℓ1
UkU and IdLUA

are contiguous. In order to prove this, let U0 , . . . , Un be

vertices of a simplex in LUA
. If U ′0 , . . . , U

′
n are the respective images under ℓ1

UkU . Then, for each

j = 0 , . . . , n, we have that

U ′j ∩ A = kU(U ′j) = kU(ℓ1
UkU(Uj)) = kU(Uj) = Uj ∩ A

and so,

U0 ∩ . . . ∩ Un ∩ U
′
0 ∩ . . . ∩ U

′
n ∩ A = (U0 ∩ A)∩ . . . ∩ (Un ∩ A) ∩ (U ′0 ∩ A)∩ . . . ∩ (U ′n ∩ A)

= (U0 ∩ A)∩ . . . ∩ (Un ∩ A) 6= Ø

This means that U0 , . . . , Un, U
′
0 , . . . , U

′
n are vertices of a simplex of LUA

. Therefore, we conclude

that ℓ1
UkU and the identity map are contiguous.

Now, we have that {ℓU∗ : Hn(KV) −→ Hn(LUA
), (U,UA) ∈ Γ(X,A)} is an inverse system

of isomorphisms of the system {Hn(KU),Γ(A)} into {Hn(LUA
),Γ(X,A)} corresponding to the

order preserving map φ. Similarly, we have that {ℓ∗
U

: Hn(LUA
) −→ Hn(KV), (U,UA) ∈ Γ(X,A)}

is an direct system of isomorphisms of the system {Hn(LUA
),Γ(X,A)} into {Hn(KU),Γ(A)}

corresponding to the order preserving map φ.
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Now, we show that φ is surjective. Let V ∈ Γ(A). Define

U := {U ⊂ X|U = X or U = V ∪ (X \ A), V ∈ V } and UA := {V ∪ (X \ A)|V ∈ V }.

Using Proposition 1.12, we have that

A =
⋃

V ∈V

iA (V )

=
⋃

V ∈V

(iX (V ∪ (X \ A)) ∩ A)

⊂
⋃

V ∈V

iX (V ∪ (X \ A))

=
⋃

U∈UA

iX (U)

and so, (U,UA) is in fact an interior cover of the pair (X,A). Since for any U ∈ UA there is a

V ∈ V such that U = V ∪ (X \ A), we have that

ι−1 (U) = U ∩ A = (V ∪ (X \ A)) ∩ A = (V ∩ A) ∪ ((X \ A) ∩ A) = V

Thus, we have that φ(U,UA) = V . Now, we can say that there are isomorphisms

ℓ∗ : Ȟn (A) −→ Ȟn (A)Γ(X,A) and ℓ∗ : Ȟn (A)Γ(X,A) −→ Ȟn (A)

Now, by attaching the isomorphisms we defined before on the sequences (3.7) and (3.8), we

obtain the following commutative diagrams

Ȟn (A)Γ(X,A) Ȟn (X)Γ(X,A)

Ȟn+1 (X,A) Ȟn−1 (X,A)

Ȟn (A) Ȟn (X)

h∗Γ(X,A)

j∗Γ(X,A)∂′
∗

∂

ℓ∗

h∗

IdX ∗

j∗
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where ∂ := (ℓ∗)
−1∂′ ∗, and

Ȟn (A)Γ(X,A) Ȟn (X)Γ(X,A)

Ȟn+1 (X,A) Ȟn−1 (X,A)

Ȟn (A) Ȟn (X)

δ′∗

ℓ∗

h∗
Γ(X,A)

IdX
∗

j∗
Γ(X,A)

j∗δ

h∗

where δ := δ′∗(ℓ∗)−1. Recall that the sequence (3.8) is exact, using Proposition 5.1, we have that

the bottom sequence is exact.

Finally, we need to prove that the homomorphisms ∂ and δ satisfy functorial properties. Let

f : (X,A) −→ (Y,B) be a continuous function. If g : A −→ B is the restriction of f on the domain

and codomain, we have the following commutative diagram on homology

Ȟn+1 (X,A) Ȟn (A)Γ(X,A) Ȟn (A)

Ȟn+1 (Y,B) Ȟn (B)Γ(Y,B) Ȟn (B)

f∗

∂′
∗

∂

g∗Γ(X,A)

ℓ∗

g∗

∂′
∗

∂

ℓ∗

It follows that ∂f∗ = g∗∂. Similarly on cohomology, we have the commutative diagram

Ȟn+1 (X,A) Ȟn (A)Γ(X,A) Ȟn (A)

Ȟn+1 (Y,B) Ȟn (B)Γ(Y,B) Ȟn (B)

δ′∗ ℓ∗

δ

f∗

δ′∗

g∗
Γ(X,A)

ℓ∗

δ

g∗

and so δg∗ = f ∗δ.
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3.4 Dimension Axiom

Theorem 3.16. Let P be a one-point space. Then

Hn(P ) ∼=











0, n 6= 0

Z, n = 0
, and Hn(P ) ∼=











0, n 6= 0

Z, n = 0

3.4.1 Proof of Theorem 3.16

Definition 3.7. Let X be a set. If c : P (X) −→ P (X) is defined by c(A) = X for all nonempty

A ⊂ X and c(Ø) = Ø, we say it is a trivial closure operator (or sometimes called the indiscrete

closure operator).

The only neighborhood for this closure space is U = {X}. Thus,KU is a one-point simplicial

and the inverse limit coincides with the homology of the simplex KU .

Let P be a one-point space. Note that the only closure operator is the trivial one, and so the

Čech homology

Ȟ∗ (P ) ∼=











0, n 6= 0

Z, n = 0

The same occurs in Čech cohomology.

3.5 Excision Axiom

Theorem 3.17. Consider a pair (X,A). Let U ⊂ X be an open set in X , i.e., i (U) = U , with c (U) ⊂

i (A). Let ι : (X \ U,A \ U) −→ (X,A) be the natural inclusion. Then the induced homomorphisms in

(co)homology are isomorphisms, which means that

ι∗ : Ȟ∗ (X \ U,A \ U) −→ Ȟ∗ (X,A) , and ι∗ : Ȟ∗ (X,A) −→ Ȟ∗ (X \ U,A \ U)

3.5.1 Proof for Theorem 3.17

The condition c (U) ⊂ i (A) implies that

X = iX (X \ U) ∪ iX (A)

since iX (X \ U) = X \ cX (U) ⊃ X \ iX (A).

Define D ⊂ Γ(X,A) as the collection of (V,VA) ∈ Γ(X,A) such that for any V ∈ V with

V ∩ U 6= Ø, we have that V ∈ VA and V ⊂ A. This subset D is cofinal in Γ(X,A), since for any
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(W,WA) ∈ Γ(X,A) we can define VA := {V ⊂ X|V = W \U, W ∈ WA; or V = W ∩A, W ∈ VA}

and V := {V ⊂ X|V = W \ U, W ∈ W ; or V ∈ VA}. Note that for each W ∈ WA, we have that

iX (W \ U) ∪ iX (W ∩ A) = [iX (W ) ∩ iX (X \ U)] ∪ [iX (W ) ∩ iX (A)]

= iX (W ) ∩ [iX (X \ U) ∪ iX (A)]

= iX (W ) .

It follows that

A ⊂
⋃

W∈WA

iX (W ) =
⋃

W∈WA

[iX (W \ U) ∪ iX (W ∩ A)] =
⋃

V ∈VA

iX (V )

We also have that

X = iX (X \ U) ∪ iX (A)

= [X ∩ iX (X \ U)] ∪ [A ∩ iX (A) ∩ iX (A)]

⊂









⋃

W∈W

iX (W )



 ∩ iX (X \ U)



 ∪









⋃

W∈WA

iX (W )



 ∩ iX (A)





=





⋃

W∈W

(iX (W ) ∩ iX (X \ U))



 ∪





⋃

W∈WA

(iX (W ) ∩ iX (A))





=





⋃

W∈W

iX (W \ U)



 ∪





⋃

W∈WA

iX (W ∩ A)



 =
⋃

V ∈V

iX (V )

We conclude that in fact (V,VA) is a interior cover of (X,A), and from the definition follows

that (V,VA) is a refinement of the given (W,WA).

Let (V,VA) ∈ D. For any V ∈ V , we have that either V ⊂ X \ U or V ⊂ A. Define MV as

the subcomplex of KV made of all the simplexes whose vertices are contained in X \ U . For

convenience we will write X ′ = X \ U and A′ = A \ U . Recall that V ′ := ι−1 (V ) is a covering

for X ′. If V ∈ V is such that V ⊂ X \ U , then we have V ′ := ι−1 (V ) = V . Thus, there is a copy

of MV as a subcomplex of KV ′ corresponding to the vertices V ′ ∈ V ′ for which there is V ∈ V

such that V ′ = ι−1 (V ) = V , i.e., V ′ ∈ V . We call this copy MV ′ .

Now, consider the simplicial map ι1V : (KV ′ , LV ′
A′ ) −→ (KV , LVA

). Let V ′ be a vertex in KV ′ .

If V ′ is a vertex of MV ′ , then there is a corresponding vertex V in MV and we can suppose that

ι1V(V ′) := V . If V ′ is not a vertex of MV ′ , let V ∈ V be any vertex such that V ′ = ι−1 (V ) = V \U .

We have that V 6= V ′, i.e., V ∩ U 6= Ø, and so, using that (V,VA) ∈ D, we have that V ∈ VA

and V ⊂ A. It follows that V ′ is a vertex of LV ′
A′ and V is a vertex of LVA

, since V ′ ∩ A \ U =

ι−1 (V ∩ A) 6= Ø.

Note that the definition of ι1V sends homeomorphically the subcomplexMV ′ toMV and maps
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LV ′
A′ into LVA

. Also note that KV ′ = MV ′ ∪ LV ′
A′ and KV = MV ∪ LVA

.

The following lemma is equivalent to the excision for the singular (co)homology. It will be

used to finish the argument.

Lemma 3.18. Let K be a simplicial complex, and M,L be subcomplexes whose interiors cover K. Then

the inclusion

(M,M ∩ L)
f
−֒→ (K,L)

induces an isomorphism in (co)homology.

Proof. Define A := K \M . Then, we have that

K ∩ L = (K \ A) ∩ L = L \ A

and that c (A) = c (K \M) = K \ i (M) ⊂ i (L), since i (K) ∪ i (L) = K. Using the Excision

Axiom for simplicial homology, we have that

(M,M ∩ L) = (K \ A,L \ A) −֒→ (K,L)

induces isomorphisms on (co)homology.

Now note that in the following commutative diagram

H∗(KV ′ , LV ′
A′ ) H∗(KV , LVA

)

H∗(MV ′ ,MV ′ ∩ LV ′
A′ ) H∗(MV ,MV ∩ LVA

)

ιV

jV

f
V ′ gV

the map jV is an isomorphism since is the induced map of an homeomorphism, and fV ′ , gV are

isomorphisms. Thus, ιV is an isomorphism.

Similarly we have that there is a corresponding commutative diagram for cohomology

H∗(KV ′ , LV ′
A′ ) H∗(KV , LV)

H∗(MV ′ ,MV ′ ∩ LV ′
A′ ) H∗(MV ,MV ∩ LVA

)

f
V ′

ι
V

g
V

j
V

Thus, ι
V

is an isomorphism.

Note that there is an inverse system of isomorphisms {ιV : H∗(KV ′ , LV ′
A′ ) −→ H∗(KV , LVA

)}
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which induces an isomorphism on the inverse limit. Thus,

Ȟ∗ (X ′, A′)
∼=−→ lim

←
D′

{H∗(KV ′ , LV ′
A′ )}

∼=−→ lim
←
D

{H∗(KV , LVA
)}
∼=−→ Ȟ∗ (X,A)

Similarly, there is a direct system of isomorphisms {ι
V

: H∗(KV , LVA
) −→ H∗(KV ′ , LV ′

A′ )} which

induces an isomorphism on the direct limit. Thus, in cohomology

Ȟ∗ (X ′, A′)
∼=←− lim
→
D′

{H∗(KV ′ , LV ′
A′ )}

∼=←− lim
→
D

{H∗(KV , LVA
)}

∼=←− Ȟ∗ (X,A)
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Chapter 4

Mayer-Vietoris Sequence

In this chapter, we will prove that for any cohomology theory that satisfies the Eilenberg Steen-

rod axioms there is a Mayer-Vietoris sequence. We only examine the case of cohomology, since

the result depends strongly on the exact sequence for a pair, which is not satisfied for Čech

homology (even in the topological case). The Mayer-Vietoris sequence is an important tool that

allows us to compute the cohomology of a space from the cohomology of two subsets whose

interiors cover the space. As mentioned in the introduction, in future work we will generalize

these results to obtain the Mayer-Vietoris spectral sequence, and use it for several computations.

We obtain the Mayer-Vietoris Sequence using exact sequences. Thus, we will state and proof

this property in cohomology, since the Čech Cohomology satisfies the Exactness axiom and the

Čech Homology doesn’t. Also, we will prove a general Mayer-Vietoris Sequence, for which we

will use triplets (X,A,B), where B is a subspace of A, which also is a subspace of X .

Theorem 4.1. Given a cohomology theory (H∗, δ), and a triple (X,A,B) with inclusions

ι : (A,B) −→ (X,B) and j : (X,B) −→ (X,A),

there is an exact sequence

. . . Hn−1(A,B) Hn(X,A) Hn(X,B) Hn(A,B) . . .
δ j∗ ι∗

where δ is the composite

Hn−1(A,B) −→ Hn−1(A) −→ Hn(X,A)

Proof. Both maps ι : (A,B) −→ (X,B) and j : (X,B) −→ (X,A) induce maps between the exact
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sequences of the pairs (X,A), (X,B), and (A,B) as seen in the following commutative diagram

. . . Hn(X) Hn(A) Hn(X,A) Hn+1(X) . . .

. . . Hn(X) Hn(B) Hn(X,B) Hn+1(X) . . .

. . . Hn(A) Hn(B) Hn(A,B) Hn+1(B) . . .

j∗

ι∗

where the rows are exact. Now, we can consider the following commutative diagram by ar-

ranging terms on the previous diagram

Hn−1(B) Hn(A,B) Hn+1(X,A) Hn+1(X)

Hn−1(A) Hn(X,B) Hn(A) Hn+1(X,B)

Hn(X,A) Hn(X) Hn(B)

δ

j∗ι∗

j∗

Using the following commutative diagram

(A,B) (X.B)

(A,A) (X,A)

i

j

and that H [∗](A,A) = 0, we have that ι∗j∗ = 0.

Since the blue, red, and yellow sequences are exact, using the Braid Lemma 5.2 the sequence

Hn(X,A) Hn(X,B) Hn(A,B) Hn+1(X,A) Hn+1(X,A)
j∗ i∗ δ j∗

is exact.

Theorem 4.2. Let X1, X2 be subspaces of X . The following are equivalent.

a) The excision map (X1, X1 ∩X2)
k1−→ (X1 ∪X2, X2) induces an isomorphism of cohomology.

b) The excision map (X2, X1 ∩X2)
k2−→ (X1 ∪X2, X1) induces an isomorphism of cohomology.
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c) The inclusion maps

i1 : (X1, X1 ∩X2) −→ (X1 ∪X2, X1 ∩X2)

and

i2 : (X2, X1 ∩X2) −→ (X1 ∪X2, X1 ∩X2)

induces epimorphisms on cohomology, and i1
∗ , i2

∗ induce an isomorphism

Hn(X1 ∪X2, X1 ∩X2) ∼= Hn(X1, X1 ∩X2)⊕H
n(X2, X1 ∩X2)

d) The inclusion maps

j1 : (X1 ∪X2, X1 ∩X2) −→ (X1 ∪X2, X1)

and

j2 : (X1 ∪X2, X1 ∩X2) −→ (X1 ∪X2, X2)

induces monomorphisms on cohomology, and

Hn(X1 ∪X2, X1 ∩X2) ∼= j1
∗(Hn(X1 ∪X2, X1))⊕ j2

∗(Hn(X1 ∪X2, X2))

e) For any A ⊂ X1 ∩X2 there is an exact Mayer-Vietoris sequence

. . . −→ Hn(X1∪X2, A)
(g1

∗ ,g2
∗ )

−−−−−→ Hn(X1, A)⊕Hn(X2, A)
f1

∗−f2
∗

−−−−−→ Hn(X1∩X2, A) −→ Hn+1(X1∪X2, A) −→ . . .

where fα : (X1∩X2, A) −֒→ (Xα, A) and gα : (Xα, A) −֒→ (X1∪X2, A) are the natural inclusions.

f) For any Y ⊃ X1 ∪X2 there is an exact Mayer-Vietoris sequence

. . . −→ Hn(Y,X1∪X2)
(l1

∗ ,l2
∗ )

−−−−→ Hn(Y,X1)⊕H
n(Y,X2)

h1
∗−h2

∗

−−−−−→ Hn(Y,X1∩X2) −→ Hn+1(Y,X1∪X2) −→ . . .

where hα : (Y,X1 ∩X2) −֒→ (Y,Xα) and lα : (Y,Xα) −֒→ (Y,X1 ∪X2) are the natural inclusions.

Remark. Similarly as we showed in Lemma 3.18, we have there is a relationship between the

Excision Axiom and the pairs {X1, X2} such that i (X1) ∪ i (X2) = X with the inclusion

(X1, X1 ∩X2) −→ (X1 ∪X2, X2)

inducing an isomorphism of cohomology.

Proof.
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a)⇒ e)

Let A ⊂ X1 ∩X2. The inclusion the natural inclusion of the triple

(X1, X1 ∩X2, A) −֒→ (X1 ∪X2, X2, A)

induces the following commutative diagram

· · · Hn(X1 ∪X2, X2) Hn(X1 ∪X2, A) Hn(X2, A) Hn+1(X1 ∪X2, X2) · · ·

· · · Hn(X1, X1 ∩X2) Hn(X1, A) Hn(X1 ∩X2, A) Hn+1(X1, X1 ∩X2) · · ·

k1
∗ k1

∗

Using the lemma 5.3, since k1
∗ is an isomorphism, there is an induced exact sequence

. . . −→ Hn(X1∪X2, A) −→ Hn(X1, A)⊕Hn(X2, A) −→ Hn(X1∩X2, A) −→ Hn+1(X1∪X2, A) −→ . . .

e)⇒ c)

Set A := X1 ∩ X2. Using that Hn(X1 ∩ X2, A) = Hn(X1 ∩ X2, X1 ∩ X2) = 0, we have the

following exact Mayer-Vietoris sequence

. . . −→ 0 −→ Hn(X1 ∪X2, X1 ∩X2) −→ Hn(X1, X1 ∩X2)⊕H
n(X2, X1 ∩X2) −→ 0 −→ . . .

It follows that

Hn(X1 ∪X2, X1 ∩X2)
∼=−−→

(g1
[∗
, g2

[∗])]Hn(X1, X1 ∩X2)⊕H
n(X2, X1 ∩X2)

Since gα = iα : (Xα, X1 ∩ X2) −→ (X1 ∪ X2, X1 ∩ X2), we have that in fact i1, i2 induce

epimorphisms in cohomology.

c)⇒ b)

Consider the following commutative diagram

(X1, X1 ∩X2) (X2, X1 ∩X2)

(X1 ∪X2, X1 ∩X2)

(X1 ∪X2, X2) (X1 ∪X2, X1)

i1

k1

i2

k2

j2 j1

By hypothesis, iα
∗ are epimorphism, i.e., Im (iα

∗) = Hn(Xα, X1 ∩X2). Using Theorem 4.1
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on the triple (X1 ∪X2, Xα, X1 ∩X2), there is an exact sequence

· · · −→ Hn(X1∪X2, Xα)
jα∗−−→ Hn(X1∪X2, X1∩X2)

iα∗−−→ Hn(Xα, X1∩X2)
δ
−→ Hn+1(X1∪X2, Xα) −→ · · ·

(4.1)

Thus, from the exactness of the previous sequence, we have that Hn(Xα, X1 ∩ X2) =

Im (iα
∗) = ker(δ), and so δ = 0. Also, from the same sequence, we have that jα

∗ is an

monomorphism, since

0 = Im (δ) = ker(jα
∗)

Now, we will show that k2
∗ is an isomorphism. First, we will prove that k2

∗ is an epi-

morphism. Let a ∈ Hn(X2, X1 ∩ X2). Using that i2
∗ is an epimorphism, there is b ∈

Hn(X1 ∪X2, X1 ∪X2) such that i2
∗(b) = a. Using the hypothesis that

Hn(X1 ∪X2, X1 ∩X2) ∼= Hn(X1, X1 ∩X2)⊕H
n(X2, X1 ∩X2),

we have that i1
∗(b) = 0. Then, b ∈ ker(i1

∗) = Im (j1
∗), and so there is c ∈ Hn(X1 ∪X2, X1)

such that j1
∗(c) = b. It follows that

k2
∗(c) = i2

∗(j1
∗(c)) = i2

∗(b) = a

Therefore, k2
∗ is an epimorphism.

Now, we will show that k2
∗ is a monomorphism. Let c ∈ ker(k2

∗), i.e.,

0 = k2
∗(c) = i2

∗(j1
∗(c)).

It follows that j1
∗(c) ∈ ker(i2

∗). Also, using the exact sequence (4.1), we have that ker(i1
∗) =

Im (j1
∗), and so, using the direct sum assumption, we have that

j1
∗(c) ∈ ker(i1

∗) ker(i2
∗) = 0,

Since j1
∗ is a monomorphism, as shown before, we have that c = 0, hence k2

∗ is a

monomorphism.

b)⇒ f)

Let Y ⊃ X1 ∩X2. The inclusion the natural inclusion of the triple

(Y,X2, X1 ∩X2) −֒→ (Y,X1 ∪X2, X1)
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induces the following commutative diagram

· · · Hn(X1 ∪X2, X1) Hn(Y,X1 ∪X2) Hn(Y,X1) Hn+1(X1 ∪X2, X1) · · ·

· · · Hn(X2, X1 ∩X2) Hn(Y,X2) Hn(Y,X1 ∩X2) Hn+1(X2, X1 ∩X2) · · ·

k2
∗ k2

∗

Since k2
∗ are isomorphisms, we can use the lemma 5.3, for which there is an induced exact

sequence

· · · −→ Hn(Y,X1∪X2)
(l1

∗ ,l2
∗ )

−−−−→ Hn(Y,X1)⊕H
n(Y,X2)

h1
∗−h2

∗

−−−−−→ Hn(Y,X1∩X2) −→ Hn+1(Y,X1∩X2) −→ · · ·

f)⇒ d)

Set Y := X1 ∪ X2. Using that Hn(Y,X1 ∪ X2) = Hn(X1 ∪ X2, X1 ∪ X2) = 0, we have the

following exact Mayer-Vietoris sequence

. . . −→ 0 −→ Hn(X1 ∪X2, X1)⊕H
n(X1 ∪X2, X2) −→ Hn(X1 ∪X2, X1 ∩X2) −→ 0 −→ . . .

It follows that

Hn(X1 ∪X2, X1)⊕H
n(X1 ∪X2, X2)

∼=−−−−−→
h1

∗−h2
∗
Hn(X1 ∪X2, X1 ∩X2)

Since hα = jα : (X1 ∪ X2, X1 ∩ X2) −→ (X1 ∪ X2, Xα), we have that in fact j1, j2 induce

monomorphisms in cohomology.

d)⇒ a)

Consider the following commutative diagram

(X1, X1 ∩X2) (X2, X1 ∩X2)

(X1 ∪X2, X1 ∩X2)

(X1 ∪X2, X2) (X1 ∪X2, X1)

i1

k1

i2

k2

j2 j1

By hypothesis jα
∗ is an monomorphism, i.e., 0 = ker(jα

∗). Using Theorem 4.1 on the triple

(X1 ∪X2, Xα, X1 ∩X2), there is an exact sequence

· · · −→ Hn(Xα, X1∩X2)
δ
−→ Hn(X1∪X2, Xα)

jα∗−−→ Hn(X1∪X2, X1∩X2)
iα∗−−→ Hn(Xα, X1∩X2) −→ · · ·

(4.2)
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we have that 0 = ker(jα
∗) = Im (δ), and so δ = 0. Using again the exact sequence, we have

that iα
∗ is an epimorphism, since

Hn(Xα, X1 ∩X2) = ker(δ) = Im (iα
∗)

We will show that k1
∗ is an isomorphism. First, we will show that k1

∗ is an epimorphism.

Let a ∈ Hn(X1, X1∩X2). Using that i1
∗ is an epimorphism, there is b ∈ Hn(X1∪X2, X1∪X2)

such that i1
∗(b) = a. Using the hypothesis that

Hn(X1 ∪X2, X1 ∩X2) ∼= j1
∗(Hn(X1 ∪X2, X1))⊕ j2

∗(Hn(X1 ∪X2, X2)),

there are b1 ∈ H
n(X1 ∪X2, X1), b2 ∈ H

n(X1 ∪X2, X2) such that

b = j1
∗(b1) + j2

∗(b2)

It follows that

a = i1
∗(b) = i1

∗(j1
∗(b1) + j2

∗(b2)) = i2
∗(j1

∗(b1)) + i2
∗(j2

∗(b2)) = i1
∗(j2

∗(b1)) = k1
∗(b1),

since i2
∗j2
∗ = 0. Thus, k1

∗ is an epimorphism.

Now we will show that k1
∗ is a monomorphism. Let c ∈ ker(k1

∗), i.e.,

0 = k1
∗(c) = i1

∗(j2
∗(c)),

and so,

j2
∗(c) ∈ ker(i1

∗) = Im (j1
∗),

by using the exact sequence (4.2). By the direct sum assumption, we have that

Im (j1
∗) ∩ Im (j2

∗) = 0

and so j2
∗(c) = 0. Since j2

∗ is a monomorphism, we conclude that c = 0. Therefore, k1
∗ is

a monomorphism.

Definition 4.1. A triad (X;X1, X2) consists of a space X and two subspaces X1, X2 of X . A triad

is called proper if the inclusions

(X1, X1 ∩X2) −→ (X1 ∪X2, X2) and (X2, X1 ∩X2) −→ (X1 ∪X2, X1)

induce isomorphisms on cohomology.
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If (X;X1, X2) and (Y ;Y1, Y2) are triads, a continuous function between triads is a continuous

function f : X −→ Y such that f(Xα) ⊂ Yα. We’ll denote it by f : (X;X1, X2) −→ (Y ;Y1, Y2).

Theorem 4.3. Let (X;X1, X2) and (Y ;Y1, Y2) be proper triads, and f : (X;X1, X2) −→ (Y ;Y1, Y2) be

continuous. If B ⊂ Y1 ∩ Y2 and A ⊂ X1 ∩ X2 such that f(A) ⊂ B. Then f induces an homomor-

phism from the exact Mayer-Vietoris sequence of {X1, X2;A} into the exact Mayer-Vietoris sequence of

{Y1, Y2;B}.

Similarly, if V ⊃ Y1 ∪ Y2 and U ⊃ X1 ∪ X2 such that f(U) ⊂ V . Then f induces an homomor-

phism from the exact Mayer-Vietoris sequence of {U ;X1, X2} into the exact Mayer-Vietoris sequence of

{V ;Y1, Y2}.

Proof. Consider the following commutative diagrams induced by inclusions

Hn(X1, A) Hn(X1 ∩X2, A) Hn(X2, A)

Hn(Y1, B) Hn(Y1 ∩ Y2, B) Hn(Y2, B)

and
Hn(X1, A) Hn(X1 ∪X2, A) Hn(X2, A)

Hn(Y1, B) Hn(Y1 ∪ Y2, B) Hn(Y2, B)

These induce the following commutative diagram

Hn(X1 ∩X2, A) Hn(X1, A)⊕Hn(X2, A) Hn(X1 ∪X2, A)

Hn(Y1 ∩ Y2, B) Hn(Y1, B)⊕Hn(Y2, B) Hn(Y1 ∪ Y2, B)

Now, using that the excision maps

(X1, X1 ∩X2) −→ (X1 ∪X2, X2) and (Y1, Y1 ∩ Y2) −→ (Y1 ∪ Y2, Y2)

induce isomorphisms on cohomology, we have the following commutative diagram

Hn(X1 ∪X2, A) Hn(X1 ∪X2, X2) Hn(X1, X1 ∩X2) Hn−1(X1 ∩X2, A)

Hn(Y1 ∪ Y2, B) Hn(Y1 ∪ Y2, Y2) Hn(Y1, Y1 ∩ Y2) Hn−1(Y1 ∩ Y2, B)
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Therefore,

Hn(X1 ∪X2, A) Hn−1(X1 ∩X2, A)

Hn(Y1 ∪ Y2, B) Hn−1(Y1 ∩ Y2, B)

is commutative, and so

Hn(X1 ∩X2, A) Hn(X1, A)⊕Hn(X2, A) Hn(X1 ∪X2, A) Hn−1(X1 ∩X2, A)

Hn(Y1 ∩ Y2, B) Hn(Y1, B)⊕Hn(Y2, B) Hn(Y1 ∪ Y2, B) Hn−1(Y1 ∩ Y2, B)

is also commutative.

The proof is similar for {U ;X1, X2}, {V ;Y1, Y2}.
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Chapter 5

Apendix

5.1 Algebra

Proposition 5.1. Consider the following commutative diagram of groups

B

A C

B′

g

φ

f

f ′ g′

ψ

where φ is an isomorphism whose inverse is ψ. If the sequence on top is exact, i.e., ker(g) = Im (f).

Then the sequence bellow is exact.

Proof. Since g′f ′ = (gψ)(φf) = gf = 0, we have that Im (f ′) ⊂ ker(g′). Now, let b′ ∈ ker(g′).

Then, we have that

g(ψ(b′)) = g′(b′) = 0

Thus, ψ(b′) ∈ ker(g) = Im (f), and so there exists a ∈ A such that f(a) = ψ(b′). It follows that

f ′(a) = φ(f(a)) = φ(ψ(b′)) = b′

Therefore, ker(g′) ⊂ Im (f ′).
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Definition 5.1. We say that the following commutative diagram is a braid

A B C D

E F G H

I J K

α

ǫ

β

θ

γ

λδ

ν

η

ρ

κ

τ

µ

π

ψ

σ

ω

φ

Consider the following sequences of the braid

E
δ
−→ A

α
−→ B

θ
−→ G

τ
−→ K (5.1)

E
ν
−→ I

ψ
−→ J

σ
−→ G

κ
−→ C

γ
−→ D (5.2)

A
ǫ
−→ F

ρ
−→ J

ω
−→ K

φ
−→ H

µ
−→ D (5.3)

I
π
−→ F

η
−→ B

β
−→ C

λ
−→ H (5.4)

If all four sequences are exact, we say that it is an exact braid.

Lemma 5.2 (Braid Lemma). In order to the braid to be exact, it suffices that the the composite I −→

F −→ B is zero and that the sequences (5.1), (5.2), and (5.3) are exact.

Proof. We’ll prove exactness at each step:

1. (Exactness at I −→ F −→ B)

By hypothesis Im π ⊂ ker η. Let f ∈ ker η. Using the commutativity of the diagram

σ(ρ(f)) = θ(η(f)) = θ(0) = 0,

and so ρ(f) ∈ kerσ = Imψ. This means there is i ∈ I such that ψ(i) = ρ(f). Note that

ρ(f − π(i)) = ρ(f)− ρ(π(i)) = ρ(f)− ψ(i) = 0,

and so f − π(i) ∈ ker ρ = Im ǫ. Thus, there is a ∈ A such that

ǫ(a) = f − π(i)

Note that a ∈ kerα = Im δ, since

α(a) = η(ǫ(a)) = η(f)− η(π(i)) = 0,
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because ηπ = 0. This means there is e ∈ E such that δ(e) = a. It follows that

π(ν(e) + i) = π(ν(e)) + π(i) = ǫ(δ(e)) + π(i) = ǫ(a) + π(i) = f − π(i) + π(i) = f,

and so f ∈ Im π. Therefore Im π = ker η.

2. (Exactness at F −→ B −→ C)

First, note that

βη = (κθ)η = κ(θη) = κ(σρ) = (κσ)ρ = (0)ρ = 0

This means that Im η ⊂ ker β. Now, let b ∈ ker β. Using that

κ(θ(b)) = β(b) = 0,

we have that θ(β) ∈ kerκ = Im σ. Then, there is j ∈ J such that σ(j) = θ(b). Since

ω(j) = τ(σ(j)) = τ(θ(b)) = 0,

we have that j ∈ kerω = Im ρ, and so there is f ∈ F such that ρ(f) = j. It follows that

θ(b− η(f)) = θ(b)− θ(η(f)) = θ(b)− σ(ρ(f)) = θ(b)− σ(j) = 0,

which means that b − η(f) ∈ ker θ = Imα. Thus, there is a ∈ A such that α(a) = b − η(f).

Finally, we have that

η(ǫ(a) + f) = η(ǫ(a)) + η(f) = α(a) + η(f) = b− η(f) + η(f) = b

Therefore b ∈ Im η, and so we conclude that ker β = Im η.

3. (Exactness at B −→ C −→ H)

We have that

λβ = λ(κθ) = (λκ)θ = (φτ)θ = φ(τθ) = φ(0) = 0

It follows that Im β ⊂ kerλ. Now, let c ∈ kerλ ⊂ C. Using the commutativity of the

diagram, we have that

γ(c) = µ(λ(c)) = µ(0) = 0,

which means that c ∈ ker γ = Im κ. This means there is g ∈ G such that κ(g) = c. Note

that τ(g) ∈ kerφ = Imω, since

φ(τ(g)) = λ(κ(g)) = λ(c) = 0

77



Thus, there is j ∈ J such that ω(j) = τ(g). It follows that

τ(g − σ(j)) = τ(g)− τ(σ(j)) = τ(g)− ω(j) = 0,

and so g − σ(j) ∈ ker τ . Then, there is b ∈ B such that θ(b) = g − σ(j). Using that κσ = 0,

we conclude that

β(b) = κ(θ(b)) = κ(g − σ(j)) = κ(g)− κ(σ(j)) = c,

and that c ∈ Im β. Therefore, we conclude that kerλ = Im β.

Lemma 5.3. Consider the following commutative diagram

· · · C ′′n+1 C ′n Cn C ′′n C ′′n−1 · · ·

· · · D′′n+1 D′n Dn D′′n D′′n−1 · · ·

δn+1

f ′′
n+1

in

f ′
n

pn

fn

δn

f ′′
n f ′

n−1

∂n+1 jn qn ∂n

where the rows are long exact sequences and the vertical maps f ′′∗ are isomorphisms. Then there is an

exact sequence

· · · C ′n Cn ⊕D
′
n Dn C ′n−1 · · ·

un vn ∆n

where un = (in, f
′
n), vn = fn − jn, ∆n = δnφnqn, and φn = (f ′′n)−1.

Proof. We will prove the exactness at each step:

1. (Im un = ker vn)

Let c′ ∈ C ′n. Since the diagram is commutative, we have that fnin(c′) = jnf
′
n(c′), and so

vnun(c′) = vn(in(c′), f ′n(c′))fn(in(c′))− jn(f ′n(c′)) = 0

Then, we have that vnun = 0, i.e., Im un ⊂ ker vn. Now, let (c, d′) ∈ ker vn ⊂ Cn ⊕ D′n.

We note that fn(c) = jn(d′), since 0 = un(c, d′) = fn(c) − jn(d′). Using that f ′′n is an

isomorphism, and that

0 = qnjn(d′) = qnfn(c) = f ′′npn(c) = f ′′n(pn(c)),

we have that pn(c) = 0, i.e., c ∈ ker pn = Im in. Consequently, there exists c′ ∈ C ′n such that
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in(c′) = c. It follows that

jn(f ′n(c′)− d′) = jn(f ′n(c′))− jn(d′) = fn(in(c′))− jn(d′) = fn(c)− jn(d′) = 0,

and using that ker jn = Im ∂n+1, there is d′′ ∈ D′′n+1 such that ∂n+1(d
′′) = f ′n(c′)− d′. Finally,

we have that

f ′n(c′ − δn+1φn+1(d
′′)) = f ′n(c′)− f ′nδn+1(φn+1(d

′′))

= f ′n(c′)− ∂n+1f
′′
n+1(φn+1(d

′′))

= f ′n(c′)− ∂n+1(d
′′)

= f ′n(c′)− (f ′n(c′)− d′) = d′

and that

in(c′ − δn+1φn+1(d
′′)) = in(c′)− inδn+1(φn+1(d

′′)) = c− 0(φn+1(d
′′)) = c.

Thus, we have that (c, d′) = un(c′ − δn+1φn+1(d
′′)), i.e., ker vn ⊂ Im un. Therefore, Im un =

ker vn.

2. (Im vn = ker ∆n)

Let (c, d′) ∈ Cn ⊕D
′
n. First, we note that

∆nvn(c, d′) = δnφnqn(fn(c)− jn(d′))

= δnφnqnfn(c)− δnφnqn(jn(d′))

= δnφnf
′′
npn(c)− δnφn(0(d′))

= δnpn(c) = 0,

which means that ∆nvn = 0, i.e., Im vn ⊂ ker ∆n. Now, let d ∈ ker ∆n ⊂ Dn. Since

0 = ∆n(d) = δn(φnqn(d)), we have that φnqn(d) ∈ ker δn = Im pn, for which there is c ∈ Cn

such that pn(c) = φnqn(d). It follows that

qn(fn(c)− d) = f ′′npn(c)− qn(d) = f ′′nφnqn(d)− qn(d) = qn(d)− qn(d) = 0.

Thus, we have that fn(c) − d ∈ ker qn = Im jn, and so there exists d′ ∈ D′n such that

jn(d′) = fn(c)− d. It follows that d ∈ Im vn, since

d = fn(c)− jn(d′) = vn(c, d′).

Therefore, we have that ker ∆n ⊂ Im vn, and with this we conclude that Im vn = ker ∆n.
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3. (Im ∆n = kerun−1)

Let d ∈ Dn. Then, we have that

un−1∆n(d) = (in−1(δnφnqn(d)), f ′n−1(δnφnqn(d)))

= (0(φnqn(d)), ∂n−1f
′′
nφnqn(d))

= (0, ∂n−1qn(d)) = (0, 0),

and so un−1∆n = 0, i.e., Im ∆n ⊂ kerun−1. Now, let c′ ∈ kerun−1 ⊂ C ′n−1, i.e., we have that

(0, 0) = un−1(c
′) = (in−1(c

′), f ′n−1(c
′)). Since in−1(c

′) = 0 and that ker in−1 = Im δn−1, there

exists c′′ ∈ C ′′n such that δn(c′′) = c′. We also note that

∂n−1f
′′
n(c′′) = f ′n−1δn(c′′) = fn−1(c

′) = 0,

and, using that ker ∂n−1 = Im qn, there exists d ∈ Dn such that qn(d) = f ′′n(c′′). Therefore,

we have that

∆n(d) = δnφnqn(d) = δnφnf
′′
n(c′′) = δn(c′′) = c′.

We conclude that kerun−1 ⊂ Im ∆n, and so Im ∆n = kerun−1.
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