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Resumen  
La  integración de fuentes renovables de energía a la red eléctrica ha desatado nuevos retos para la 
operación y estabilidad de los sistemas eléctricos de potencia. Debido a que  fuentes de energía como la 
solar o la eólica proporcionan poco o nada de inercia rotacional a la red, los sistemas de potencia actuales 
quedan mayormente propensos a variaciones de potencia, variaciones de carga o fallas eléctricas. El 
objetivo de esta investigación es caracterizar las oscilaciones en la  frecuencia en un sistema máquina-
bus infinito sujeto a pequeños disturbios y proponer un método para mitigarlas utilizando técnicas de la 
teoría de control óptimo.  

Abstract  
Integration of Renewable energy sources (RES) to power grids has led to undesirable effects to power 
systems Stability. Since RES such as wind and solar energy provide low to none moment of inertia, power 
systems are more vulnerable to power impacts, sudden load changes, and electrical faults. Systems with 
low moment of inertia when subjected to disturbances experience greater rates of change of frequency 
(Rocof) at a faster pace than traditional systems, leading to higher risks of damaging mechanical vibrations 
to generators, fault cascades, and blackouts. The objective of this research is to analytically characterize 
frequency oscillations in a synchronous machine infinite bus (SMIB) system when arisen from small 
perturbations and propose a method to mitigate them by using techniques from optimal control theory. 
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INTRODUCTION  

During many years, power systems operation has been completely based on generation by means of thermal, 
hydro, and nuclear power plants. This kind of generation is based on large heavy rotating machinery that aids 
system stability. These generators provide high rotational inertia, through their stored kinetic energy, a 
fundamental property for power systems frequency dynamics and stability [1]. In case of frequency deviations, 
synchronous generators’ rotating mass releases energy to the grid. Thus, mitigating variations in frequency.  
According to the swing equation, frequency deviations are inversely proportional to two times the inertia constant 
H and proportional to power variations. 

𝑑𝑑∆𝑓𝑓
𝑑𝑑𝑑𝑑

=
1

2𝐻𝐻
(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑑𝑑) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝐺𝐺𝐺𝐺(𝑑𝑑))    (1). 

Operating at a high inertia constant, H, allows for a more benevolent frequency dynamics, slower Rocof. Thus, 
enhancing grid reliability. Keeping grid’s frequency within an acceptable range is an optimal scenario for steady 
state operation [1]. Therefore, frequency stability depends upon active power balance, meaning that power 
generated minus power demanded must be kept approximately at zero. Nowadays, renewable energy resources 
have greatly altered power systems total inertia constant H since this type generation contribute low to none 
moment of inertia to the overall system inertia, raising the question of how severe system frequency oscillations 
could be under low inertia scenarios. 

The swing equation establishes that the product of the moment of inertia J and the angular acceleration with 
respect to a stationary reference frame is equal to the change in torque producing it. For convenience, this 
mechanical equation is translated into electrical variables in a rotating reference frame to model the dynamics 
of synchronous generators [2]. This second order differential equation can be further broken down into two first 
order nonlinear differential equations. Typically, nonlinear differential equations are studied by finding it’s 
solutions numerically. Nevertheless, since power impacts are usually small in magnitude, linearization around 
an operating point is allowed and therefore their study can be carried out by finding the eigenvalues, poles, 
associated to the system’s characteristic polynomial. The two equations describing the SMIB system’s motion 
are: 

𝑑𝑑∆𝜔𝜔𝐺𝐺
𝑑𝑑𝑑𝑑

=
1

2𝐻𝐻
(𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑐𝑐∆𝛿𝛿 − 𝑇𝑇𝐺𝐺∆𝜔𝜔𝐺𝐺)   (2). 

𝑑𝑑𝛿𝛿
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑐𝑐∆𝜔𝜔𝐺𝐺   (3). 

Where Ts, the synchronizing torque component, is in phase with the angle deviation ∆𝛿𝛿 . Lack of synchronizing 
torque leads to non-oscillatory instability; the damping torque Td is in phase with speed deviations, lack of Td 
leads to oscillatory instability. Writing the above equations in Laplace transform; manipulating eq (3) in terms of 
eq (4), and counting for damping yields the following:  

𝑆𝑆2(∆𝛿𝛿) + 𝑆𝑆
𝐾𝐾𝐺𝐺
2𝐻𝐻

(∆𝛿𝛿) +
𝐾𝐾𝑐𝑐𝜔𝜔𝑐𝑐
2𝐻𝐻

=
𝜔𝜔𝑂𝑂

2𝐻𝐻
∆𝑇𝑇𝑐𝑐   (4). 

� ∆�̇�𝛿
∆𝜔𝜔𝐺𝐺̇

� = � 0 1
−𝑃𝑃𝐺𝐺2 −2𝜉𝜉𝑃𝑃𝐺𝐺

� � ∆𝛿𝛿∆𝜔𝜔𝐺𝐺
� + �

1
2𝐻𝐻
0
� ∆𝑇𝑇𝑐𝑐   (5). 

Where eq (5) is the state space representation of eq (6). For the sake of this investigation, the effects of low 
moment inertia on Rocof is analyzed using eq (6) while the Heffron-Phillips model is discussed for finding 
optimal eigenvalues in low inertia scenarios that include automatic voltage regulation. 
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MATERIALS Y METHODS 

Throughout this analysis, the computational package MATLAB has been extensively used to run simulations 
and designing controllers using the control toolbox commands. Because the damping ratio ξ, a measure that 
describes how fast system oscillations decay after a disturbance, plays a critical role in describing transient 
phenomena, our focus is to examine it as a function of varying values of H. 

𝜉𝜉(𝐻𝐻) =
𝐾𝐾𝐺𝐺

2�𝜔𝜔𝑂𝑂𝐾𝐾𝑐𝑐2𝐻𝐻
   (6) 

By taking its derivative with respect to H, a better insight must be gained about Rocof as H varies. On the other 
hand, the natural frequency of oscillation dictates how a system damps out oscillations without any external 
damping force 

𝑑𝑑𝜉𝜉
𝑑𝑑𝐻𝐻

=
−𝐾𝐾𝐺𝐺𝜔𝜔𝑐𝑐𝐾𝐾𝑐𝑐

2(𝜔𝜔𝑐𝑐𝐾𝐾𝑐𝑐2𝐻𝐻)3/2   (7) ;  
𝑑𝑑𝑃𝑃𝐺𝐺
𝑑𝑑𝐻𝐻

=
−�𝜔𝜔𝑐𝑐𝐾𝐾𝑐𝑐
(2𝐻𝐻)3/2    (8) 

Since the derivative of ξ(H) with respect to H holding 𝐾𝐾𝐺𝐺 ,𝜔𝜔𝑐𝑐, 𝑎𝑎𝑎𝑎𝑑𝑑 𝐾𝐾𝑐𝑐  constant is negative, the damping ratio 
function decreases as H varies. This result can be interpreted as the less inertia in the system, the greater the 
damping ratio and hence a faster decaying of oscillations can be expected. Furthermore, the derivative of the 
natural frequency with respect to H is also negative which implies that lower levels of inertia yield greater natural 
frequencies of oscillation. This two results might appear inconsistent. On the one hand, higher damping promotes 
quicker settling times while on the other hand, low values of H lead to more severe vibrating frequencies.  

RESULTS AND DISSCUSION  

Figure 1 shows frequency oscillations to different values of H in a SMIB system when subjected to a power 
impact caused by a sudden increment of 0.35 in mechanical torque. As expected, the variations in frequency 
that experienced the most severe oscillations are the ones with the lower inertia values while the ones with 
higher values of H exhibit a smoother and slower behavior. 

 

 

FIGURE 1: frequency oscillations to different values of H and their corresponding eigenvalues 
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In contrast to the general belief that left most eigenvalues imply a more stable dynamical system, these 
eigenvalues represent a quick convergence, desiring equilibrium is approached faster, yet it represents a less 
robust system. If poles of this system were to move farther into the left half plane, the nonlinear system might 
not act exactly like the linear system previously considered. Consequently, there must be an ideal set of 
eigenvalues that can be placed to best trade-off fast performance, avoiding damaging frequency overshoot, and 
cost of control. Given a   �̇�𝑥 = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 system and if A is a controllable and observable matrix, then there must 
be an actuator 𝐵𝐵 = −𝑘𝑘𝑥𝑥 where 𝑘𝑘 is the set of optimal gains that yields the most desirable set of eigenvalues of 
the system      �̇�𝑥 = (𝐴𝐴 − 𝐵𝐵𝑘𝑘)𝑥𝑥 . 

 

FIGURE 2: Control system design using pole placement. Block diagram representation 
This optimal theory of eigenvalue placement is achieved by a Linear quadratic regulator. A linear quadratic 
regulator defines a set of optimal eigenvalues based on two cost functions. The LQR minimizes a quadratic 
performance consisting of state and control matrices penalizing performance and cost [3]. 

𝐽𝐽 = � (𝑥𝑥′𝑄𝑄𝑥𝑥 + 𝐵𝐵′𝑅𝑅𝐵𝐵)𝑑𝑑𝑑𝑑
𝐺𝐺𝑓𝑓

𝐺𝐺𝑜𝑜
    (9) 

In eq (7) Q is an n x n matrix, n being the number of state variables, that penalizes states for not reaching 
equilibrium fast and R is the cost of using an actuator 𝐵𝐵 [3]. For instance, since renewable energies require more 
complex control strategies when subjected to disturbances, supercapacitors or battery banks are used as 
synthetic inertia to prevent frequency oscillations. These types of technologies require more energy which in turn 
increases the cost of actuators, R value. 
 

 
FIGURE 3: Frequency oscillations using an LQR controller 
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Figure 3 shows the proposed control strategy, where an LQR controller is only used when low inertia values are 
exhibited in the SMIB system. In this example, the case study in Figure 1 is used to test the effectiveness of the 
LQR controller design. From Figure 3, it can be shown that systems with low values of H, 2.5 to 4, display a 
similar frequency behavior than the systems with higher values of H, clearly proving the validity of the controller 
design. In addition, the proposed strategy has been tested on SMIB systems where automatic voltage regulators 
are implemented. One of the AVR’s effect is to increase the synchronizing torque component and decrease 
damping torque when a certain gain is set negative [2]. Negative damping torque compromises power system 
stability since less damping implies greater oscillations. Using the MATLAB’s command LQR (A, B, Q, R) to 
design our LQR controllers it can be shown that frequency oscillations are greatly reduced in systems with 
negative damping. Figure 4 shows different frequency behaviors from different inertia constant H, 2.5 to 7, 
subjected to a small perturbation in systems displaying negative damping. Finally, for further research, a 
comparison between an LQR controller and traditional power system stabilizers is proposed to observe 
differences and similarities in performance.  

 

 
 
FIGURE 4: Frequency oscillations using an LQR controller in a SMIB system with AVR. Higher oscillations correspond to lower values of H 

CONCLUTIONS  

It can be concluded that LQR controllers greatly mitigate frequency oscillations in SMIB systems with low 
inertia. 
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