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Introduction

This project aims to be an application of algebraic topology and machine learning to a

current problem in archaeology. In short, can Topological Data Analysis (TDA) tell us

something about pre-Columbian masks?

Between 1978 and 1982, excavations were made in Templo Mayor, one of the epicen-

ters of Aztec culture. Distributed among several crypts and chambers, 162 masks were

found as offerings to Aztec authorities between the 14th and 15th centuries in today’s

modern Mexico City. These masks pose several questions, as their styles are unusual for

the location and timeline. The archaeological community believes that the styles resemble

those found across the Mexican state of Guerrero on the Pacific coast [JRM12]. Although

Guerrero is roughly 300km away from Templo Mayor, the Aztecs had extensive routes of

trade and tribute from coast to coast. What is more surprising is the fact that some the

styles represented in the 162 mask collection resemble the styles present in Guerrero 500

or even 1000 years prior to the Templo Mayor offerings in the 14th century.

Archaeologists poise two possible hypotheses to explain such temporal discrepancy.

Either the Aztecs were avid collectors of even more “ancient” artifacts, or somehow the

ancient Guerrero styles were still practiced in more modern settings. Unfortunately, there

is no additional evidence to support any of these theories. The problem is further compli-

cated as there is no consensus within the archaeological community on the exact number

of different styles from the Guerrero region. The problem posed by archaeologists is then

to determine the number of actually different styles represented in the 162 mask collection

and to identify the items accordingly. Such identification would further the knowledge of

archaeology in Guerrero and deepen the understanding of the Templo Mayor-Guerrero

interactions during the 14th century.

Due to the limited amount of artifacts from Guerrero, most of the proposed classi-
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fications of these 162 masks rely heavily on subjective perceptions which is reflected in

several discrepancies among classifications given in the archaeological community. The

main goal of the thesis project is to define the morphology of each mask in a more objec-

tive manner based on its geometrical and topological invariants. Namely, we attempt to

describe the morphology of a mask based on the Euler Characteristic.

The idea is based on the Euler Characteristic Graphs (ECGs). That is, we establish

beforehand a filtration function to systematically destroy part of the mesh in T steps and

observe how its Euler characteristic changes with respect to such filtration. This procedure

produces a T -dimensional vector for each mesh. Our main hypothesis is that similar ECGs

correspond to similar meshes. Albeit this hypothesis has not yet been proved, the data and

experiments suggest its validity. We used then the ECGs of each mesh as descriptors to

perform a classification of 128 pre-Columbian masks via supervised and unsupervised

Support Vector Machines (SVMs).

The thesis is written in 5 different, self-contained chapters which can be read indepen-

dently. The first chapter is an introduction to simplicial homology. The main objective

is to define and prove that the Euler characteristic is a topological invariant. In order to

prove such result, several definitions and results are developed throughout the chapter.

Such development also aims to familiarize the reader with definitions and results that are

commonly used when discussing more traditional topological data analysis techniques

such as persistent homology.

The second chapter follows Richardson and Werman description in [RW14] of the Eu-

ler Characteristic Graph (ECG). The chapter also states a computationally efficient algo-

rithm to compute the ECG of a given simplicial complex. This algorithm is a variation

of the one stated originally by Richardson and Werman, runs in linear time with respect

to the number of vertices in the simplicial complex. The third chapter is an introductory

tutorial to supervised linear, separable Support Vector Machines (SVMs). We develop

necessary theory on constrained optimization and convex programming problems in or-

der to recast the SVM as a rigorous optimization problem. From this rigorous treatment,

the SVM problem is later easily generalized to non-separable, nonlinear cases.

The fourth chapter develops theory on a possible unsupervised SVM procedure for

the separable, binary, linear case. This chapter follows the proposed algorithm by Karnin
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et.al. in [Kar+12]. To this end, general theory on the singular value decomposition of

matrices is developed. We mention some possible improvements to the algorithm. At the

end of the chapter, we have a discussion on some negative effects that may arise when

data lives in a high dimensional space, namely overfitting and concentration of measure.

Finally the fifth chapter discusses the origin of the archaeological data to be analyzed and

the considered filter functions. We propose different assortments of the masks based on

different ECGs. The supervised SVMs produced sensible results overall. An appendix is

located after the bibliography where renderings of the 128 analyzed masks are found.

Unless stated otherwise, we will assume our data and vertices lie in Rd. The i-th vector

in Rd will be written in bold typeface as xi and its j-th component will be denoted in italics

as xi,j . Inner products will be denoted as 〈·, ·〉, and it will refer to the usual dot product in

Rd unless stated otherwise.

vii



Contents

Acknowledgements iii

Introduction v

Contents viii

1 Simplicial Homology 1
1.1 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Cycles and boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Homology Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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Chapter 1

Simplicial Homology

Our main descriptor, the Euler Characteristic Graph, hinges on the topological informa-

tion encoded in the Euler characteristic. To understand it, we must develop first some

knowledge of simplicial homology. The following chapter is based primarily on chapters

6 through 9 of [Arm83].

1.1 Triangulations

We say the hyperplane spanned by points v0,v1, . . . ,vq ∈ Rd is defined as

H :=

{
q∑

i=0

λvi : λi ∈ R,

q∑

i=0

λi = 1

}
. (1.1.1)

We will say the points are in general position if any subset of theirs spans a hyperplane of

smaller dimension. Notice that for any i = 1, . . . , n, every point on the line λv0 + (1− λ)vi

is on H. That way we see that the points are in general position if and only if the set

{v1 − v0, . . . ,vq − v0} is linearly independent.

Given v0,v1, . . . ,vq points in general position, the smallest convex set containing them

is referred as a simplex of dimension q or a q-simplex. The vi will be called vertices. Refer

to figure 1.1 for some examples. In other words, the q-simplex is the convex hull of q + 1

points in general position. That is

σq :=

{
q∑

i=0

λivi : λi ≥ 0,

q∑

i=0

λi = 1

}
. (1.1.2)

1



1.1. TRIANGULATIONS 1. SIMPLICIAL HOMOLOGY

Figure 1.1: Examples of q-simplex for q = 0, 1, 2, 3 in R3

(a) Valid simplicial complex made of 0, 1, 2-simplices (b) Conditions (i) and (ii) both fail

Figure 1.2: Examples of valid and invalid simplicial complexes

If σ, τ are simplices, we say τ is a face of σ if and only if the vertices of τ are a subset of

vertices of σ. This is written τ < σ. A simplicial complex is a finite collection of simplices

in Rd such that (i) whenever a simplex lies in the collection so it does each of its faces;

and (ii) whenever two simplices of the collection intersect they do so in a common face.

We will simply refer to it as a complex hereafter. The dimension of the complex will be the

dimension of the the highest dimensional simplex it contains. Refer to figure 1.2 for some

examples.

We may also understand a d-dimensional complex K by
⋃d

q=0 Vq where Vq is a finite

set of q-dimensional simplices such that the previous conditions hold for the union and

Vd 6= ∅.

Notice that the union of actual simplices that make up a complex K can be embedded

in some Rd. Therefore it can be made into a topological space by giving it the subspace

topology. When regarded this way, as a topological space, it will be denoted as |K| and

referred to as the polyhedron of the complex. A triangulation of a topological space X consists

of a complex K and a homeomorphism h : |K| → X .

2



1. SIMPLICIAL HOMOLOGY 1.2. ORIENTATION

v1 v2

v0

v1 v2

v0

v1 v2

v0

v1 v2

v0

Figure 1.3: The only two possible orientations for a given 2-simplex

1.2 Orientation

There are two ways to orient a triangle: clockwise or counterclockwise, as shown by figure

1.3. This statement can be made more precise by appropriately stating the order of the 2-

simplex vertices. (v0,v1,v2) will denote a 2-simplex where we move from vertex v0 to

v1, then from vertex v1 to v2 and finally from v2 to v0. We must agree that the cyclic

permutations (v1,v2,v0) and (v2,v0,v1) represent the same orientation. At the same time,

(v2,v1,v0) denotes the same 2-simplex but with opposite orientation. This opposition will

be denoted as (v2,v1,v0) = −(v0,v1,v2).

This notion can be generalized to any q-simplex σ when q > 0. Consider two orderings

of vertices equivalent if they differ by an even permutation. Thus there are only two

possible orientations. In case we use an odd permutation, we consider the permuted

simplex to have the opposite orientation and we denote it with a minus sign. In other

words, for every permutation θ : {0, 1, . . . , n} → {0, 1, . . . , n}we have that

(v0,v1, . . . ,vn) = sgn (θ) (vθ(0),vθ(1), . . . ,vθ(n)), (1.2.1)

with sgn the sign function where sgn (θ) is 1 in case θ is an even permutation and −1
otherwise. In case n = 0, that is, if we are dealing with a single vertex, there is only one

possible orientation. Whenever we fix the orientation of σ, we will say that σ is an oriented

simplex.

Now consider the face σi defined by the same vertices of σ omitting vi. If i is even,

the orientation of σi specified by this ordering is called the orientation induced by σ. If i is

odd, the orientation induced by σ will be the opposite to the one defined by the ordering

of vertices in σ. In other words, if σi is an oriented simplex with the induced orientation

3



1.2. ORIENTATION 1. SIMPLICIAL HOMOLOGY

then

σi = (−1)i(v0, . . . ,vi−1,vi+1, . . . ,vn). (1.2.2)

It is important to remark that the induced orientation on σi depends solely on the

orientation of σ and not on the index i of the removed vertex. To see this, consider a per-

mutation θ : {0, 1, . . . , n} → {0, 1, . . . , n} and a new n-simplex σθ := (vθ(0),vθ(1), . . . ,vθ(n))

made by the same vertices of σ. Suppose θ−1(i) = k and consider the face σθ
k defined by

the same vertices of σθ except for vθ(k) = vi. We have to show that

σθ
k = sgn (θ) σi. (1.2.3)

If θ−1(i) = i, then the previous equation is just restating (1.2.1) and there is nothing else

to show. If θ−1(i) = k 6= i, then θ can be seen as composition of disjoint cycles. Assume i

happens to be in the cycle σ = (i j1 · · · jl k). Without loss of generality we can also assume

that i < k. Next rewrite θ = σ ◦ψ where ψ is a disjoint permutation to σ. Now consider the

permutation cycle σ′ := (k jl · · · j1) of {0, 1, . . . , n}\{i} and define θ′ := σ′◦ψ−1. As σ′ and

ψ−1 are disjoint we have that sgn (θ′) = sgn (σ′) sgn (ψ−1) = −sgn (σ) sgn (ψ) = −sgn (θ).

The orientation of σθ
k induced from σθ is then

σθ
k = (−1)k(vθ(0), . . . ,vθ(i−1),vθ(i),vθ(i+1), . . . ,vθ(k−1),vθ(k+1), . . . ,vθ(n))

= sgn (θ′)(−1)k(v0, . . . ,vi−1,vk,vi+1, . . . ,vk−1,vk+1, . . . ,vn)

= (−1)k−i−1(−1) sgn (θ)(−1)k(v0, . . . ,vi−1,vi+1, . . . ,vk−1,vk,vk+1, . . . ,vn)

= sgn (θ) σi.

The third equality is due to the fact that we need k− i− 1 transpositions (each of them an

odd permutation) to move vk from the i-th place to the (k − 1)-th place. Thus we proved

(1.2.3). This result can be stated as a lemma.

Lemma 1.2.1. The induced orientation on σi by σ depends only on the orientation of σ and not on

the particular ordering of the vertices of σ chosen to represent this orientation.

Finally, we say that a complex K is orientable if it is possible to orient all the simplices

of K in a compatible way. That is to say, two adjacent simplices induce opposite orienta-

tions on their common face. Refer to figure 1.4.

4



1. SIMPLICIAL HOMOLOGY 1.3. CYCLES AND BOUNDARIES

v0

v1

v2

v3v0

v1

v2

v3

(a) Compatibly oriented triangles

v0

v1

v2

v3v0

v1

v2

v3

(b) Incompatibly oriented triangles

Figure 1.4: Compatible and incompatible orientations of triangles

(a) Blue and black curves split the surface (b) Red and green curves do not split the surface

Figure 1.5: Closed curves on a sphere, a torus and a punctured torus

1.3 Cycles and boundaries

On a sphere, any closed curve divides its surface in two different connected components.

This is not be the case for the torus. As we see in figure 1.5b, although the black curve

splits the torus’ surface into yellow and blue regions, the green and red curves don’t split

the surface into two different connected regions.

We would like to ignore those curves that enclose a piece of contractible surface in

order to recognize the holes of the torus. We will work then in a general setting with a

topological space X and some fixed triangulation (K, h) of it. Consider C1(K) the free

abelian group generated by all the 1-dimensional simplices of K. This group will be the

1st simplicial chain group and its elements will be referred as 1-dimensional chains. That is,

a 1-chain is of the form c :=
∑n

i=0 λi(ui,vi) for λi ∈ Z where ui,vi are vertices in K. We

will also consider (u,v) + (v,u) = 0 and λ[−(u,v)] = (−λ)(u,v) for every pair of vertices

u,v ∈ K. Refer to figure 1.6a This notions can be generalized to higher dimensions.

Let Cq(K) be the free abelian group generated by all the q-simplexes of K. The group

will be referred as the q-th simplicial chain group and its elements will be referred as q-

dimensional chains. In both groups it happens that σ + θ = 0 whenever σ and θ represent

5



1.3. CYCLES AND BOUNDARIES 1. SIMPLICIAL HOMOLOGY

(a) 1-chain (b) 2-chain

Figure 1.6: Example of oriented simplicial chains

the same simplex with opposite orientation. We can then define homomorphisms ϕ on

these chain groups by defining ϕ for every q-simplex and later extend it linearly to the

rest of the q-chain. We only have to care that the relationship ϕ(σ) + ϕ(−σ) = 0 holds.

One such homomorphism is the boundary homomorphism ∂q : Cq(K) → Cq−1(K). The

boundary of a q-simplex σ is defined as (q−1)−chain determined by the sum of its (q−1)-

dimensional oriented faces, each taken with the orientation induced by σ. That is

∂q(σ) = ∂q(v0,v1, . . . ,vq) =

q∑

i=0

(−1)i(v0, . . . ,vi−1,vi+1, . . . ,vq). (1.3.1)

We also check that ∂(σ) + ∂(−σ) = 0, as changing the orientation of σ changes the

induced orientation of each of its (q − 1)-dimensional faces. Keep in mind that the actual

indexing of vertices in σ does not affect the boundary due to lemma 1.2.1.

From (1.3.1), the boundary of an oriented edge is

∂(u,v) = v − u. (1.3.2)

And for an oriented triangle its boundary is

∂(u,v,w) = (u,v) + (v,w) + (w,u). (1.3.3)

Think of the oriented 1-chain c1 = (u,v) + (v,w) + (w,x) + (x,y) + (y,u) as shown in

figure 1.7a. We define its boundary linearly, that is the sum of boundaries of edges is the

boundary of the whole edge sum. That is

∂c1 = ∂(u,v) + ∂(v,w) + ∂(w,x) + ∂(x,y) + ∂(y,u)

= (v − u) + (v −w) + (x−w) + (y − x) + (u− y) = 0

6
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u v

w

x

y

u v

w

x

y

(a) c1 ∈ Z1(K)

a b

c

d

e

a b

c

d

e

(b) c2 ∈ B1(K)

Figure 1.7: Boundaries and cycles

Consequently we say that c1 has no boundary. Now think of the oriented 1-chain c2 =

(a,b) + (b, c) + (c,d) + (d, e) + (e, a) and the triangles (a,b, c), (a, c,d) and (a,d, e) of K

which are all oriented compatibly as in figure 1.7b. Consider the boundary of the sum of

these three triangles.

∂((a,b, c) + (a, c,d) + (a,d, e)) = ∂(a,b, c) + ∂(a, c,d) + ∂(a,d, e)

= ((a,b) + (b, c) + (c, a)) + ((a, c) + (c,d) + (d, a))

+ ((a,d) + (d, e) + (e, a))

= ((a,b) + (b, c)−
✟
✟
✟(a, c)) + (❍❍

❍
(a, c) + (c,d)−

✟
✟

✟✟(a,d))

+ (❍❍
❍❍

(a,d) + (d, e) + (e, a)) = c2.

Thus we effectively say that c2 bounds the three triangles in K above.

Now consider the subgroup of C1(K) consisting of all 1-chains z =
∑n

i=1 λi(ui,vi) such

that they have no boundary, that is, ∂(z) = 0. Such expression will be called a 1-dimensional

cycle of K. Since the coefficients are integers and ∂ is lineal, the 1-dimensional cycles form

an abelian subgroup. This subgroup will be denoted as Z1(K).

A 1-chain z =
∑n

i=1 λi(ui,vi) will be considered simple if each of its vertices appears

exactly twice in the sum with coefficient 1, as c2 in figure 1.7b. Notice that an oriented,

simple closed polygonal curve in K can be thought of as the sum of oriented edges and it

is hence a 1-cycle, which will be considered an elementary 1-cycle.

Lemma 1.3.1. Z1(K) is generated by these elementary 1-cycles.

7
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Proof. Say z ∈ ∑k
i=1 λi(ui,vi) ∈ Zi(K). Say V (K) = {u1,v1, . . . ,uk,vk} is the set of all

different vertices in z. Assume that every λi is positive and that if (ui,vi) = (uj,vj) then

i = j. In other words, z is non trivial and the summands of the form (u,v)− (u,v) vanish.

For every oriented edge (u,v), we will refer to u as the posterior vertex and v as the

anterior vertex. Additionally, we know that

∂z =
k∑

i=0

λi∂(ui,vi) =
k∑

i=0

λi[vi − ui] =
k∑

i=0

vi −
k∑

i=0

ui = 0. (1.3.4)

Observe from the previous equality states every vertex v is the anterior of some edge

and the posterior of some other edge. As ∂z = 0, k must be larger than 1. If k = 2, then it

must be z = λ((u,v) + (v,u)), which is a null chain and hence elementary. Now assume

by hypothesis of induction that if z has less than k different oriented edges, then z can be

rewritten as sum of elementary 1-cycles. To understand the case of k different oriented

edges is better to use language of multi-digraphs, that is, graphs where two vertices can

be connected by more than one directed edge. Consider a multi-digraph G(V,E). Each

vertex v in z corresponds to a vertex in ṽ in V (the tilde will distinguish between simplicial

vertices and digraph vertices). The set of edges is constructed as follows: for a fixed vertex

v, the edge (ṽ, w̃) ∈ E if and only if (v,w) = (ui,vi) is part of the z chain for some

i ∈ {1, . . . , k}. The number of edges connecting ṽ and w̃ will be exactly λi. Refer to figure

1.8 for an example. As observed after (1.3.4), the number of incoming edges equals the

number of departing edges from every vertex ṽ. Hence the vertex v must be the anterior

of some oriented 1-simplex. Thus there is an edge (ũ, ṽ) in E.

The idea is that we can now read the cycle z as a graph G(V,E) where we are able to

split graph cycles into simple cycles, that is, cycles that don’t traverse any vertex twice.

Consider all the possible simple cycles Ã1, . . . , Ãn that start and end at ṽ. Say Ãi :=

(ṽ, w̃i
1, . . . , w̃

i
mi
, ũ, ṽ). Then the 1-chain yi := (v,wi

1) + . . . + (wi
mi
,u) is a simple 1-cycle.

If all the yi’s are removed, that is, we now consider the 1-cycle z′ := σ −∑n
i=1 τi, then we

have effectively removed all the elementary 1-cycles within z that contain the vertex v.

Hence z′ has less than k different edges and it can be decomposed by induction hypothe-

sis as sum of elementary 1-cycles. As
∑n

i=1 τi is in itself a sum of elementary 1-cycles, we

conclude that z is a sum of elementary 1-cycles.

8



1. SIMPLICIAL HOMOLOGY 1.3. CYCLES AND BOUNDARIES

a

b

c d

e

f

gh

z

ã

b̃

c̃

d̃

ẽ

f̃

g̃

h̃

G(V,E)

Figure 1.8: Example of 1-cycle z and its corresponding multi-digraph G(V,E).

We say that a 1-cycle is a 1-dimensional boundary cycle if there is an oriented 2-chain (a

linear combination of oriented triangles) whose boundary is the given cycle. The subset

of bounding cycles is referred as B1(K). For example, c2 is a 1-boundary in figure 1.7b.

Observe that for any 2-chain c we have that ∂2c = 0. Since the boundary homomor-

phism is linear, it is enough to see that ∂2(u,v,w) = 0 for any 2-simplex (u,v,w). This is

a simple computation.

∂2(u,v,w) = ∂(u,v) + ∂(v,w) + ∂(w,u)

= (v − u) + (w − v) + (u−w) = 0.

From the last equality we see thatB1(K) ⊂ Z1(K). Moreover, B1(K) is a normal subgroup

of Z1(K).

Lemma 1.3.2. B1(K) is a normal subgroup of Z1(K).

Proof. Take any two 1-cycles z1, z2 ∈ B1(K). Then there exist 2-dimensional chains yi =∑n
k=1 λ

i
k(ai,bi, ci) such that ∂yi = zi for i = 1, 2. Consider then the 2-dimensional chain

y := y1 + y2. Due to linearity ∂y = z1 − z2. That is, z1 − z2 ∈ B1(K) and thus B1(K) is a

subgroup. Finally, remember Z1(K) is abelian, so all its subgroups are normal.

Based on the previous lemma we may define the quotient

H1(K) := Z1(K)/B1(K) (1.3.5)

9
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z1 z2

Figure 1.9: Flat torus on the left and joining the correspondences on the right.

which we call the first homology group of K. Thus two cycles whose difference is a bound-

ing cycle will be in the same coset ofH1(K), and they will be referred as homologous cycles.

For example, consider the flat torus. That is, consider the unit interval I := [0, 1] and

the unit square I2 along the equivalence relations

(x, 0) ∼ (x, 1), ∀ x ∈ I
(0, y) ∼ (1, y), ∀ y ∈ I
(x, y) ∼ (x, y), 0 < x, y < 1.

Then the flat torus is defined as the quotient T 2 := I2/∼. Consider now the 1-cycle z1

defined by the curve γ1 : I → T 2 given by t 7→ [(0, t)]. Similarly z2 is given by γ2 : t 7→
[(1

4
, t)]. Refer to figure 1.9. Observe that z2 − z1 is the boundary of the magenta colored

oriented triangles in the figure. That is, these 1-cycles enclose a region of the torus surface.

Thus z1 and z2 are homologous 1-cycles.

Moreover, it may be shown that any 1-cycle on the torus is homologous to a linear

combination of a cycle z1 given by γ1 : t 7→ [(a, t)] and a cycle z2 given by γ2 : t 7→ [(t, b)]

for some fixed a, b ∈ I . Thus H1(T ) = Z ⊕ Z and β1 = 2. For example, in figure 1.10, the

diagonal yellow 1-cycle z is homologous to the 1-cycle z1 + z2. Observe that z1 + z2− z are

the boundary of the collection of oriented magenta triangles.

10
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z1

z2

z

Figure 1.10: Flat torus on the left and joining the correspondences on the right.

1.4 Homology Groups

The previous section can be generalized to higher dimensions. Say K =
⋃d

q=0 Vq(K) is a

finite d-dimensional simplicial complex where each Vi(K) is a finite set of i-dimensional

simplices. Remember from section 1.2 that each of simplex from Vq(K) can be oriented in

exactly one of two possible ways. Let Cq(K) be as in the previous section. Notice that the

rank of Cq(K), that is, the number of generators, is exactly |Vq(K)|.
Remember that we shall define homomorphisms ϕ on these groups by defining such

homomorphism for each generator and require that ϕ(σ) + ϕ(−σ) = 0 holds. Next we

extend linearly for the rest of the q-chain. Remember the boundary homomorphism ∂q :

Cq(K)→ Cq−1(K) defined as

∂q(σ) = ∂q(v0,v1, . . . ,vq) =

q∑

i=0

(−1)i(v0, . . . ,vi−1,vi+1, . . . ,vq).

We also say the boundary of a vertex is 0 and the set C−1(K) := {0}. That way ∂0 ≡ 0.

Finally we extended ∂q linearly to obtain a homomorphism. We define the subgroup of

q-dimensional cycles as

Zq(K) := ker ∂q, (1.4.1)

which is a finitely generated abelian group.

Lemma 1.4.1. The composition Cq+1(K)
∂q+1−→ Cq(K)

∂q−→ Cq−1(K) is the zero homomorphism.

11
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Proof. By construction of ∂, we need only to show that ∂q+1 ◦ ∂q(σ) = 0 for any oriented

q-simplex σ. From the definition

∂q(∂q+1(v0,v1, . . . ,vq+1)) = ∂q

(
q+1∑

i=0

(−1)i(v0, . . . ,vi−1,vi+1, . . . ,vq+1)

)

=

q+1∑

i=0

(−1)i
i−1∑

j=0

(−1)j (v0, . . . ,vj−1,vj+1, . . . ,vi−1,vi+1, . . . ,vq+1)

+

q+1∑

i=0

(−1)i
q+1∑

j=i+1

(−1)j−1(v0, . . . ,vi−1,vi+1, . . . ,vj−1,vj+1, . . . ,vq+1)

The second sum has a (−1)j−1 coefficient as the actual position of the vertices vi+1, . . . ,vq+1

was reduced by 1. In other words, the vertex vi+k occupies the (i+k−1)-th position. Now,

each oriented simplex (v0, . . . , v̂j, . . . , v̂i, . . . ,vq+1) appears twice, once in each sum. That

is, it appears once with a (−1)i(−1)j coefficient and later with a (−1)i(−1)j−1 coefficient.

Hence, the whole sum vanishes.

We define then the set of q-dimensional boundaries as

Bq(K) := im (∂q+1) ⊂ Zq(K). (1.4.2)

Analogous to lemma 1.3.2,Bq(K) is a normal finitely generated abelian subgroup ofZq(K)

and we define the q-th homology group of K as the quotient

Hq(K) := Zq(K)/Bq(K). (1.4.3)

Thus, each q-cycle determines an element [z] ∈ Hq(K) called the homology class of z. Two

q-cyles whose difference is a q-boundary have the same homology class and will be said

to be homologous cycles.

By construction, Hq(K) is a finitely generated abelian group. Due to the Fundamental

Theorem of Finitely Generated Abelian Groups (cf. [Rot99, Ch. 9]), we can decompose

it as Hq(K) ∼= F ⊕ T where F is a finitely generated free abelian group (specifically it

is isomorphic to a direct sum of a finite number of copies of Z) and T is a finite abelian

group. The rank of F (that is, the number of copies of Z) is called the q-th Betti number of

K. It is denoted as βq.

12
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1.5 The Euler-Poincaré Formula

With K as in the last section, we define its Euler characteristic as

χ(K) :=
d∑

q=0

(−1)q|Vq(K)|. (1.5.1)

Before proceeding, it will be convenient to reinterpret the Betti numbers as follows.

Suppose we now consider rational numbers as coefficients when we form all possible

linear combinations of oriented simplices

r1σ1 + . . .+ rsσs, ri ∈ Q, σi ∈ Vq(K).

The set of all possible combinations is now a vector space V over Q. LetW be the subspace

spanned by the elements of the form σ + τ where σ, τ are the same simplex in Vq(K) but

with opposite orientations. The quotient Cq(K,Q) := V/W will be referred as the vector

space of rational q-chains. In other words, we take σ + τ = 0 when they represent the same

simplex with different orientations. We can observe that dimCq(K,Q) = |Vq(K)|.
The boundary homomorphism is a linear map of vector spaces over Q which is de-

fined as in the integer case in (1.3.1). We define the rational q-cycles in Zq(K,Q) and

the bounding rational q-cycles in Bq(K,Q) analogous to the definitions in (1.4.1) and

(1.4.2). Notice that both Zq(K,Q) and Bq(K,Q) are subspaces of Cq(K,Q). The quotient

Hq(K,Q) := Zq(K,Q)/Bq(K,Q) will be referred as the q-th homology group of K with ratio-

nal coefficients.

The following lemma will help us to translate the Betti numbers from its original lan-

guage of free abelian groups to the new construction with linear spaces.

Lemma 1.5.1. βq is the dimension of Hq(K,Q) when regarded as a vector space over Q.

This result actually follows from a stronger proposition stated in [Hat02, Corollary 3A.6.(a)]

as follows.

Corollary 1.5.2. Hq(K;Q) ∼= Hq(K)⊗Q, so when Hq(K) is finitely generated, the dimension of

Hq(K;Q) as a vector space over Q equals the rank of Hq(K;Z).

Its proof via a even more general framework relies heavily on elements of commuta-

tive algebra which we will omit in this work. Corollary 1.5.2 states that the vector space

13
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Hq(K;Q) can actually be seen as Hq(K) up to some rational coefficient. We can present a

more intuitive albeit not completely rigorous proof of the lemma above as follows.

Intuitive proof of lemma 1.5.1. Suppose Hq(K) ∼= F ⊕ T , where F ∼=
⊕βq

i=1 Z and T is a finite

abelian group. Choose a minimal set of generators [z1], . . . , [zβq
], [w1], . . . , [wγq ] for Hq(K)

where the [zi]’s generate the free part F and the [wi]’s all have finite order. For any rational

q-cycle we can rewrite it as

a1
b1
σ1 + · · ·+

as
bs
σs =

1

b1 · · · bs
(cycle with integer coefficients) (1.5.2)

=
1

b1 · · · bs
(linear integer combination of zi’s and wj’s). (1.5.3)

Notice that every q-cycle class [z] with integer coefficients can be regarded as a q-cycle

class {z} with rational coefficients. Hence {z1}, . . . , {zβq
}, {w1}, . . . , {wγq} span the whole

Hq(K,Q).

If [w] ∈ T , then the q-cycle w must have a finite order, say m. Then there must exist

a (q + 1)-chain w′ with integer coefficients such that ∂(w′) = mw. Thus 1
m
w is a rational

q-cycle and ∂( 1
m
w′) = 1

m
∂(w′) = 1

m
· mw = w. In other words, w bounds the rational

(q + 1)-chain 1
m
w′ and consequently w ∈ B(K,Q). Thus Hq(K,Q) must be spanned by

{z1}, . . . , {zβq
}.

Now suppose some rational linear combination of some generating representative cy-

cles zi’s produce a bounding rational cycle w ∈ Bq(K,Q). Thus it must exist a rational

(q + 1)-chain y ∈ Cq+1(K,Q) such that ∂y = w. Just as in (1.5.3), we can compute both w

and y as integer chains times a rational coefficient.

w =
a1
b1
z1 + · · ·+

aβq

bβq

zβq

=
1

b1 · · · bβq

βq∑

i=1

λizi =
1

b
w′, b := b1 · · · bβq

, λi ∈ Z.

Observe that w′ ∈ Zq(K). Analogously, we can compute

14
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y =
l∑

i=1

âi

b̂i
τi, τi ∈ Vq+1

=
1

b̂1 · · · b̂l

l∑

i=1

λ̂iτi =
1

b̂
y′ b̂ = b̂1 · · · b̂l, λ̂i ∈ Z,

where y′ ∈ Cq(K). Since ∂y = w, it must be that

b

b̂
∂y′ = w′ ∈ Zq(K). (1.5.4)

Since both y′ and w′ have integer coefficients, by comparing both sides of the equation

1.5.4, it must be that b/b̂ ∈ Z. Thus we conclude that b

b̂
y′ ∈ Cq+1(K). Then w′ must be an

integer bounding cycle. As the [zi]’s are generators of a free abelian group, it must be the

case that each coefficient in w′ is zero. Thus
a1
b1

= . . . =
aβq

bβq

= 0 and we conclude that

{{z1}, . . . , {zβq
}} is linearly independent.

From the last theorem we can rewrite βq as dim(Zq(K,Q)) − dim(Bq(K,Q)). Finally

we are ready to prove the topological invariance of the Euler characteristic via a stronger

result.

Theorem 1.5.3. The Euler characteristic of a finite d-dimensional complex K is given by

χ(K) =
d∑

q=0

(−1)iβi. (1.5.5)

Proof. Throughout this proof we will abbreviate Cq(K,Q), Zq(K,Q), Bq(K,Q) as Cq, Zq, Bq

respectively. We will then choose bases for Cq as follows.

Since K has no d + 1-simplices, Bd = {0} and βd = dim(Zd) from the previous lemma.

Choose a basis {zd1 , . . . , zdβd
} for Zn. Then consider additional d-cycles cd1, . . . , c

d
γd

to form

a basis for the whole Cn. As ∂Zn = {0}, we know from the Dimension Theorem that

{∂cn1 , . . . , ∂cdγd} is a basis forBd−1. Refer to diagram 1.11. Extend that basis by (d−1)-cycles

zd−1
1 , . . . , zd−1

βd−1
to form a basis for Zd−1. Next extend it further by elements cd−1

1 , . . . , cd−1
γd−1

so it is a basis for Cd−1. Then repeat the same steps for Cd−2 and proceed algorithmically

for every dimension below. The process will terminate with a basis {∂c11, . . . , ∂c1γ1} for

15
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0

ker ∂d

Cd

∂d

0

im ∂d

ker ∂d−1

Cd−1

· · ·

0

im ∂i+1

ker ∂i

Ci

∂i

· · ·

0

βd

γd

dim(Cd)

γd γi+1

βi

γi

Figure 1.11: Due to the Dimension Theorem dim(Ci) = dim(Zi) + dim(Bi+1).

Z0 = C0. From the Dimension Theorem we observe that dim(Cq) = γq+1 + βq + γq. But we

also know that dim(Cq) = |Vq(K)|. Thus

χ(K) =
d∑

q=0

(−1)q|Vq(K)| =
d∑

q=0

(−1)q(γq+1 + βq + γq)

=
d∑

q=0

(−1)qβq

As the βq’s depend solely on the homology groupHq(K), which in turn depends solely

on the topological structure of K, we conclude that χ(K) is a topological invariant.
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Chapter 2

The Euler Characteristic Graph

The main descriptor for the objects to analyze will be the Euler-Characteristic Graph (ECG),

first described in [RW14]. The reason for this choice lies in its simplicity to compute de-

spite the objects’ large number of vertices. In this chapter we will first describe the ECG

and then present an algorithm to compute it in O(V + T ) time, where V is number of

vertices of the object and T is the number of thresholds, an integer parameter set by the

user.

2.1 The Euler Characteristic Graph construction

Consider a d-dimensional simplicial complex K =
⋃d

q=0 Vq(K), with Vq the finite set of

all its q-dimensional simplexes. Remember from 1.5.1 that its Euler Characteristic (EC) is

defined as

χ(K) :=
d∑

q=0

(−1)q|Vq(K)|.

The ECG is based on this, using additional objects: a filter function and a positive number

of thresholds.

2.1.1 Filtering functions

The first part of the algorithm consists on assigning numerical values to every q-simplex.

For that end, we fix a real-valued function g0 : V0 → [a, b] with [a, b] a closed interval.
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Figure 2.1: Example on how to extend g0 for higher dimensional simplexes

Later, we extend g0 to higher dimensions q through auxiliary functions gq : Vq(K)→ [a, b]

which are constructed as follows: for each q-simplex σq = (v0,v1, . . . ,vq) with vi ∈ V0(K),

define

gq(σq) = gq((v0,v1, . . . ,vq)) := min
0≤i≤q

{g0(vi)}. (2.1.1)

For a given threshold value t ∈ R and a fixed dimension q we define the subsets of q-

simplexes V
(i)
q (K) := {σ ∈ Vq : gq(σ) > ti}. The Euler Characteristic at threshold t of K is

then defined as

χ i(K) =
d∑

q=0

(−1)q
∣∣V (i)

q (K)
∣∣ . (2.1.2)

Suppose that for a given q-simplex σ one of its vertices is v. If g0(v) ≤ t. then by

definition of gq it follows that gq(σ) ≤ g0(v) ≤ t. In other words, if a vertex fails to surpass

a given threshold, then every q-simplex that contains it will fail to surpass such threshold

as well.

For example, an edge (v,u) has two vertices, each of them with an associated numer-

ical value. The numerical value assigned to such edge will be the smaller of those two

vertex assigned numbers. The extension is analogous for a triangle. Refer to figure 2.1.

For instance, g0 could be the distance from the vertex to the center of mass of the

simplicial complex, or it could be the mean curvature at such point.

2.1.2 Thresholding

Once every simplex has been assigned a numerical value, the interval [a, b] is divided into

T equally-spaced thresholds a = t0 < t1 < t2 < . . . < tT = b. Relabel χti as χi in this
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case. Finally, the Euler Characteristic Graph (ECG) of the complex K is simply defined as

the graph given by χi (K) versus ti. Notice that as the threshold value increases, there

must be less q-simplexes that surpass such threshold. Qualitatively speaking, the ECG

is a descriptor that summarizes the topological-geometrical changes of the object as it

disintegrates through the filtration. It is expected that a larger number of thresholds will

yield a sharper ECG, as it ought to pick smaller variations of the Euler Characteristic as

the simplicial complex is filtered.

For example, take a pre-Columbian mask 3D mesh as a 2-dimensional simplicial com-

plex embedded in the unitary sphere S2 ⊂ R3 with its barycenter at the origin. Define g0 as

the squared distance from each vertex to the barycenter of such complex. In other words,

we can take g0(v) = g0((x, y, z)) = 2 − (x2 + y2 + z2) and extend it to edges and triangles

as in (2.1.1). An example of 4 different masks and their filtrations using this filter function

can be seen in figures 2.2-2.5. Later their ECGs are plotted using different numbers of

thresholds T as seen in figure 2.6.

2.2 ECG computing algorithm

Suppose a fixed dimension q > 0. Assuming that the numerical values of function g0

have already been computed, assigning numerical values to every q-simplex is an O(|Vq|)
complexity algorithm as gq by definition only requires the comparison of a small number

of quantities.

The computation |V (i)
q (K)| for each 1 ≤ i ≤ T and 1 ≤ q ≤ d can be achieved in O(|V0|)

time and O(T ) memory using a bucket-sort-like for cycle. That is, consider a histogram

Hq on [a, b] with bins

B(k)
q :=

(
k
b− a
T

, (k + 1)
b− a
T

]
, 0 ≤ k ≤ T − 1. (2.2.1)

Then for every q-simplex σ in constant time we compute

bq(σ) :=

⌊
1

b− a T · gq(σ)
⌋
∈ {0, 1, . . . , T − 1}. (2.2.2)

Note that gq(σ) ∈ B
bq(σ)
q . After running through all the q-simplexes applying (2.2.2), if
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Figure 2.2: Destroying the mask CIII 0026 0001 with g0 as 1 minus the Eucliedean distance to its center of mass

Figure 2.3: Destroying the mask CIII 0196 0001 with g0 as 1 minus the Eucliedean distance to its center of mass

Figure 2.4: Destroying the mask CIII 0161 0001 with g0 as 1 minus the Eucliedean distance to its center of mass

Figure 2.5: Destroying the mask 0CII 0031 0001 with g0 as 1 minus the Eucliedean distance to its center of mass
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Figure 2.6: ECGs with 64, 128 and 256 thresholds for g0 as 1 minus the Euclidean distance to its center of mass.
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frequency of the i-th bin is denoted by freq(Bk), then we see that

∣∣V (i)
q (K)

∣∣ =
T−1∑

k=i

freq
(
B(k)

q

)
. (2.2.3)

Computing |V (i)
q | for every threshold and dimension is thus achieved in O (|Vq|) time

and stored in O(T ) memory. Finally, observe that

χi (K) =
d∑

q=1

(−1)q
∣∣V (i)

q (K)
∣∣ =

d∑

q=1

(−1)q
T−1∑

k=i

freq
(
B(k)

q

)
(2.2.4)

= χi+1 (K) +
d∑

q=1

(−1)q freq
(
B(k)

q

)
. (2.2.5)

Algorithm 1 ECG Computation

1: Input: g0, T ⊲ g0 computed already for every vertex

2: χ [T ]← 0

3: for all q = 0→ d do ⊲ dimensions

4: Hq[T ]← 0 ⊲ set up a histogram with T empty bins

5: for all i = 1→ |Vq(K)| do ⊲ for every q-simplex

6: gk(σi) =← min g0 ⊲ Compute as in (2.1.1)

7: b← bq(σ) ⊲ Compute the bin as shown in (2.2.2)

8: Hq[b] = Hq[b] + 1 ⊲ Increase by 1 the frequency of the b-th bin

9: c← 0 ⊲ Once all q-simplex values have been

computed and tallied
10: for all i = T − 1→ 0 do ⊲ thresholds

11: for all q = 0→ d do

12: c← c+ (−1)q Hq[i]

13: χ [i]←χ [i] + c ⊲ χi is computed via (2.2.5).

14: return χ ⊲ The Euler Characteristic Graph

So we may compute every χi (K) in time O(T ). Thus, the whole algorithm runs with

complexityO(|V0|+T ), demandingO(T ) memory. Overall, computation of ECGs is a very

efficient algorithm. Algorithm 1 presents a possible pseudocode to implement the ECG
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computation. It must be noted that the algorithm in [RW14] assumes that the numerical

values are first assigned to the simplices of highest dimension and later extends the value

to lower dimensions. Our proposed algorithm first assigns values to vertices and later

extends the values to higher dimensions.

The ECG of the complex K can actually be thought as the vector

χ(K) := (χ0 (K),χ1 (K), . . . ,χT−1 (K)) ∈ RT .. (2.2.6)

Assume now different filter functions g
(1)
0 , . . . , g

(n)
0 . Each of them produces different

ECG vectors χ(1) (K), χ(2) (K), . . . ,χ(n) (K) as mentioned above. The composite ECG ob-

tained by the filter functions above is the concatenation of vectors χ(1) (K), . . . ,χ(n) (K).

We will denote the composite ECG filter function as g0, where

g0 := g
(1)
0 ⊕ . . .⊕ g(n)0 (2.2.7)

with composite ECG vector χ(K) := (χ(1) (K), . . . ,χ(n) (K)). (2.2.8)

From here onwards the 0 subscript will be omitted as it is clear that the filter functions

are determined when defined for the vertex. For some fixed positive scalar M we would

rather work with filter functions of the form

f(v) :=M − g(v), such that f(v) ≥ 0 ∀v ∈ V (K) (2.2.9)

That way, we may assume that the range for the filter function f is [0,M ] and the size

of each bin (2.2.1) would be M/T . Suppose now that both scalars M1,M2 satisfy (2.2.9) by

defining filter functions fi := Mi − g for i = 1, 2. Suppose they yield two T -dimensional

ECGs χ1,χ2 of the same simplicial complex K. If M1 < M2, then the bins 2.2.1 to compute

χ1 will be smaller. This in turn is expected to yield a finer ECG as smaller bins are expected

to catch sharper details.

Our data results suggest that similar ECGs of two given objects indicate topological

and geometrical similarity between these two as the Euler characteristic is a topological

invariant as stated by Theorem 1.5.3. We must also note nonetheless that there is currently

no known stability result as with persistent homology in [CEH07]. Thus similar ECGs

strongly suggest that those objects should belong into the same category. To determine

similarity between graphs, supervised and unsupervised machine learning algorithms
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can be used. This particular work exploited supervised and unsupervised Support Vector

Machines (SVM). The theory behind SVMs is explored throughout the next two chapters.
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Chapter 3

Supported Vector Machines

The second key aspect of the work is the automation of the classification task. A com-

puter must be able to tell differences apart. More specifically, consider a set of vectors

x1,x2, . . . ,xn in Rd with labels y1, y2, . . . , yn in Z respectively. Suppose that if yi = yj then

xi and xj must belong to the same family. The goal is to define a classification function

Φ : Rd → Z such that Φ(xi) = yi for every i = 1, 2, . . . , n. To this end we exploit the idea of

Support Vector Machines. This section mainly follows the discussion in [Bur98].

3.1 Linear Support Vector Machines

The basic setting for a linear Support Vector Machine (SVM) is as follows. Assume that each

yi is either 1 or−1, that is, there are only two different families. The goal is to find a hyper-

plane H such that it splits Rd so that each connected component of Rd \H corresponds to

one of the labels. This in turn is equivalent to find a normal vector w and a scalar b to de-

fine H as {z ∈ Rd : 〈z,w〉+ b = 0}. Hence, the classification function Φ would be the side

of the hyperplane where each vector lies, i.e., Φ(x) = sgn(〈x,w〉 + b) where “sgn” is the

sign function. For example say the two labels −1, 1 correspond to circular and triangular

data as in figure 3.1.
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H−

H+

d+

d−

d+

b

‖w‖

H

d+ + d− = 1

‖w‖

Figure 3.1: The separable case in R2. The support vectors are drawn in blue.

3.1.1 The separable case

Say the hyperplane H defined by w and b separates both families. As vector w is nonzero,

there must be an scalar λ such that the vector r := λw is in the hyperplane H. Then it

must be that

0 = 〈r,w〉+ b = λ〈w,w〉+ b = λ‖w‖2 + b.

It follows that |λ| = |b|/‖w‖2, and ‖r‖ = |λ|‖w‖ = |b|/‖w‖, which in turn is the shortest

distance from H to the origin.

Let d+ (respectively d−) represent the shortest distance from H to the closest positive

(respectively negative) labeled vector. Then the margin of such hyperplane is defined as

mH = d+ + d−. An SVM will look for the hyperplane H which maximizes its margin

mH. The condition that H splits the data accordingly can be expressed as the following

constraints.

〈xi,w〉+ b ≥ +1, if yi = +1; (3.1.1a)

〈xi,w〉+ b ≤ −1, if yi = −1. (3.1.1b)

Both of them are summarized in just one constraint,

yi(〈xi,w〉+ b)− 1 ≥ 0 for all i = 1, . . . , n. (3.1.2)

Now suppose the equality in constraint (3.1.1a) holds for some xi. Then xi lies on the

hyperplane H+ := {z : 〈w, z〉 + b = 1}. Notice that the distance between H+ and the
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origin is |b − 1|/‖w‖. Analogously, if equality holds for constraint (3.1.1b), there must be

a vector xj which lies on a hyperplane H− whose distance from the origin is |b + 1|/‖w‖.
That way is seen that d+ = d− = 1/‖w‖ and mH = 2/‖w‖. Hence the algorithm’s focus

lies on minimizing 1
2
‖w‖2 subject to constraint (3.1.2).

It is worth mentioning that the removal of any training vector that doesn’t lie on either

H+ or H− will not affect the final solution. Hence the important vectors are only the

ones lying on those hyperplanes. Such vectors are called support vectors from which the

algorithm’s name is derived. The previous reasoning can be rewritten as computing the

following constrained optimization problem with objective function f : Rd × R → R and

constraints ci : R
d × R→ R.

min
(w,b)∈Rd×R

f(w, b) :=
1

2
‖w‖2, (3.1.3a)

such that ci(w, b) := yi(〈xi,w〉+ b) ≥ 1 for all i = 1, . . . , n. (3.1.3b)

In order to solve the problem above it is necessary to develop some basic understand-

ing of constrained optimization. Lagrange multipliers and their generalization, known

as the Karush-Kuhn-Tucker (KKT) conditions, will be particularly useful. The following

section is mostly based on Chapter 9 of [Fle00].

3.2 Constrained Optimization

In general, an optimization problem takes an objective function f : Rd → R and looks for

its minimum

min
x∈Rd

f(x). (3.2.1)

This problem can be complicated when the possible x must also satisfy a set of constraints,

which we express as equalities or inequalities in the functions ci : R
d → R. More specifi-

cally, the structure of most constraint optimization problems is usually expressed as

minf(x), x ∈ Rd, (3.2.2a)

where ci(x) = 0, i ∈ E, (3.2.2b)

ci(x) ≥ 0, i ∈ I. (3.2.2c)
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Through the next subsections, we will explore necessary and sufficient conditions for a

point x to be a solution of system (3.2.2). In order to establish our results we will assume

that f and ci are C1 functions. Notice that if I = ∅, then (3.2.2) consists of only equality

constraints and it can be solved via Lagrange multipliers. However, having inequality

constraints makes the problem more difficult to deal with. H. Kuhn and A. Tucker were

the first to announce a rigorous way to deal with such problems in [KT51]. We focus

mostly on inequality constraints here.

We first define the subset of active constraint indexes by A(x) := {i ∈ E ∪ I : ci(x) = 0}.
We may omit x whenever there is no confusion in this regard. Notice that if x is a local

minimum of the unconstrained problem (3.2.1) and it happens that ci(x) > 0 for all i ∈ I ,

then it is also a local minimum of the constrained problem (3.2.2). Thus we can safely

disregard such cases and just focus on the active inequalities, that is, only consider the

indexes in E and I ′ := I ∩ A. Assume for a moment that E = ∅, that is, (3.2.2) consists

only of inequality constraints.

3.2.1 First Order Conditions

In order to develop the necessary theory, we must first establish some definitions. We will

say x ∈ Rd is a feasible point if ci(x) = 0 and ci(x) ≥ 0 for all i ∈ E and i ∈ I respectively

as in (3.2.2b), (3.2.2c). Assume we can take a feasible sequence of points {xk} such that

xk → x and xk 6= x for all k ∈ N. Then we write

xk − x = δksk ∀k ∈ N, (3.2.3)

where δk > 0 scalar and sk is a unitary vector. Then it must be that δk → 0. If we also

assume that the sequence {sk} converges, we will say it is a directional sequence which

converges to a feasible direction s. Finally, define F(x) as the set of all feasible directions of the

vector x. We may omit x whenever there is no confusion about the basis point.

It is convenient to consider the 1st order Taylor series approximation about x for each

constraint:

ci(x+ δ) = ci(x) + 〈∇ci(x), δ〉+ o(δk). (3.2.4)

This yields a related set of feasible directions which are obtained by linearized constraints,
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c(x, y) = −(x2 + y2) c(x, y)− 3 ≥ 0

∇c(x, y) = −2(x, y) 0-level set

Figure 3.2: Level sets of ci(x, y) := −(x2 + y2)

which we denote by F (x), i.e.,

F (x) ={s : s 6= 0, 〈s,∇ci(x)〉 = 0, i ∈ E, 〈s,∇ci(x)〉 ≥ 0, i ∈ I ′} (3.2.5)

As s is of norm 1, the inner product of∇ci(x) with s produces the directional derivative

of ci along the direction s. Assume we are standing on a feasible point x as on the green

point in figure 3.2. In the case of ci with i ∈ E, we know ci(x) = 0. This equality must

hold for any other feasible point. Thus the directional derivative along all the feasible

directions s from x must vanish. In other words, s and ∇ci(x) must be perpendicular. In

the case when i ∈ I ′, ci(x) = 0 again. However, in this case we are allowed to increase the

value of ci(x) along any feasible direction s. That is, the directional derivative of ci along

s must be nonnegative.

We will now see that F and F are closely related.

Lemma 3.2.1. For any feasible x, F ⊂ F

Proof. Let s be feasible direction of x. That is, there exists a feasible sequence {xk} such

that xk → x such that sk → s as in (3.2.3). We expand the Taylor series of ci about x to
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obtain:

ci(xk) = ci(x) + 〈δksk,∇ci(x)〉+ o(δk). (3.2.6)

Due to feasibility of each xk and the definition of I ′, we see that

ci(xk) = ci(x) = 0, for i ∈ E,
ci(xk) ≥ ci(x) = 0, for i ∈ I ′.

Dividing (3.2.6) by δk > 0 it follows that

〈sk,∇ci(x)〉+ o(1) = 0, for i ∈ E;
〈sk,∇ci(x)〉+ o(1) ≥ 0, for i ∈ I ′.

Taking k →∞, we see that sk → s and o(1)→ 0. Thus, as k →∞,

〈s,∇ci(x)〉 = 0, for i ∈ E;
〈s,∇ci(x)〉 ≥ 0, for i ∈ I ′.

By definition, we see that s ∈ F (x).

Unfortunately, the other inclusion does not hold in general. Take for example the fea-

sible region R defined as shown in Figure 3.3. Notice that 0 ∈ R, so clearly s = (−1, 0) is

not a feasible direction from the origin. However, ∇c1(0) = (0,−1) and ∇c2(0) = (0, 1).

Thus 〈s,∇ci(0)〉 ≥ 0 for both i = 1, 2. That is, s ∈ F (0). Hence F(0) 6= F (0).

Kuhn and Tucker simply make the assumption F = F which is referred as the con-

straint qualification. However, this qualification follows when we consider stronger hy-

pothesis on constraints. For instance, the constraint qualification follows immediately if

all activeconstrints i ∈ A are linear. We simply state a particular result in this regard.

Lemma 3.2.2. Sufficient conditions for F = F at a feasible point x are either

1. The constraints i ∈ A are all linear.

2. The vectors∇ci(x) are all linearly independent.

Define now the set of descending directions

D(x) = {s : 〈s,∇f(x)〉 < 0}. (3.2.7)
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R

c1(x, y) := x3 − y ≥ 0

c2(x, y) := y ≥ 0

s

Figure 3.3: Feasible region R ⊂ R2 determined by constraints c1 and c2.

As with F , we will omit x whenever it is clearly implied. Geometrically speaking, D is

the set of all the possible directions based from x that immediately decrease the value of

f . The next lemma simply states that once we are at a local minimum none of the feasible

directions from there will immediately lead to a lower valued level set.

Lemma 3.2.3. If x is a local minimum, then F ∩ D = ∅.

Proof. Let s ∈ F . That is, there exists a feasible sequence {xk} such that xk → x such that

sk → s as in (3.2.3). We expand with Taylor about x to obtain:

f(xk) = f(x) + 〈δksk,∇f(x)〉+ o(δk). (3.2.8)

Due to minimality, for a sufficiently large K,

f(xk) ≥ f(x) ∀k > K.

Therefore, as δk > 0,

〈sk,∇f(x)〉+ o(1) ≥ 0.

As k →∞, sk → s and o(1)→ 0. Thus 〈s,∇f(x)〉 ≥ 0. That is, s /∈ D.

Unfortunately, we can’t say the same when considering the larger set F . We must

assume further the regularity condition

F ∩ D = F ∩ D. (3.2.9)
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This condition certainly holds if K-T constraint qualification, F = F , holds as well. How-

ever (3.2.9) may also hold even when such constraint qualification does not. For example,

suppose we want to minimize the objective function f(x, y) := y in the feasible region R

defined by Figure 3.3. Notice that for any linear feasible direction s = (s1, s2) of the origin

we have that 〈s,∇c1(0)〉 = −s2 and 〈s,∇c2(0)〉 = s2. It follows then that s2 = 0. Thus,

〈s,∇f(0)〉 = s2 ≥ 0 and F (0) ∩ D(0) = F(0) ∩ D(0).
Figure 3.3 also shows the necessity of the regularity condition (3.2.9). Suppose we

instead want to minimize the objective function g(x, y) := x. Take s = (−1, 0) ∈ F (0).

Then 〈s,∇g(0)〉 = −1 < 0. Thus F (0) ∩ D(0) 6= ∅.

From the previous lemma, assumption (3.2.9) tells us that no linear feasible direction

is also a descending direction.

Theorem 3.2.4 (Farkas). Given any vectors a1, . . . , am and g, the set

S = {s : 〈s,g〉 < 0, 〈s, ai〉 ≥ 0, i = 1 . . . ,m} (3.2.10)

is empty if and only if there exists nonnegative αi such that

g =
m∑

i=1

αiai. (3.2.11)

Proof. First suppose there exists s ∈ S. If (3.2.11) holds, then we can take the interior

product on both sides with s. This yields

〈s,g〉 =
∑

i

αi〈s, ai〉 ≥ 0.

This, of course, is a contradiction. Therefore, S must be empty.

Now assume (3.2.11) does not hold. Consider the polyhedral cone C generated by the

ai’s, that is

C := {v : v =
m∑

i=1

αiai, αi ≥ 0}.

By assumption, g /∈ C. As the cone is a closed and convex subset of Rd, there exists

a hyperplane with normal vector s which separates C and g. That is, 〈s, ai〉 ≥ 0 and

〈s,g〉 < 0. Therefore, s ∈ S. That is, S is not empty.

We can translate Farkas’ lemma to the language of constraints.
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Corollary 3.2.5.

S := {s : 〈s,∇f(x)〉 < 0, 〈s,∇ci(x)〉 = 0, i ∈ E, 〈s,∇ci(x)〉 ≥ 0, i ∈ I ′ = I ∪ A} (3.2.12)

is empty if and only if there exist nonnegative multipliers αi such that

∇f(x) =
∑

i∈A

αi∇ci(x). (3.2.13)

Proof. Remember A is the set of active equalities. The key part is to realize that the equal-

ities 〈s, ai〉 = 0 can be rewritten as inequalities 〈s, ai〉 ≥ 0 and 〈s, ai〉 ≤ 0. That being said,

due to Farkas’ lemma there are nonnegative αi, i ∈ I ′ and α+
i , α

−
i , i ∈ E such that

∇f(x) =
∑

i∈I′

αi∇ci(x) +
∑

i∈E

α+
i ∇ci(x) +

∑

i∈E

α−
i ∇ci(x).

if and only if the set S is empty. We redefine αi := α+
i + α−

i for i ∈ E and we are done.

Finally we establish necessary conditions for x to be a local minimum for the con-

strained problem (3.2.2). If x is a local minimum, there are no feasible descent directions

by Lemma 3.2.3. With the regularity assumption (3.2.9), there are no linear feasible descent

directions. By the corollary 3.2.5 of Farkas’ lemma, we get the existence of nonnegative

multipliers and the fact that∇f(x) is spanned by the gradients of the constraints. In other

words, we have the following.

Theorem 3.2.6 (First Order Necessary Conditions, or Karush-Kuhn-Tucker Conditions). If

x is a local minimum of (3.2.2) and if (3.2.9) holds at x, then there are multipliers {αi}i such that

the following system is satisfied:

∇xL(x,α) = 0, where L(x,α) = f(x)−
∑

i∈E∪I

αici(x); (3.2.14a)

ci(x) = 0, i ∈ E; (3.2.14b)

ci(x) ≥ 0, i ∈ I; (3.2.14c)

αi ≥ 0, i ∈ I; (3.2.14d)

αici(x) = 0, ∀i. (3.2.14e)

We will call the L function in (3.2.14a) the Lagrangian function of the problem.

33



3.2. CONSTRAINED OPTIMIZATION 3. SVMS

The last condition arises since it is consistent to assume that inactive constraints will

have 0 as their multiplier, as they play no actual role when looking for the solution. Note

that if I = ∅, meaning we have no inequality constraints, then the Karush-Kuhn-Tucker

conditions would reduce to the first two equations, which are the usual conditions for the

method of Lagrange multipliers.

3.2.2 Convexity

If we assume further that we are working in convex spaces with convex functions, then

it is possible to establish results about the sufficiency of Karush-Kuhn-Tucker conditions

(3.2.14). We will need to establish some general definitions and results first.

A set K ⊂ Rd is said to be convex if for all x0,x1 each xθ := (1− θ)x0+ θx1 belongs to K

for every θ ∈ (0, 1). In other words, for every two points inK, the line segment connecting

them lies completely within K. Unless stated otherwise, θ and xθ will be understood as

above. From the definition the following lemma is clear.

Lemma 3.2.7. If Ki are convex sets, then K :=
⋂

iKi is convex as well.

For K a fixed convex set, a convex function f : K ⊂ Rd → R is one for which every pair

of points x0,x1 in K the following inequality holds

f(xθ) ≤ (1− θ)f(x0) + θf(x1). (3.2.15)

If f is C1 and K is open, an alternative definition of convex function is that for every

pair of points x0,x1 ∈ K we have

f(x1) ≥ f(x0) + 〈x1 − x0,∇f(x0)〉. (3.2.16)

Keeping in mind the Taylor approximation around x1, we see that, geometrically, the

condition (3.2.16) states that the graph of f must lie above or along the tangent hyperplane

of f at x0. We now check when both definitions are equivalent.

Lemma 3.2.8. IfK ⊂ Rd is a fixed convex, open set and f : K → R is C1, then properties (3.2.15)

and (3.2.16) are equivalent.
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Proof. If (3.2.15) holds, then we have

f(xθ)− f(x0)

θ
=
f(x0 + θ(x1 − x0))− f(x0)

θ
≤ f(x1)− f(x0).

Taking θ → 0 and using the definition of directional derivative we obtain (3.2.16).

Now if (3.2.16) holds, then we have

f(x1) ≥f(xθ) + 〈x1 − xθ,∇f(xθ)〉;
f(x0) ≥f(xθ) + 〈x0 − xθ,∇f(xθ)〉.

We compute

(1− θ)f(xθ) + θf(x1) ≥ f(xθ) + 〈(1− θ)x1 + θx0,∇f(xθ)〉
= f(xθ) + 〈xθ,∇f(xθ〉
= f(xθ),

which is exactly (3.2.15).

From (3.2.16) it also follows that

〈x1 − x0,∇f(x1)〉 ≥ f(x1)− f(x0) ≥ 〈x1 − x0,∇f(x0)〉. (3.2.17)

That is, the slope of a convex function is non-decreasing along any line.

With the definition (3.2.15), it is easy to see the following result.

Lemma 3.2.9. If f1, . . . , fm are convex functions on the same convex set K, and if α1, . . . , αm are

nonnegative, then
∑

i αifi is a convex function on K.

We say that f is a concave function if −f is a convex function. A convex programming

problem is similar to the one presented in (3.2.2) as follows:

min f(x) subject to x ∈ K := {x ∈ Rd : ci(x) ≥ 0, i = 1, . . . ,m}, (3.2.18)

where f is a convex function on K and ci : R
d → R are concave constraints. Notice that K

is convex automatically, due to the following.

Lemma 3.2.10. If c is concave, then Sk := {x : c(x) ≥ k} is convex.
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Proof. For any x0,x1 ∈ Sk we have due to concavity

c(xθ) ≥ (1− θ)c(x0) + θc(x1) ≥ (1− θ)k + θk = k

Thus xθ ∈ Sk and we are done.

As each constraint is a concave function, each one has its own convex feasible region.

Thus K is the intersection of convex sets, and by Lemma 3.2.7 we conclude K is convex.

One important property of convex programming problems lies in the following theorem.

Theorem 3.2.11. Every local solution x to a convex programming problem (3.2.18) is a global

solution. Additionally, the set of global solutions S is convex.

Proof. Let x be a local but not a global solution. Then there exists a x1 ∈ K such that

f(x1) < f(x). Due to convexity of f we see that

f(xθ) ≤ (1− θ)f(x) + θf(x1) = f(x) + θ(f(x1)− f(x)) < f(x).

As θ → 0 we see that x is not even a local solution, which is a contradiction.

Now let x0,x1 ∈ S. Since both of them are global solutions we know that f(xθ) ≥
f(x0) = f(x1). By convexity on the other hand, f(xθ) ≤ (1− θ)f(x0)+ θf(x1) = f(x0), and

it follows that f(xθ) = f(x0). So xθ ∈ S.

Finally, we are able to show that the Karush-Kuhn-Tucker conditions are sufficient for

convex problems.

Theorem 3.2.12. In the convex programming problem, if f and ci are C1 functions on an open

and convex K and if conditions (3.2.14) hold at x ∈ K, then x is a global solution to (3.2.18).

Proof. Let x′ ∈ K \ {x}. As αi ≥ 0 and ci(x
′) ≥ 0, we have

f(x′) ≥ f(x′)−
m∑

i=1

αici(x
′)

≥ f(x) + 〈x′ − x,∇f(x)〉 −
m∑

i=1

αi(ci(x) + 〈x′ − x,∇ci(x)〉).
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The last inequality is due to the fact that f and−ci are convex and satisfy equation (3.2.16).

From (3.2.14), we know that αici(x) = 0 and∇f(x) =∑i αi∇ci(x). Substituting this in the

expression above yields

f(x′) ≥ f(x) + 〈x′ − x,
∑

αi∇ci(x)〉 −
∑

αici(x)−
∑
〈x′ − x, αi∇ci(x)〉

= f(x).

Therefore, x is a global solution.

Just as in Corollary 3.2.5, we can add equality constraints ci(x) = 0 to the convex

programming problem (3.2.18) by considering the inequality constraints ci(x) ≥ 0 and

−ci(x) ≥ 0. Thus, if (3.2.18) satisfies the regularity condition (3.2.9), by combining The-

orems 3.2.6 and 3.2.12 we see that Karush-Kuhn-Tucker conditions (3.2.14) are sufficient

and necessary for x to be a minimum. Moreover, due to theorem 3.2.11, these minimums

will be global.

3.2.3 Duality

The idea of duality in general is to provide an alternative formulation of a mathematical

programming problem which is more convenient computationally or has some theoretical

significance. The original problem is referred to as the primal and its reformulation will be

known as the dual. We will focus on the Wolfe dual as proposed in [Wol61]. It replaces the

constraint conditions by an optimality requirement on the Lagrangian function.

Theorem 3.2.13. If x solves the convex programming primal problem (3.2.18), if f and ci are C1

functions and if the regularity assumption (3.2.9) holds, then x,α solve the dual problem

max
x,α
L(x,α), with L as in (3.2.14a) (3.2.19a)

where ∇L(x,α) = 0, α ≥ 0. (3.2.19b)

Furthermore, the minimum primal and maximal dual function values are equal, that is,

f(x) = L(x,α)
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Proof. By Theorem 3.2.6 we know that there exist nonnegative multipliers α such that

∇L(x,α) = 0 and αici(x) = 0 for every index i. It follows then

L(x,α) = f(x)−
∑

i

αici(x) = f(x).

We just need to see that these x and α are effectively the solution of problem (3.2.19). Let

x′ and α′ be dual feasible. As each α′
i is nonnegative, L is convex (see Lemma 3.2.9) and

∇xL = 0, we have that

L(x,α) = f(x) ≥ f(x)−
∑

α′
ic(x) = L(x,α′)

≥ L(x′,α′) + 〈x− x′,∇xL(x′,α′)〉
= L(x′,α′).

Thus, (x,α) effectively is a global maximum.

3.3 Linear SVM recast as a constrained optimization prob-

lem

Recall that the SVM problem considers vectors x1,x2, . . . ,xn ∈ Rd. Each vector has its

label y1, y2, . . . , yn from a set of possible labels {−1,+1}. The SVM problems asks for a

partition of Rd via a hyperplane such that the vectors on one side of the hyperplane all

have positive labels while the vectors on the other side of such hyperplane are all labeled

negatively.

3.3.1 The separable case

As mentioned in section 3.1, first consider the case where there are only two possible labels

(m = 2) {l1, l2} = {−1, 1}. Assume further that both families of vectors can be split by a

hyperplane H defined by a normal vector w and a scalar b. Then the linear SVM problem

is recast as the constrained optimization problem (3.1.3).

min
(w,b)∈Rd×R

f(w, b) :=
1

2
‖w‖2, (3.3.1a)

where ci(w, b) := yi(〈xi,w〉+ b) ≥ 1 for all i = 1, . . . , n. (3.3.1b)
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Notice that all the constraints (3.1.3b) are linear. Thus all the feasible directions are

actually linear feasible directions and the regularity condition (3.2.9) holds. On the other

hand, the domain of both f and ci is the convex set Rd+1. We state a general analysis

lemma to see that f is a convex function.

Lemma 3.3.1. If g : Rd → R is convex and h : R→ R is convex and nondecreasing, then h ◦ g is

convex.

Proof. For any x,y ∈ Rd and θ ∈ (0, 1) we have first due to convexity of g that:

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y).

As h is nondecreasing and convex, we conclude that

h(g(θx+ (1− θ)y)) ≤ h(θg(x) + (1− θ)g(y))
≤ θh(g(x)) + (1− θ)h(g(y))

Notice that ‖(1 − θ)w0 + θw1‖ ≤ (1 − θ)‖w0‖ + θ‖w1‖ for any w0w1 ∈ Rd and θ ∈
(0, 1). Hence g(w, b) := ‖w‖ is convex. h(x) := 1

2
x2 is a convex nondecreasing function.

Thus due to the previous lemma, our objective function f = h ◦ g is convex as well.

Due to linearity, we see that each ci is concave. Hence the problem (3.1.3) is a convex

programming problem.

Theorems 3.2.6 and 3.2.12 tell us then that Karush-Kuhn-Tucker conditions are neces-

sary and sufficient for any minimum (w, b). The choice of the KKT technique is based on

the fact that it will enable us to code most of our information in terms of inner products.

That way we will be able to generalize easily to non-separable or nonlinear cases later.

Theorem 3.2.13 also tell us that it is possible to solve the problem through its Wolfe dual

(3.2.19).

Karush-Kuhn-Tucker conditions

The primal Lagrangian (as in (3.2.14a)) of the problem (3.1.3) is

LP (w, b) :=
1

2
‖w‖2 −

n∑

i=1

αiyi(〈xi,w〉+ b) +
n∑

i=1

αi. (3.3.2)
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The KKT conditions of the primal problem are then

∂LP

∂wj

= wj −
n∑

i=1

αiyixij = 0, j = 1, . . . , d (3.3.3a)

∂LP

∂b
= −

n∑

i=1

αiyi = 0 (3.3.3b)

yi(〈xi,w〉+ b)− 1 ≥ 0, i = 1, . . . , n (3.3.3c)

αi ≥ 0 ∀ i (3.3.3d)

αi(yi(〈xi,w〉+ b)− 1) = 0 ∀ i (3.3.3e)

An immediate application of this recast is that, while we might be able to determine

the minimizing w through the training procedure, we will be able to determine b easily

through the complementarity condition (3.3.3e). We will just need to take an index i for

which αi > 0. If we now take equalities (3.3.3a) and (3.3.3b) then:

n∑

i=1

αiyi(〈xi,w〉+ b) =
n∑

i=1

αiyi

[
n∑

j=1

αjyj〈xi,xj〉
]
+ b

n∑

i=1

αiyi

=
∑

1≤i,j≤n

αiαjyiyj〈xi,xj〉.

Similarly

‖w‖2 = 〈w,w〉 =
〈

n∑

i=1

αiyixi ,
n∑

j=1

αjyjxj

〉

=
∑

1≤i,j≤n

αiαjyiyj〈xi,xj〉.

Finally we substitute the previous equalities in LP . The formulation of the Wolfe dual

problem then tells us that we must maximize LP (w, b) subject to constraints (3.3.3a),

(3.3.3b) and (3.3.3d). That way the Wolfe dual may be stated as maximizing LD subject

to the previous constraints where

LD(w, b) :=
∑

1≤i≤n

αi −
1

2

∑

1≤i,j≤n

αiαjyiyj〈xi,xj〉. (3.3.4)
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Test phase

Once the problem (3.1.3) is solved, the hyperplane H = {z ∈ Rd : 〈z,w〉 + b = 0}) splits

Rd in two sides. One side corresponds to those vectors labeled yi = −1 and the other for

those labeled yi = 1. For any other vector x different from the training ones, its label will

simply be according to which side of the hyperplane it lies in. In other words,

label(x) = sgn (〈w,x〉+ b) = sgn

(
n∑

i=1

αiyi〈xi,x〉+ b

)
(3.3.5)

where sgn is the sign function. The second equality is due to (3.3.3a). The function t :

Rd → R defined as

t(x) := 〈w,x〉+ b (3.3.6)

will be referred as the decision or test function yielded by the SVM.

3.3.2 The non-separable case

Now assume Rd cannot be split by a hyperplane in such a way that it also splits the train-

ing vectors according to their label. The procedure described above will then find no

solution. A way to handle the non-separable problem would be to relax the constraints

(3.1.1a) and (3.1.1b) but only when it is strictly necessary. Nonnegative cost variables ξi

will be associated to each training vector xi to indicate when the above constraints need

to be relaxed. The new constraints thus become

〈w,xi〉 ≥ 1− ξi, if yi = 1 (3.3.7a)

〈w,xi〉 ≥ −1 + ξi, if yi = −1 (3.3.7b)

ξi ≥ 0 ∀ i. (3.3.7c)

A classification error occurs whenever ξi ≥ 1, that is, whenever the constraint is relaxed

to allow a training vector on the other side of the hyperplane. Observe that the number of

training errors is upper bounded by
∑n

i=1 ξi. The problem now asks not just to minimize

‖w‖2 but to minimize the number of classification errors as well. We state thus a new
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H

ξj

‖w‖

ξi

‖w‖

ξj > 1

ξi < 1

Figure 3.4: Non-separable case. Notice that the black circle presents a classification error

constrained optimization problem as

min
(w,b,ξ)∈Rd×R×Rd

f(w, b, ξ) :=
‖w‖2
2

+ C

(
n∑

i=0

ξi

)k

, C ≥ 0, k ≥ 1 (3.3.8a)

where ci(w, b, ξ) := yi(〈w,xi〉+ b) + ξi ≥ 1, ∀ i = 1, . . . , n (3.3.8b)

and ξi ≥ 0, ∀ i = 1, . . . , n. (3.3.8c)

C, k are fixed values. Larger C’s and k’s mean a harsher penalty for every classification

error. Notice that gi(ξ) := ξi is a convex function. Thus by Lemma 3.2.9, g :=
∑

i gi is a

convex function as well. On the other hand, h(x) := Cxk is a convex and increasing real-

valued function. Thus h ◦ g is a convex function by Lemma 3.3.1. Hence the objective

function f is convex as well. Additionally, notice that each ci is linear and hence each of

them is a concave function. Finally, observe that the domain for all of them is R2d+1 which

is a convex set. Therefore (3.3.8) is a convex optimization problem. Moreover, as each ci

is linear, the regularity condition 3.2.9 holds and thus KKT conditions (3.2.6) are sufficient

and necessary for any minimums, which happen to be global.

To make computations easier take k = 1. First observe that the Lagrangian of the
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primal problem is then

LP (w, b, ξ) =
1

2
‖w‖2 + C

(
n∑

i=1

ξi

)1

−
n∑

i=0

αiyi〈w,xi〉 − b
n∑

i=0

αi −
n∑

i=0

αiξi −
n∑

i=0

µiξi.

(3.3.9)

The Lagrange multipliers µi are introduced to reinforce the nonnegativity of the costs ξi.

The KKT conditions are then stated as

∂LP

∂wj

= wj −
n∑

i=1

αiyixij = 0, j = 1, . . . , d (3.3.10a)

∂LP

∂b
= −

n∑

i=1

αiyi = 0 (3.3.10b)

∂LP

∂ξi
= C − αi − µi = 0, i = 1, . . . , n (3.3.10c)

yi(〈w,xi〉+ b) + ξi − 1 ≥ 0, i = 1, . . . , n (3.3.10d)

ξi ≥ 0, i = 1, . . . , n (3.3.10e)

αi ≥ 0, i = 1, . . . , n (3.3.10f)

µi ≥ 0, i = 1, . . . , n (3.3.10g)

αi[yi(〈w,xi〉+ b) + ξi − 1] = 0, i = 1, . . . , n (3.3.10h)

µiξi = 0, i = 1, . . . , n. (3.3.10i)

Observe that (3.3.10c), (3.3.10f) and (3.3.10g) are summarized as the constraints

0 ≤ αi ≤ C, i = 1, . . . , n (3.3.11)

Note that by combining both (3.3.11) and (3.3.10i), if it happens that αi < C, then ξi = 0.

Then if a vector is taken such that 0 < αi < C, b can be deduced from (3.3.10h). As (3.3.8)

is a convex optimization problem, due to Theorem 3.2.13 it is equivalent to solve its Wolfe

dual problem. Substituting (3.3.10c) in (3.3.9), we obtain

LP (w, b, ξ) =
1

2
‖w‖2 −

n∑

i=0

αiyi〈w,xi〉 − b
n∑

i=0

αi.

We then substitute 3.3.10a and 3.3.10b and work exactly as in the separable case. Hence

we obtain the dual Lagrangian LD(w, b, ξ) :=
∑

1≤i≤n αi − 1
2

∑
1≤i,j≤n αiαjyiyj〈xi,xj〉. We
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thus state the Wolfe dual problem as

maximize LD(w, b, ξ), (3.3.12a)

subject to 0 ≤ αi ≤ C (3.3.12b)

and
n∑

i=1

αiyi = 0. (3.3.12c)

From (3.3.10a), the solution is given by w =
∑

i αiyixi. Observe that this optimization

problem is almost identical to the separable case problem. The only difference is the fact

that now the αi’s also have an upper bound.

3.4 Nonlinear SVM

So far it has been assumed that the training vectors can be split by a hyperplane with

certain relaxations. However, this might not always be the case. Sometimes the training

vectors might be better split by a nonlinear surface. The key idea behind the generalization

to nonlinear surfaces lies on the fact that virtually all the previous computations hinge on

inner products.

Suppose all the training vectors are mapped to a new Hilbert space (H, 〈, 〉H) via a map

Φ : Rd → H. Observe that the KKT conditions encode the information of the optimization

problems (3.1.3) and (3.3.8) mostly as inner products. Thus our main interest lies on the

behavior of inner products 〈Φ(x),Φ(y)〉H rather that the behavior of Φ itself.

For the remainder of the section, assume that all our data points {xi}ni=1 are contained

in a compact set C ⊂ Rd. Define then a kernel function K : C × C → R with (x,y) 7→
〈Φ(x),Φ(y)〉H. Observe that with an explicit kernel function it is not necessary to know Φ

explicitly.

If we then replace 〈x,y〉 by K(x,y) throughout all our computations and results above

for the linear case, then we will produce a support vector machine which lives in a more

abstract space H. Observe that all the results on constrained optimization hold even on

infinite dimensional spaces. Thus all the considerations follow as we are still doing a

linear separation but in a different higher-dimensional space.

As the support vector machine lives now in H, the optimal hyperplane defined by

some normal vector w will live in H as well. However, just as in the d dimensional case,
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the solution will come from the equivalent of (3.3.5) and (3.3.10a). That is,

class(x) = sgn

(
n∑

i=1

αiyiK(x,xi) + b

)
. (3.4.1)

3.4.1 Examples and conditions of kernel functions

For d = 2, C = [−1, 1]2 and H = R3 with the usual inner product some explicit examples

can be worked out. For instance, consider

Φ1(x1, x2) :=




x21√
2x1x2

x22


 . (3.4.2)

Thus K1(x,y) := 〈Φ1(x1, x2),Φ2(y1, y2)〉 = x21y
2
1 + 2x1x2y1y2 + x22y

2
2 = 〈x,y〉2. The square C

is deformed in R3 via Φ1 as seen in figure 3.5a. Observe that in reality, it is not necessary to

know Φ1 but only K1. Note that different Φ’s and H’s can yield the same kernel function.

For example consider a new deformation of R2 in R3 or R4 via

Φ2(x1, x2) :=
1√
2




x21 − x22
2x1x2

x21 − x22


 , Φ3(x1, x2) :=




x21

x1x2

x1x2

x22




(3.4.3)

As stated before, the idea is to suggest a continuous real-valued function K and thus

ignore computations involving Φ and H. For a given continuous, real-valued function K

on C ×C, an interesting question is to determine when does a Hilbert spaceH and a map

Φ exist as described above. We might turn then to Mercer’s condition. A proof of the

following result can be seen [PR16, ch. 11].

Theorem 3.4.1 (Mercer’s condition). For a compact subset C ⊂ Rd and given continuous

function K : C × C → R there exists a mapping Φ, and a Hilbert spaceH such that

K(x,y) = 〈Φ(x),Φ(y)〉H ∀x,y ∈ C (3.4.4)

if and only if for any L2(C) function g : C → R (that is, g2 is Lebesgue-integrable on C) the

following inequality holds
∫

C

∫

C

K(x,y)g(x)g(y) dxdy ≥ 0. (3.4.5)
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(a) C2 Φ1→֒ R3 (b) C2 Φ2→֒ R3

Figure 3.5: Deformation of the C = [−1, 1]2 square in R3

As an quick application of Mercer’s condition, we can establish that positive integral

powers of the usual dot product are valid kernel functions. As an example, consider the

following K : C × C → R defined as K(x,y) := 〈x,y〉m for some m ∈ N. First consider

a fixed g ∈ L2(R) and expand the expression (
∑d

i xiyi)
m. Observe that each summand

contributes to a term in the integral (3.4.5) of the form

(
m

r1, r2, · · · , (p− r1 − r2 − · · · )

)∫

C

∫

C

xr11 x
r2
2 · · · yr11 yr22 · · · g(x)g(y) dxdy.

Due to Fubini, the integral above is split in half which yields

(
m

r1, r2, · · · , (p− r1 − r2 − · · · )

)(∫

C

xr11 x
r2
2 · · · g(x) dx

)(∫

C

yr11 y
r2
2 · · · g(y) dy

)
=

(
m

r1, r2, · · · , (p− r1 − r2 − · · · )

)(∫

C

xr11 x
r2
2 · · · g(x) dx

)2

≥ 0.

Thus K satisfies Mercer’s condition and hence it is a valid kernel. Due to linearity of the

integral, the same reasoning can be used to show that K(x,y) :=
∑p

i=1 ci〈x,y〉mi is also a

valid kernel for nonnegative coefficients ci and natural exponents mi.

3.5 Multiclass SVMs

So far we have just discussed the case when only two possible labels can be assigned to

the data. Suppose now that each of the n training data vectors xi is labeled with exactly
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one of the possible m labels li ∈ {1, . . . ,m}. Similarly, test points x must be assigned

exactly one of those m labels. The strategies to determine proper training and testing

on the multiclass scenario are part of ongoing research on SVMs as discussed in [HL02].

We will discuss here only the two basic strategies to this problem: One-versus-All (OvA)

and All-versus-All (AvA). According to [HL02], the AvA approach tends to provide better

results than the OvA approach. For both strategies, we will reduce the multiclass SVM

problem to the already solved binary SVM problem (3.1.3). Observe from the previous

sections that we can also reduce the multiclass problem into a nonlinear, non-separable

SVM problem instead.

3.5.1 One-versus-All (OvA)

The first strategy consists on solvingm different SVMs with n points each, one per possible

label. The j-th SVM will relabel the training data as {(xi, yi)}ni=1 where yi = +1 if li = j

and yi = −1 otherwise. Then we solve the classic binary SVM problem (3.1.3). Thus we

would compute an optimal hyperplane defined by wj and bj . This procedure would then

produce m different test functions as in 3.3.6:

tj(x) = 〈x,wj〉+ bj.

Finally, we say for a new test point x that its label would be the one that maximizes its test

function. That is

label(x) = arg max
1≤j≤m

tj(x). (3.5.1)

3.5.2 All-versus-All (AvA)

Also known as one-versus-one, it consists on solving
(
m
2

)
different SVMs, one per possible

pair of labels. The (j, k)-th SVM will relabel the training data as {(xi, yi)}ni=1 where yi = +1

if li = j, yi = −1 if li = k and yi = 0 otherwise. Then we solve the SVM problem (3.1.3) for

all the vectors with nonzero label. Although more SVMs ought to be computed, observe

that on average, each of the SVMs will work with just 2/m points. This procedure will

yield
(
m
2

)
different separating hyperplanes defined by wj,k and bj,k which in turn define
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(
m
2

)
test functions as in (3.3.6),

tj,k(x) = 〈x,wj,k〉+ bj,k.

There are several proposed test strategies involving all these test functions, a popular ap-

proach being the voting max wins strategy. That is, for each test item x compute sgn (tj,k(x)).

If the sign is positive, then the voting tally for label j increases one unit. Otherwise, the

tally for label k is increased. After
(
m
2

)
votes, label(x) is defined as the label with the

most votes. Observe that this approach might fail when two or more labels have the exact

number of votes.

3.6 Discussion

By construction, the SVM is highly dependent on a good and large training set. Larger

training sets allow a better placement of the splitting hyperplane. It is still a ongoing

research question on how to determine if a given training set provides a meaningful test

function. There is ongoing research as well regarding on how to determine the appropriate

kernel function for a fixed dataset.

It is important to remember that SVMs work with a fixed number of different possible

groups to assign. It may well be the case that a given test vector z is very distant from

every training vector x1, . . . ,xn. Thus SVM would rather classify z with label yi, stating

that the i-th training set Si is the least distant to z rather that z being close to Si. Hence

the choice of yi for z may be erroneous and a brand new label z would be a better choice.

That said, the assortments obtained could be due to two reasons.

1. The data suggests that the given test point x is similar to a certain group and ought

to assigned in such group.

2. The test point xi is very distant from the rest of training data and the SVM picks the

least distant group.

Part of the difficulties of the SVM is to determine which case occurred for each assignment.

There is ongoing discussion in the literature on the best way to distinguish between those

two cases above.
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Chapter 4

Unsupervised SVMs

The Support Vector Machine problem in the previous chapter is a supervised machine

learning algorithm. This means that our data is divided in a training and a testing set. The

training set is conformed by vectors x and their classifying labels y. From these labeled

vectors, the algorithm finds the optimal splitting hyperplane which defines the classifica-

tion for the vectors in the test set. This supervised approach , however, is unusable when

there is no data for which the labels are known. In a simple unsupervised setting, we

only have data and the assumption that it is divided between two or more possible fami-

lies. Thus, the problem lies in finding the optimal labeling of the data, and from there on

deduce a way to classify additional data.

Due to the lack of almost all a priori information, unsupervised methods tend to be

more computationally demanding. This chapter explores the idea of a unsupervised sup-

port vector machine. The chapter is based on the ideas presented in [Kar+12].

4.1 The Furthest Hyperplane Problem

In the previous chapter, the basic SVM problem poses that we have a set of data vectors

{xi}ni=1 in Rd, each of them with a label yi ∈ {−1, 1}. Our main interest is to find a splitting

hyperplane H defined by a normal vector w ∈ Rd and a scalar b ∈ R. If we assume that w

is a unitary vector, then the constraint (3.1.2) is rewritten as

yi(〈w,xi〉+ b) ≥ θ, for some fixed θ and i = 1, . . . , n. (4.1.1)
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Thus the optimization problem consists of maximizing the separation margin θ such that

the constraints above all hold. Compare it to (3.1.3) in the previous section.

For the unsupervised setting, all the yi’s are unknown. One initial approach to a unsu-

pervised SVM is the Maximal Marginal Clustering (MMC). The method consists of consid-

ering all the possible labelings {yi}ni=1, that is, all the vectors in Rd with entries in {−1, 1},
and compute then the standard supervised SVM for each of these possible labelings. As-

suming we ignore the trivial labelings (where all the labels are identical), each labeling

will yield a hyperplane H and a separation margin θ. The optimal labeling is thus the

one that yields the largest possible margin θ. Although it is theoretically simple, it is com-

putationally unfeasible. The MMC problem asks to solve the SVM optimization problem

(2n − 2)/2 = 2n−1 − 1 times which is computationally possible only for very small values

of n. The MMC problem raises several questions, such as whether it is a convex program-

ming problem or if there are ways to find the optimal labeling without going through all

the possibilities.

One possible approach to simplify the computations is to make the assumption that the

optimal hyperplane H goes through the origin. This is referred as the Furthest Hyperplane

Problem (FHP). In this case b = 0 and the optimization problem as in (4.1.1) is rewritten as

maximize θ (4.1.2a)

subject to ‖w‖ = 1, |〈w,xi〉| ≥ θ. (4.1.2b)

The optimal labeling then will be the one given by yi := sgn (〈w,xi〉). In order to make

sense of the going-through-the-origin assumption, pick a pair of two different vectors

xi,xj . We can assume that they belong to opposite families as we are discarding trivial

labelings. Let m be the midpoint of the line segment between xi and xj . Then the optimal

hyperplane H must go through m. If we translate every vector xk by −m, then H will

effectively go through the new origin. Refer to figure 4.1.

Thus in order to find the overall maximum margin θ, we must solve (4.1.2) for every

possible pair of vectors. That implies that solving the MMP is equivalent to solving the

FHP
(
n
2

)
times. Hence the focus for the rest of the chapter will be on solving the FHP as

fast as possible.

To make computations easier, we can assume for all the data vectors xi that ‖xi‖ ≤ 1

holds after they have been displaced by −m. This assumption is valid as the optimal
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H

Figure 4.1: Translate the origin to the midpoint between two fixed points

hyperplane won’t be affected by scaling. Thus, due to Cauchy-Schwartz inequality and

(4.1.2b), we have that θ ≤ 1, the maximum possible margin.

We will say that a labeling {yi}ni=1 is feasible if there exists a unitary vector w ∈ Rd such

that yi〈w,xi〉 > 0 for every i. That is, the labeling yields a linear separable case as in the

figure 3.1 which has a solution as we know. Having said that, the labeling margin θ of a

given feasible labeling is the solution of problem 4.1.2. Also, given a unitary vector w we

will say that its corresponding labeling is the one produced by yi := sgn (〈w,xi〉). We finally

say a feasible labeling is optimal if it is the one that maximizes its labeling margin.

Computing the actual optimal labeling in the FHP setting is still a hard problem as the

number of possible labels grows exponentially as the number of data vectors grow. An

approximation algorithm provides a faster computation with certain guarantees about

being good enough. We might not compute the actual optimal splitting hyperplane H,

but we might compute an approximate hyperplane H′ whose corresponding labelings

coincide. For example, in figure 4.2 both hyperplanes produce the same labeling of points.

However, in order to establish a good approximation algorithm we need to review

some results on singular value decompositions. The following section follows chapter 3

from [BHK17].
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θ

θ

θ

Hoptim

Happrox

Figure 4.2: Approximate hyperplane vs. optimal hyperplane

4.2 Singular Value Decompositions

We can think our initial data vectors xi ∈ Rd as the rows of a n × d matrix A. That

is, the matrix entries are (A)i,j = xi,j . We would like to find the closest k-dimensional

linear subspace Vk with respect to the set of data vectors. That is, we want to solve the

optimization problem

minimize
n∑

i=1

d(xi, Vk)
2, Vk is a k-dimensional subspace of Rd. (4.2.1)

The above problem is known as the best least square fit problem. For the 1-dimensional

case, we would like to find a line through the origin determined by a unit vector v such

that
∑n

i=1 d(v,xi) is minimized. As shown in figure 4.3,

‖xi‖2 = ‖proj
v
(xi)‖2 + d(v,x)2,

from which

‖xi‖2 − ‖proj
v
(xi)‖2 = d(v,x)2.

Thus (4.2.1) for k = 1 is equivalent to maximize
∑n

i=1 ‖proj
v
(xi)‖2.
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v

xi

θ

‖projv(xi)‖

d(v,xi)

Figure 4.3: As ‖v‖ = 1, observe that ‖proj
v
(xi)‖ = ‖xi‖ cos θ = |〈v,xi〉|

4.2.1 Singular vectors

Consider a unit vector v and the line it defines through the origin. Observe that

n∑

i=1

‖proj
v
(xi)‖2 =

n∑

i=1

|〈v,xi〉|2

=
n∑

i=1

[
d∑

j=1

xi,jvj

]2
=

n∑

i=1

(Av)2i = ‖Av‖2.

Thus the best fit line is the one that maximizes ‖Av‖2. We define the solution as the

first right singular vector v1 of A as the solution to the optimization problem

maximize ‖Av‖, such that ‖v‖ = 1. (4.2.2)

Observe that v1 always exists due to the continuity of ‖ · ‖ and the compacity of Sd−1. We

define the first singular value of A as

λ̂1(A) := max
‖v‖=1

‖Av‖. (4.2.3)

Notice that λ̂21(A) =
∑n

i=1 ‖proj
v1
(xi)‖2. Now for the 2-dimensional case, consider a plane

π that goes through the origin such that it contains v1. Consider a unit vector v2 perpen-

dicular to v1. Due to Pythagoras,

n∑

i=1

‖projπ(xi)‖2 =
n∑

i=1

‖proj
v1
(xi)‖2 +

n∑

i=1

‖proj
v2
(xi)‖2.
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In order to maximize the left hand side above, we just need to look for a unit vector v2

perpendicular to v1 such that ‖Av2‖2 is maximized. As in the 1-dimensional case, such v2

exists due to continuity of ‖ · ‖ and compacity of Sd−2. We refer to v2 as the second right

singular vector and to λ̂2(A) := ‖Av2‖ as the second singular value. We construct analogously

v3,v4, . . . ,vr for r ≤ d. The construction ends whenever

max
v⊥Span {v1,...,vr}, ‖v‖=1

‖Av‖ = 0.

Observe that the algorithm ends with vr if and only if rank(A) = r. We have to check

that the linear subspaces Vk := Span {v1, . . . ,vk} for 1 ≤ k ≤ r effectively solve the best

least square problem as in (4.2.1).

Theorem 4.2.1. Let A ∈ Mn×d(R) with v1, . . . ,vr and Vk as above. Then for each k, Vk is the

best-fit k-dimensional subspace for A.

Proof. The proof goes by induction on k. As discussed above, the theorem is valid for

k = 1. For k = 2 let W be a best-fit 2-dimensional subspace for A. For any basis w1,w2 of

unit vectors of W it is true that

‖Aw1‖2 + ‖Aw2‖2 =
n∑

i=1

‖proj
w1
(xi)‖2 +

n∑

i=1

‖proj
w2
(xi)‖2 =

n∑

i=1

‖projW (xi)‖2

Without loss of generality, we can assume that w2⊥projW (v1). Due to the definition of vi,

it must be that ‖Awi‖ ≤ ‖Avi‖ for i = 1, 2. Combining both inequalities it yields

n∑

i=1

‖projW (xi)‖2 = ‖Aw1‖2 + ‖Aw2‖ ≤ ‖Av1‖2 + ‖Av2‖2 =
n∑

i=1

‖projV2
(xi)‖2.

In other words, V2 is at least as good as W , so it must be a best-fit 2-dimensional subspace.

The inductive step is analogous for k whenever the theorem holds for Vk−1.

In general, we define the Frobenius norm ‖ · ‖F of a matrix as the square root of the sum

of its squared entries. That is,

|A|2F :=
n∑

i=1

r∑

j=1

(A)2i,j, A ∈Mn×d(R). (4.2.4)

Lemma 4.2.2. For any matrix A with exactly r singular values we have that |A|2F =
∑r

i=1 λ̂
2
i (A).

54



4. USVMS 4.2. SINGULAR VALUE DECOMPOSITIONS

Proof. With A as always, it is a simple computation

n∑

i=1

r∑

j=1

x2i,j =
n∑

i=1

‖xi‖2 =
n∑

i=1

r∑

j=1

‖proj
vj
(xi)‖2

=
r∑

j=1

n∑

i=1

‖proj
vj
(xi)‖2 =

r∑

j=1

‖Avj‖2 =
r∑

j=1

λ̂2j(A).

That way, we can think of the singular values as the “components” of A. Also, for

every d-dimensional vector v, the n-dimensional vector Av is a linear combination of

Av1, . . . , Avr. We normalize these vectors and set

ui :=
1

λ̂i(A)
Avi, 1 ≤ i ≤ r. (4.2.5)

These ui’s will be referred as left singular vectors. Just as with the right singular vectors,

these left ones are orthogonal as well.

Theorem 4.2.3. Let A be a rank r matrix. The left singular vectors u1, . . . ,ur are all orthogonal.

Proof. The proof goes by induction on r. For r = 1 it is trivial. Now consider λ̂1 := λ̂1(A)

and the n × d matrix B := A − λ̂1u1v
⊤
1 . Observe that Bv1 = 0 and that for any v⊥v1, we

haveBv = Av. Say z1 is the first right singular vector ofB. If z1 had a nonzero component

z′1 along v1, then ‖z1 − z′1‖ < 1 and

∥∥∥∥B
z1 − z′1
‖z1 − z′1‖

∥∥∥∥ =
‖Bz1‖
‖z1 − z′1‖

−
✟
✟
✟
✟

✟
✟✯
0‖Bz′1‖

‖z1 − z′1‖
> ‖Bz1‖.

This contradicts the maximality of z1 and it must be that z1 and v1 are orthogonal. Due

to maximality, it must be that z1 = v2. With a similar reasoning we conclude that B has

right singular vectors v2, . . . ,vr and corresponding left singular vectors u2, . . . ,ur. As B

has rank r − 1, by induction hypothesis all u2, . . . ,ur are orthogonal. All is left to do is to

check orthogonality of u1.

Suppose this is false and without loss of generality, there is a i ≥ 2 such that 〈u1,ui〉 >
0. For a small ǫ > 0,

‖v1 + ǫvi‖2 = 〈v1 + ǫvi,v1 + ǫvi〉 = ✟
✟
✟✯
1

‖v‖2 + 2ǫ✘✘✘✘✘✿0〈vi,v1〉 + ǫ
✟
✟
✟✟✯

1
‖vi‖2 .
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We compute then the d-dimensional vector

w := A
v1 + ǫvi

‖v1 + ǫvi‖
=
λ̂1u1 + ǫλ̂1u1√

1 + ǫ2
,

whose norm must be at least as large as its component along u1. We approximate the

denominator with its Taylor series and compute

proj
u1
(w) =

〈
u1,

λ̂1u1 + ǫλ̂1u1√
1 + ǫ2

〉
= (λ̂1 + ǫλ̂i〈ui,u1〉)(1− ǫ2/2 +O(ǫ4))

= λ̂1 + ǫλ̂i〈ui,u1〉 −O(ǫ2) > λ̂1.

This contradicts the maximality of the first singular value λ̂1. Thus u1, . . . ,ur are all or-

thogonal.

4.2.2 SVD

Remember that in general two n× d matrices A,B are identical if and only if Av = Bv for

every v ∈ Rn.

Theorem 4.2.4. Let A be an n × d matrix with right singular vectors v1, . . . ,vr, left singular

vectors u1, . . . ,ur and corresponding singular values λ̂1, . . . , λ̂r. Then

A =
r∑

i=1

λ̂iuiv
⊤
i (4.2.6)

Proof. Due to orthonormality, for each 1 ≤ j ≤ r we have that Avj =
∑r

i=1 λ̂iuiv
⊤
i vj . By

construction, {v1, . . . ,vr} forms a basis of Vr, a r-dimensional subspace of Rd which is also

the image of A when seen as a linear transformation. Add vectors wr+1, . . . ,wd to obtain

a basis for the whole Rd. We know that every wj is perpendicular to every vector in Vr.

Also by the rank-nullity theorem we know that Awj = 0. Thus for every vector v ∈ Rd we
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have that

r∑

i=1

λ̂iuiv
⊤
i v =

r∑

i=1

λ̂iuiv
⊤
i

[
r∑

j=1

αjvj +
d∑

j=r+1

αjwj

]

=
r∑

i=1

λ̂iui

r∑

j=1

αj〈vi,vj〉+
r∑

i=1

λ̂iui

r∑

j=r+1

αj〈✘✘✘✘✿
0vi,wj 〉

=
r∑

j=1

αj

r∑

i=i

λ̂iui

=
r∑

j=1

αjAvj = Av.

The decomposition shown in (4.2.6) is referred as the singular value decomposition (SVD)

of A. In matrix notation it can also be expressed as A = UDV ⊤ where the columns of U

(resp. V ) are the left (resp. right) singular vectors and D is diagonal with the singular

values of A as entries. For any matrix A, by definition, its singular values area unique. If

all the singular values are different, then the singular vectors are unique as well.

To compute the SVD it is quicker to compute the eigenvectors and eigenvalues of the

d × d matrix A⊤A. This computation is cheaper than solving multiple optimization prob-

lems as posed in (4.2.2). First observe thatA⊤A is certainly of rank r. A quick computation

reveals that due to orthonormality,

A⊤Avk =

(
r∑

i=1

λ̂iviu
⊤
i

)(
r∑

i=1

λ̂iuiv
⊤
i

)
vk

=

(
r∑

i=1

λ̂iviu
⊤
i

)
λ̂kuk

= λ̂k

(
r∑

i=1

λ̂ivi〈ui,uk〉
)

= λ̂k(λ̂kvk) = λ̂2kvk.

In other words, each right singular vector vk is an eigenvector of A⊤A with eigenvalue

λ̂2k(A). From here, V and D can be immediately computed. Finally, U is simply computed

as AVD−1.
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4.2.3 Best k-rank approximations

Say A is a n × d matrix of rank r with SVD
∑r

i=1 λ̂iuiv
⊤
i . Then its (i, j)-th entry is of the

form (A)i,j =
∑r

l=1 λ̂lui,lvj,l. For every k ∈ {1, . . . , r} let

Ak :=
k∑

i=1

λ̂iuiv
⊤
i . (4.2.7)

The truncated sum of matrices would have entries of the form (Ak)i,j =
∑k

l=1 λ̂lui,lvj,l.

These Ak are the best k-rank matrix approximations of A in the sense that for any other

k-rank matrix, |A−Ak| ≤ |A−B|where | · | is either the 2-norm or the Frobenius norm of

the matrix. Remember that the 2-norm of any matrix A is defined as

|A|22 := max
‖v‖=1

‖Av‖2. (4.2.8)

We will first see that Ak is the best k-ranked approximation with the Frobenius norm

via a quick lemma.

Lemma 4.2.5. The rows of Ak are the projections of the rows of A onto the subspace Vk =

Span {v1, . . . ,vk}.

Proof. Let a be an arbitary row vector of A. Since the vi form an orthonormal basis, we

can rewrite the projections as

projVk
(a) =

k∑

i=1

‖proj
vi
(a)‖v⊤

i =
k∑

i=1

〈a,vi〉v⊤
i .

Then the matrix whose rows are the projections of the rows of A onto Vk is given by

k∑

i=1

Aviv
⊤
i =

k∑

i=1

λ̂iuiv
⊤
i = Ak

Theorem 4.2.6. For any matrix B of rank at most k we have |A− Ak|F ≤ |A− B|F .

Proof. Let B be a matrix with rank at most k which minimizes the expression |A−B|F for

every matrix whose rank is at most k. Suppose its row vectors are b1, . . . ,bn and define
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V := Span {b1, . . . ,bn}. Thus dim(V ) ≤ k. Say B′ is the matrix such that each of its rows

is the projection of the corresponding row in A onto V . Observe that the rows of B′ also

span V . Thus the rank of B′ is at most k. We compute then

|A− B′|2F =
n∑

i=1

‖xi − projV (xi)‖2 =
n∑

i=1

d(xi, V )2

≤
n∑

i=1

‖xi − bi‖2 = |A− B|2F .

Due to minimality of B, it must be B = B′. From Theorem 4.2.1 we know that Vk, the sub-

space spanned by the first k right singular vectors, is the best-fit k-dimensional subspace

for A. As Ak minimizes the sum of squared distances of rows of A to any k-dim subspace,

|A− Ak|F ≤ |A− B|F .

Finally, to see that Ak is the best k-rank approximation when working with the 2-norm

we first need a simple computation lemma.

Lemma 4.2.7. |A− Ak|22 = λ̂2k+1

Proof. Let A =
∑r

i=1 λ̂iuiv
⊤
i be its SVD. Then A − Ak =

∑r
i=k+1 λ̂iuiv

⊤
i . Let v be the

first right singular vector of A − Ak, which may be rewritten as a linear combination of

v1, . . . ,vr. Next

‖(A− Ak)v‖2 =
∥∥∥∥∥

r∑

i=k+1

λ̂iuiv
⊤
i

r∑

j=1

αjvj

∥∥∥∥∥

2

=

∥∥∥∥∥

r∑

i=k+1

αiλ̂iui

∥∥∥∥∥

2

=

〈
r∑

i=k+1

αiλ̂iui ,

r∑

i=k+1

αiλ̂iui

〉

=
r∑

i=k+1

α2
i λ̂

2
i .

By definition, v maximizes the left hand side above subject to ‖v‖2 =∑r
i=1 α

2
i = 1. As

λ̂1, . . . , λ̂r is a decreasing sequence, it must be that αk+1 = 1 while the rest of αi’s vanish.

Therefore |A− Ak|22 = λ̂2k+1.
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Theorem 4.2.8. For any matrix B of rank at most k we have |A− Ak|2 ≤ |A− B|2.

Proof. We may safely assume that rank(A) < k, otherwise there is nothing to prove. Sup-

pose the theorem is false, so there exists a better 2-norm approximation B. From the

lemma above, that is equivalent to |A − B|2 < λ̂k+1. Due to the rank-nullity theorem, the

nullity of B is at least d− k. Thus there must exist a unit vector z such that

z ∈ ker(B) ∩ Span {v1, . . . ,vk+1} \ {0}.

Then we compute

‖(A− B)z‖2 = ‖Az‖2 =
∥∥∥∥∥

n∑

i=1

λ̂iuiv
⊤
i z

∥∥∥∥∥

2

=

∥∥∥∥∥

k+1∑

i=1

λ̂iui〈vi, z〉
∥∥∥∥∥

2

=

〈
k+1∑

i=1

λ̂iui〈vi, z〉,
k+1∑

i=1

λ̂iui〈vi, z〉
〉

=
∑

i≤i,j≤k+1

λ̂iλ̂j〈vi, z〉〈vj, z〉 〈ui,uj〉

=
k+1∑

i=1

λ̂2i 〈vi, z〉2

≥ λ̂2k+1

k+1∑

i=1

〈vi, z〉2 = λ̂2k+1‖z‖2 = λ̂2k+1.

Due to definition of 2-norm, we also have that |A−B|22 ≥ ‖(A−B)z‖2, which contradicts

our initial assumption.

4.3 FHP Approximation Algorithm

Instead of computing the optimal hyperplane, which is expensive, it is preferable to com-

pute a good enough approximation of such hyperplane, which is computationally less

demanding. To make the problem more precise, by good enough we refer to find a hy-

perplane which produces de same labeling as the optimal one as seen in figure 4.2. More

formally, for 0 < α < 1, the new problem will be to find a hyperplane Hα such that for

at least a (1− α)-fraction of the vectors their distance to the actual optimal hyperplane H
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Figure 4.4: On average, every point is distant to the hyperplane

is at least αθ, where θ is the actual optimal margin. Consider first the easier problem of

finding the hyperplane whose average margin is the largest, that is, to compute

max
‖w‖=1

mean{|〈w,xi〉|}ni=1. (4.3.1)

Say A is the matrix n × d that has the data vectors xi as its rows. From the previous

section, we know that the first right singular vector w of A maximizes
∑n

i=1 proj·(xi) for

all possible unit vectors. Thus the hyperplane with normal w maximizes the previous

mean.

However, a hyperplane that on average is distant from all the points may not necessarily

be the optimal choice. Some vectors may lie very close to the hyperplane whereas others

may lie far apart from it, thus, on average every point is at a considerable distance from

such hyperplane. Refer to figure 4.4. Instead of computing the distance from each point

to the hyperplane, we will compute weighted distances. Given an initial hyperplane Hi,

we may compute the distance from each point to Hi and the weight associated to the

largest distances will be reduced and viceversa. With these new weights in place, we will

compute a new hyperplane Hi+1 which satisfies the new (4.3.1) problem. This procedure

is iterated until weight penalties are small enough so that the average distance is actually a

good representative for all the points. The approximation technique thus seeks to produce

a series of hyperplanes with normal vectors w1, . . . ,wt and later combines them all using

independent random Gaussian weights.

Assume first then that the optimal hyperplane goes through the midpoint mi,j between

two fixed vectors xi and xj . After translating the origin to mi,j and rescaling the data
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vectors so all of them have norm less than 1, we can run the approximate FHP algorithm.

A pseudocode is presented in algorithm 2 for a fixed positive scalar c. The value of c

will be discussed later. As it will be seen below, the while cycle in Algorithm 2 (lines 4-

9) always terminates and the produced hyperplane normal w is distant from most of the

input data vectors. Thus running the FHP approximate algorithm
(
n
2

)
times will yield a

solution w to the MMP.

Algorithm 2 Approximate FHP(i, j)

1: Input: {xi}ni=1 ⊂ Rd, ‖xi‖ ≤ 1

2: τi(i)← 1, ∀ i = 1, . . . , n ⊲ Set initial weights for each vector

3: j ← 1 ⊲ Number of solutions produced

4: while
∑n

i=1 τj(i) ≥ 1
n

do

5: Aj ← n× d matrix whose ith row is
√
τj(i)xi ⊲ Weighted distances

6: wj ← top right singular vector of Aj

7: σi(j)← |〈xi,wj〉| ⊲ Compute distances

8: τj+1(i)← τj(i) c
−σ2

j (i) ⊲ Reweighting for a fixed scalar c

9: j ← j + 1

10: w′ ←∑t
j=1 gjwj for gj ∼ N (0, 1) ⊲ Independent Gaussian combination of

solutions
11: Return: w← w′/‖w′‖ ⊲ Output the normalization of w′

Lemma 4.3.1. Algorithm 2 terminates after at most t ≤ 2 log(n)/(θ2(1− 1
c
)) iterations.

Proof. For a fixed j, define τj :=
∑n

i=1 τj(i), the sum of weights. Say w∗ is the optimal

solution for the present FHP. Then |〈xi,w
∗〉| ≥ θ for every i = 1, . . . , n. Observe that

‖Ajw
∗‖2 =

n∑

k=1

∥∥∥∥∥

d∑

i=1

√
τj(k)xk,iw

∗
i

∥∥∥∥∥

2

=
n∑

k=1

τj(k)|〈xk,w
∗〉|2.

As wj is the first right singular vector of Aj , we have that

n∑

i=1

σ2
j (i)τj(i) = ‖Ajwj‖2 ≥ ‖Ajw

∗‖2 =
n∑

i=1

τj(i)〈xi,w
∗〉2 ≥ τjθ

2.
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Recall that for c > 1 and 0 ≤ x ≤ 1 the inequality c−x ≤ 1 − (1 − 1
c
)x holds. With that

in mind, we compute

τj+1 =
n∑

i=1

τj(i)c
−σ2

j (i) ≤
n∑

i=1

τj(i)

[
1−

(
1− 1

c

)
σn
j (i)

]

=
n∑

i=1

τj(i)−
(
1− 1

c

) n∑

i=1

τj(i)σ
2
j (i)

≤ τj −
(
1− 1

c

)
τjθ

2 = τj −
(
1− 1

c

)
τjθ

2 = τj

[
1−

(
1− 1

c

)
θ2
]
.

Since τ1 = n, we have that τj+1 ≤ n
[
1−

(
1− 1

c

)
θ2
]j

. As 0 <
[
1−

(
1− 1

c

)
θ2
]
< 1,

the while cycle in the FHP Algorithm is bound to terminate. Now, j ≥ 1 is such that

n
[
1−

(
1− 1

c

)
θ2
]j ≥ 1

n
if and only if,

j log

[
1−

(
1− 1

c

)
θ2
]
≥ −2 log(n)

j log

[
1

1−
(
1− 1

c

)
θ2

]
≤ 2 log(n)

j ≤ 2 log(n)

log 1

1−(1− 1

c)θ2
≤ 2 log(n)

(1− 1
c
)θ2

.

For the last inequality recall that log( 1
1−x

) ≥ x for every 0 ≤ x ≤ 1. As t is the infimum of

j’s such that τj <
1
n

, the conclusion follows.

Theorem 4.3.2. Let σi :=
√∑t

j=1 σ
2
j (i). When Algorithm 2 terminates, for each i it holds

σ2
i ≥

log(n)

log(c)
. (4.3.2)

Proof. For a fixed i ∈ {1, . . . , n} when the while ends we have that τt(i) ≤ τt <
1
n

. As

τ1(i) = 1 we see that

1

n
≥ τt(i) = τt−1c

−σ2
t−1

(i) = τ1(i)
t∏

j=1

c−σ2
j (i) = 1 · c

∑t
j=1

σ2
j (i).
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Taking logarithms from both sides we obtain

− log(n) ≥ −
t∑

j=1

σ2
j (i) log(c)

from which
t∑

j=1

σ2
j (i) ≥

log(n)

log(c)
.

Finally, we guarantee that the output w of the FHP Algorithm is an approximation of

the optimal w∗.

Theorem 4.3.3. Let 0 < α < 1. Algorithm 2 outputs a random w unit vector such that with

probability at least 1
147

at most a 2α fraction of the points are such that |〈w,xi〉| ≤ αθ.

Proof. Recall that w′ =
∑t

j=1 gjwj for gj ∼ N (0, 1). Observe that for each of the compo-

nents of w′ is distributed as a normal random variable with mean 0 and variance
∑t

j=1wj,i.

Then

E(‖w′‖2) =
d∑

i=1

E(w′2
i ) =

d∑

i=1

t∑

j=1

w2
j,i =

t∑

j=1

‖wj‖2 = t.

Then by Markov’s inequality P(‖w′‖2 ≥ 7
4

√
t) ≤ E(‖w‖2)/[(7

4
)2t] = 16

49
. Thus with proba-

bility at least 33
49

we have that ‖w′‖2 ≤ 7
4

√
t. We will assume this to be the case hereafter.

Notice that we do not condition on this event happening but we rather accept the 16
49

fail-

ure probability that we will later add in a union bound. Now we bound the probability

that the final output fails at point i, that is, the hyperplane is too close to the i-th point. We

compute then

P(|〈w,xi〉| ≤ αθ) = P

(
1

‖w′‖|〈w
′,xi〉| ≤ αθ

)
= P(|〈w′,xi〉| ≤ ‖w‖αθ)

≤ P

(
|〈w′,xi〉| ≤

7

4

√
tαθ

)
.

On the other hand notice that

〈w′,xi〉 =
〈
xi,

t∑

j=1

gjwj

〉
=

t∑

j=1

gj〈xi,wj〉 ∼ N
(
0,

t∑

j=1

〈xi,wj〉2
)
.
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In other words, 〈xi,w
′〉 distributes as a normal random variable with mean 0 and variance

σ2
i . Combining Lemma 4.3.2 we have that

P(|〈w,xi〉| ≤ αθ) ≤ P

(
|Z| ≤ 7

4

√
tαθ

)
, Z ∼ N

(
0,

log(n)

log(c)

)

= P

(
|Z| ≤ 7

4

√
log(c)

√
tαθ√

log(n)

)
, Z ∼ N (0, 1).

The last equality is due to a simple change of variables. Recall the error function defined

by

erf(x) =
2√
π

∫ x

0

e−u2

du =
2√
π

∞∑

n=0

(−1)nx2n+1

n!(2n+ 1)
. (4.3.3)

In general for any normal random variable X ∼ N (0, σ2) with a change of variables and a

small x we see that

erf

(
x

σ
√
2

)
=

2√
2πσ

∫ x

o

e−
u2

2σ2 du = P(|X| ≤ x) ≤ 2√
2πσ

x.

With the last equality and lemma 4.3.1, we conclude

P(|〈w,xi〉| ≤ αθ) ≤ 7

2
√
2π

√
log(c)

√
tαθ√

log(n)
≤ 7

√
log(c)α

2
√
π(1− 1

c
)
.

Finally, observe that due to l’Hôpital,

f(c) :=
7
√

log(c)

2
√
π(1− 1

c
)
−−→
c→1

7

2
√
π
≈ 1.97

and for any 1 < c ≤ 1.05, we will have that f(c)α < 2α fraction of the points are close

enough to our approximate hyperplane. Refer to figure 4.5.

4.4 MMP Aproximation

As discussed before, to solve the Maximum Margin Problem it suffices to solve the Fur-

thest Hyperplane Problem at most
(
n
2

)
times. A basic pseudocode is presented in Algo-

rithm 3. When the Approximate FHP algorithm 2 is used, a couple of small improvements

can be implemented to run an approximate FHP less than
(
n
2

)
times and to cap the number

the iterations required by algorithm 2.
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Figure 4.5: Plot of f(c) := 7
√
log(c)α/2

√
π(1− 1

c
)

Algorithm 3 Approximate MMP

1: Input: {xk}nk=1 ⊂ Rd, ‖xi‖ ≤ 1

2: for 1 ≤ i < j ≤ n do ⊲ For every possible pair of points

3: {zk}nk=1 ← {xk}nk=1 ⊲ copy the data

4: mi,j ← (zi + zj)/2 ⊲ midpoint

5: {zk}nk=1 ← {zk −mi,j}nk=1 ⊲ centers the data

6: {zk}nk=1 ← {zk/maxℓ ‖zℓ‖}nk=1 ⊲ scales the centered data

7: wi,j ← Approx FHP(i, j)

8: θi,j ← mink〈wi,j, zk〉 ⊲ scaled margin

9: θ̄i,j ← (maxk ‖zk‖) · θi,j ⊲ unscaled margin

10: Θ̄ = θ̄i′,j′ ← max1≤i<j≤n θ̄i,j ⊲ optimal unscaled margin

11: Return: w← wi′,j′ ⊲ optimal hyperplane

By FHPi,j we will refer to running algorithm 2 where we assumed that the furthest

hyperplane goes through the midpoint mi,j between fixed data vectors xi and xj . That is,

during FHPi,j we translate all the data points by −mi,j and rescale if necessary so every

translated data vector has norm less than 1. We will assume that the approximate MMP is

solved by running every FHPi,j in lexicographical order. That is, (i, j) < (i′, j′) whenever

i < i′ or j < j′ if i = i′. Assume that the FHPi,j run produces a normal vector wi,j and a

margin θi,j . This value θi,j is most likely scaled down as it refers to data vectors of norm

less than 1. We will refer to θ̄i,j as the margin unscaled for direct comparisons with other

margins.
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The improvements to MMP stem from keeping record of the partially optimal margin

θ̄i′,j′ , defined as the largest unscaled margin up to the (i′, j′)-th FHP. That is,

Θ̄i′,j′ := max
(i,j)≤(i′,j′)

θ̄i,j. (4.4.1)

Assume now that (i, j) > (i′, j′) and that Θ̄i′,j′ is known. First observe that by definition

in the (i, j)-th FHP, the data vectors xi and xj could be support vectors. Thus

θ̄i,j ≤ ‖xi −mi,j‖. (4.4.2)

If Θ̄i′,j′ > ‖xi −mi,j‖ then it will not be necessary to compute the approximate margin for

the (i, j)-th case.

If the above inequality does not hold and FHPi,j proceeds, then the number of itera-

tions in the while cycle can be capped due to lemma 4.3.1 by

t ≤ τi′,j′ :=
2 log(n)

Θi′,j′
2(1− 1

c
)
. (4.4.3)

Observe that the partial optimal margin has been scaled down accordingly to the (i, j)

case. Also observe that larger partial optimal margins will produce smaller caps τi′,j′ .

Following the notation in lemma 4.3.1, if ττi′,j′ ≥ 1
n

it is very unlikely that the produced

margin θ̄i,j will surpass Θ̄i′,j′ .

4.5 Discussion

The approximate FHP algorithm as presented above is limited in theoretical and compu-

tational aspects. It is unclear how to generalize the algorithm when 3 or more families

are being considered. Contrary to the supervised case, our data here is not coded ex-

clusively in inner products and it is unclear how to implement a kernel trick to consider

approximate nonlinear splitting hyperplanes. Although distances are actively weighted

when trying to find the best approximation, testing also suggests that algorithm 2 gives

best results when the data are clearly clustered in two distinct subsets. If both families

are mingled, the optimal margin will be small, and as seen by lemma 4.3.1, this would

increase the number of iterations needed
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Computationally the algorithm can be slow. The biggest toll comes from the repeated

computation of the first right singular vector. Numerical methods such as the Power

Method rather than the full computation of the singular value decomposition can improve

the algorithm’s performance. Capping the number of iterations or not even solving a

particular FHP case using Θ̄i,j can improve the performance as well.

4.6 A word on the curse of dimensionality

Recall the Euler Characteristic Graph computation algorithm 1 from chapter 2. Given

a filter function f and a fixed number T of thresholds, for a given simplicial complex

K it would return a T -dimensional vector χ (K). As stated before, a larger number of

thresholds would be more sensitive to changes in the Euler Characteristic and might of-

fer a better description of the simplicial complex. However, this in turn would produce

a descriptor vector in a higher-dimensional space. In high dimensions, most data points

inside a finite volume tend to be far away from each other. The more dimensions we work

with, the more data points are needed to fill the space for statistical and computational

significance. This trade-off between detailed descriptions and statistical significance is

commonly known as the curse of dimensionality. Depending on the number of data points

available, high dimension could refer from 10 dimensions onwards. The following sub-

section is based on [Roj15] and [Spr14].

4.6.1 Overfitting and concentration

The first difficulty which arises when working in high-dimensional spaces is that the ge-

ometry of these spaces might be counterintuitive at first when compared to the familiar ge-

ometry in 2 and 3 dimensions. Take for example the d-dimensional hypercube Id := [0, 1]d

and assume that our n data points {xi}di=1 are contained in Id. We know that the volume

of this cube is 1. If we want to allocate that volume into n smaller cubes d-dimensional

hypercubes (assume each hypercube contains exactly one data point) distributed homoge-

neously, then each of them must have volume 1/n. That implies that each of these smaller
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hypercubes must have side length

r =

(
1

n

) 1

d

. (4.6.1)

For a number of n fixed then r → 1 when d → ∞. In other words, each of the new

smaller hypercubes has roughly the same volume as the original Id. In an infinite dimen-

sional space, we can allocate n different hypercubes of volume 1 inside a hypercube of

volume 1!

Similarly, consider the unit hypersphere Sd−1 in Rd. In general, the volume of a hyper-

sphere of radius R is

Vol(Sd−1) =
2πn/2

Γ(n/2)
Rd, where Γ(t) =

∫ ∞

0

xt−1e−x dx, t > 0. (4.6.2)

We will usually write the volume as simply kdR
d. If we want to cover the volume of Sd−1

with n different, smaller hyperspheres of volume kdr
d, then their radii must be

r =

(
kd
nkd

) 1

d

=

(
1

n

) 1

d

. (4.6.3)

Just as in (4.6.1), r → 1 whenever d → ∞. Thus, the smaller hyperspheres are roughly

the same size as Sd−1, although they just have 1
n

-th of Sd−1’s volume! These and other

counterintuitive facts make difficult the visualization of data in higher dimensions, as our

intuition from 2 and 3 dimensions starts falling apart.

Back to the hypercube, suppose we now keep r fixed so that each data point is con-

tained in exactly one hypercube of side length r. Then from (4.6.1) we have that

n = r−d, 0 < r < 1. (4.6.4)

This in turn means that we need an exponentially growing number of data points to

keep the same data density as we increase the dimension. For instance, if r = 0.1, we

would need n = 10d data points. In other words, when the number n of data points

is fixed, the data tends to be more sparse whenever the dimension increases. If data is

sparse, it is easier to find hyperplanes that maximize the margins which might result in

overfitting. That is, the computed separating hyperplane is custom-built for our particular

training dataset and might fail to hold when a wider dataset is considered.
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1

rm

Figure 4.6: When uniformly distributed within Sd−1, the data clusters near the border

Finally, suppose that we spread n data points uniformly in Rd. As there is a finite

number of data points, it can be assumed after scaling that they lie within Sd−1. That is,

‖xi‖ ≤ 1 for all i = 1, . . . , n. Assume rm is the median distance from the origin to its

nearest neighbor in Euclidean distance. By definition of median, with probability 1
2

all

the data points lie between the hyperspheres of radii rm and 1. If we equate it with the

probability of uniformly picking n points between the hyperspheres of radii rm and 1, we

obtain
1

2
=

(
kd − kdrdm

kd

)n

. (4.6.5)

From the equation above, we obtain that the median distance is then

rm =

[
1−

(
1

2

) 1

n

] 1

d

. (4.6.6)

Observe that r → 1 as d → ∞. In other words, as the dimension increases, the data, if

spread uniformly within Sd−1 will tend to be concentrated around Sd−1.

For example, consider 128 simplicial complexes and compute the ECG vector χ (K)

with T = 32 thresholds for each complex. Thus we are working in a 32-dimensional

Euclidean space with only 128 data points. If the ECGs are scaled so their norm is less

than 1 and if they spread uniformly, then rm ≈ 0.85. Thus, most of the ECGs would be

clustered around the unit sphere. Moreover, if T = 64, then rm ≈ 0.92 and if T = 128, then

rm ≈ 0.96.
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4.6.2 A word on concentration of measure

The clustering trend as showed in (4.6.6) is part of an important sub-area of research with-

ing probability known as concentration of measure. The clustering above can be informally

interpreted as a concentration of measure around a thin shell surrounding Sd−1. Thus, on

high dimensions, traditional methods such as the SVM might fail to differentiate two dif-

ferent families apart and might see all the data as one big cluster. The following material

is based on the first two lectures in [Bar05].

It is a well known fact that

1√
2π

∫

R

e−x2/2 dx = 1. (4.6.7)

The equation above can be generalized to higher dimensions where the multidimensional

integral can be split into several one-dimensional integrals as (4.6.7).

(2π)−n/2

∫

Rd

e−‖x‖2/2dx = (2π)−n/2

∫

R

· · ·
∫

R

n∏

i=1

e−x2
i /2 dx1 · · ·dxn

=
d∏

i=1

[
1√
2π

∫

R

e−x2/2 dx

]

= 1.

Thus we define the standard Gaussian measure γd in Rd as the probability measure defined

by the density function (2π)−d/2 exp(−‖x‖2/2). That way, for every Borel-measurable set

A ⊂ Rd we have

γd(A) =
1

(2π)d/2

∫

A

e−‖x‖2/2 dx. (4.6.8)

We will see that for most of the vectors x ∈ Rd we have with respect to γd that ‖x‖ is

approximately
√
d. Thus, from the standard Gaussian measure point of view, the whole

Rd looks like a sphere of radius
√
d. To formalize this assertion we must first develop some

basic notions on the Laplace Transform to solve inequalities.

Laplace Transform to solve inequalities

In general, let (X,F , µ) be a probability space and let f : X → R be a measurable function.

If for some x ∈ X and a ∈ R we have that f(x) ≥ a, then for any λ > 0 we have that

eλf(x) ≥ eλa. (4.6.9)
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As eλf is a positive measurable function on X and eλa > 0, we have from (4.6.9) that

e−λa

∫

X

eλf dµ ≥ e−λa

∫

{x : f(x)≥a}

eλf dµ ≥ µ({x : f(x) ≥ a}). (4.6.10)

Analogously we can see that

µ({x : f(x) ≤ a}) ≤ eλa
∫

X

e−λf dµ, λ > 0. (4.6.11)

This technique is particularly useful when
∫
X
e−λf dµ can be computed explicitly. The

parameter λ can be tuned accordingly.

Condensing the sphere from the Gaussian measure

Lemma 4.6.1. For a fixed d ∈ N and γd the standard Gaussian measure in Rd we have that,

1. for any δ > 0, the following inequality holds

γd{x ∈ R : ‖x‖2 ≥ d+ δ} ≥
(

n

n+ δ

)−d/2

e−δ/2 (4.6.12)

2. for any 0 ≤ δ < d, the following inequality holds

γd{x ∈ R : ‖x‖2 ≥ d− δ} ≥
(

d

d− δ

)−d/2

eδ/2 (4.6.13)

Proof. For the first part, choose a scalar λ ∈ (0, 1). Observe that if ‖x‖2 ≥ d + δ, then from

inequality (4.6.11) we see that

γd{x ∈ R : ‖x‖2 ≥ d+ δ} ≥ e−λ(d+δ)/2

∫

Rd

eλ‖x‖
2

dγn

= e−λ(d+δ)/2(2π)−d/2

∫

Rd

e(λ−1)‖x‖2/2 dx

= e−λ(d+δ)/2

[
1√
2π

∫

R

e(λ−1)x2/2 dx

]d

= e−λ(d+δ)/2(1− λ)−d/2.

The last inequality is due to the Substitution Theorem. Finally, choose λ = δ/(d+ δ) > 0 in

the last equality and (4.6.12) follows. The second part of the lemma follows analogously.
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If for some 0 < ǫ < 1 we set δ = dǫ/(1− ǫ) in (4.6.12), then d+ δ = d/(1− ǫ) and

γd

({
x ∈ R : ‖x‖2 ≥ d

1− ǫ

})
≤ (1− ǫ)−d/2 exp

(
− dǫ

2(1− ǫ)

)

= exp

[
−d
2

(
ǫ

1− ǫ + log(1− ǫ)
)]

.

Remember that both summands above can be expanded in absolutely convergent series,

ǫ

1− ǫ = ǫ+ ǫ2 + ǫ3 + · · ·

log(1− ǫ) = −ǫ− ǫ2

2
− ǫ3

3
− · · ·

From which we conclude that

γd

({
x ∈ R : ‖x‖2 ≥ d

1− ǫ

})
≤ exp

(
−d
2
· ǫ

2

2

)
= exp

(
−1

4
dǫ2
)
, 0 < ǫ < 1. (4.6.14)

Analogously, if we now set δ = nǫ in (4.6.13), then we obtain

γd
({

x ∈ R : ‖x‖2 ≤ d(1− ǫ)
})
≤ exp

(
−d
2
· ǫ

2

2

)
= exp

(
−1

4
dǫ2
)
, 0 < ǫ < 1. (4.6.15)

Finally, suppose {ρd}d∈N is a nonnegative sequence such that ρd → ∞ slowly (that is,

ρd = o(d) so the inequalities below hold) when d→∞. Then for a sufficiently large d and

ǫ = ρd/
√
d we have that

d

1− ǫ =
d
√
d√

d− ρd
≤ (
√
d+ ρd)

2, (4.6.16)

since 0 ≤ d− (
√
d+ ρ2d) and therefore d

√
d ≤ d

√
d+ dρd −

√
dρd − ρ3d. We may also realize

that

d(1− ǫ) = d− ρd
√
d =
√
d(
√
d− ρd) ≥ (

√
d− ρd)2 (4.6.17)

as
√
d ≥
√
d− ρd. From the two inequalities above we have that

(
√
d− ρd)2 ≤ d− ρd

√
d ≤ d ≤ d

√
d√

d− ρd
≤ (
√
d+ ρd)

2. (4.6.18)

At the same time, by substituting ǫd = ρd/
√
d in (4.6.14) and (4.6.15) with, (4.6.21)

inequalities in mind, we obtain

γd

({
x ∈ Rd : ‖x‖2 ≥ (

√
d+ ρd)

2
})
≤ exp

(
−ρ

2
d

4

)
(4.6.19)

γd

({
x ∈ Rd : ‖x‖2 ≤ (

√
d− ρd)2

})
≤ exp

(
−ρ

2
d

4

)
(4.6.20)
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respectively. If we combine these last two equations, we realize that

γd

({
x ∈ Rd :

√
d− ρd ≤ ‖x‖ ≤

√
d+ ρd

})
→ 1 as d→∞. (4.6.21)

In other words, as we stated earlier, the data in Rd tends to concentrate around the

sphere of radius
√
d for large d values. For example, suppose ρd := log(d). As in the

subsection 4.6.1, assume we are working with 128 ECG vectors, each of them with T = 32

dimensions. Then
√
128 ≈ 11.3 and

γ32

({
x ∈ R32 :

∣∣∣ ‖x‖ −
√
32
∣∣∣ ≥ 3.5

})
≤ 0.1.

If T = 64, then

γ64

({
x ∈ R64 :

∣∣∣ ‖x‖ −
√
64
∣∣∣ ≥ 4.2

})
≤ 0.03.

And if T = 128, then

γ128

({
x ∈ R128 :

∣∣∣ ‖x‖ −
√
128

∣∣∣ ≥ 4.9
})
≤ 0.006.
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Chapter 5

Archaeological results and discussion

5.1 Background and motivation

The results presented here are part of a much larger project involving archaeology and

computer science as described by Jiménez in [JRM12]. The idea for the project led by

Jiménez came from the need to classify similarities in 162 stone masks found in the re-

mains of the Sacred Precinct of Tenochtitlán, the main ceremonial Aztec complex, located

in Mexico City. The excavations were carried out between 1978 and 1982. The masks

found in the temple present very distinct features that distinguish them from the usual

Aztec styles. These masks, along other artifacts, were located in several Aztec offerings

dating from the Late Postclassic period (1340 A.D. - 1521 A.D.), especially between 1390

and 1469 a.D. yet their appearance suggests they might come from the Teotihuacán region

and from the South Pacific-coast state of Guerrero. Particularly, most of them seem to

come from the Mezcala region which is more than 300km away from Tenochtitlán.

The geographical origin of these artifacts is not surprising as the Aztecs had a vast

network for importing distant goods either as trade or tribute from other civilization.

However, the possible temporal origin of the offerings is more difficult to explain, as the

Mezcala styles present at Tenochtitlán resemble styles found during Classic (200 A.D. -

1000 A.D.) and even Preclassic (2000 B.C. - 200 A.D.) times in the Guerrero region which

raises the question on how the Aztecs acquired such ancient styles. There is an ongoing

discussion as to whether the Aztecs collected “antique” artifacts, or if the Preclassic and
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Source: Olmedo and González Source: Olmedo and González

Source: Olmedo and González

Figure 5.1: Numerical taxonomy on shape of masks’ contour, nose and eyebrows.

Classic styles survived over time and were still reproduced in Postclassic settings.

The discussion faces a second difficulty, as there is no clear agreement on how many

different Mezcala styles exist, which implies difficulties on knowing how many different

groups of people were involved in the Aztec offerings. Some specialists believe there are

at least five different styles [Cov61; OG86], whereas others recognize only four distinct

styles [Gay67] and another group of experts put the number of different styles as low as

two [Ser73]. As noted by Jiménez in [JRM12], “the diversity of views is due in part to a

lack of contextual information available for the majority of artifacts found in Guerrero,

but it also reflects the subjective criteria used by researches to classify such artifacts.” He

also raises awareness of the need of more objective methods to give a better answer to

several questions such as the number of actually different Mezcala styles, how many of

those where contemporary to the Aztecs, how many of those styles were present at a

given time, and how many and which of them are present in the 162 mask collection from

Tenochtitlán. In 1986, Olmedo and González in [OG86] proposed a classification based

on a numerical taxonomy. That is, the form of the masks’ noses, heads, chins, etc. were

codified categorically as exemplified by figure 5.1. This method yielded a vector of 23

different numbers for each of the 162 masks, which were later grouped in 40 different sets.

Their results were nonetheless inconclusive, as 26 of the sets contained less than 3

masks each, and 20 masks couldn’t be properly included in any of the 40 proposed groups.

Later in 2011, Jiménez et.al. [JRM12] developed a new classification based on spectral clus-

tering [Lux07], an unsupervised learning technique. As described in [JRM12], spectral
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Source: Jiménez et.al. Source: Jiménez et.al. Source: Jiménez et.al.

Figure 5.2: Example of spectral clustering

clustering seeks to identify groups by analyzing not the exact location of the points —like

k-means techniques— but the connectedness between them. For instance, in the clusters

shown in figure 5.2 it is desirable that the points p1 and p2 are assigned to the same clus-

ter. Observe that they are distant to each other, however, there are several data points in

between them.

The spectral clustering technique grouped the masks into 8 principal sets. These sets

were later used as our ground truth to train our supervised SVMs and compare our unsu-

pervised SVMs.

5.2 Archaeological data

The dataset analyzed here consists of 128 digitized 3D triangulated meshes of the masks

which are part of the 162 masks found at the Sacred Precinct of Tenochtitlán. The 34 re-

maining masks were not considered as they are heavily damaged, incomplete, or possibly

unfinished. The data was provided by Diego Jiménez and the National Institute of An-

thropology and History (INAH). Each mesh was given as a .stl file. These files were

later processed by Rogelio Hasimoto and Mario Canul from the Computer Science De-

partment at the Mathematics Research Center (CIMAT). After their processing, each mesh

was embedded in the [−1, 1]3 cube with its center of mass at the origin. Each mask would

also face directly the z = 1 plane.

The meshes of the masks were originally grouped in 9 different families numbered
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from 02 to 10. The first 8 sets were yielded by the spectral clustering algorithm stated

above. Each of them consists of masks with clear visual resemblance within each set.

The ninth group, Set 10, is the largest one, and there is no visual resemblance among

its items. The first 8 sets are believed to be different according to Jiménez whereas the

9th set is made of essentially those masks where there is no clear agreement within the

archaeological community regarding their origin or style. Our main interest lies in finding

where the items from 10 are put, as there is no general consensus within the archaeological

community regarding their origins and classification.

It is important to remark the scarcity of data for most of the families. Five out of the

eight identified families have less than 6 items each. Specifically, the number of items per

family is as follows.

SET NO. OF ITEMS SET NO. OF ITEMS

02 24 07 4

03 6 08 3

04 4 09 7

05 19 10 59

06 2 TOTAL 128

The low number of items is problematic when trying to use classification methods such

as the supervised and unsupervised support vector machines as discussed in chapters 3

and 4. The physical appearance of individual masks from each family can be seen in the

appendix A.

Another problem observed with the data is that the scans do not reflect the actual Euler

Characteristic of the masks. Some of the masks without holes, which are topologically

equivalent to a sphere, had an Euler Characteristic different from 2, contrary to what was

expected. The reason for this is unknown and most likely took place when the physical

masks were scanned. We made no attempt to correct these errors. However, as the results

below will show, the ECGs and the following supervised SVMs still managed to produce

sensible results.
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5.3 Euler Characteristic Graphs

As discussed in chapter 2, the ECG of a simplicial complex K is determined by a filtering

function f0 : V0 → [a, b] and a set of T threshold values t0, t1, . . . , tT−1. Remember that V0

is the set of vertices of the complex K. In this chapter, K will refer to the mesh of a mask

as discussed above. As each mesh is embedded in R3, each vertex v can be thought as

its Cartesian coordinates (x, y, z). Observe that K is a 2-dimensional complex, so its Euler

Characteristic at threshold t is then

χi (K) = V
(i)
0 − V (i)

1 + V
(i)
2 . (5.3.1)

As discussed at the end of subsection 2.2, the ECGs used throughout this work were

based on filter functions of the form

f(v) =M − g(v) (5.3.2)

Remember that M and g are chosen such that the range of such f can be taken as [0,M ].

There were 7 possible g filter functions considered along various possible M scalar val-

ues. Each of the filter functions was run with 32, 64 and 128 threshold values. The filter

functions considered as g in (5.3.2) were.

planar sweeps cylindrical sweeps spherical sweeps

π(1)(v) := x g(1)(v) := x2 + y2 h(1)(v) := x2 + y2 + z2

π(2)(v) := y g(2)(v) := y2 + z2

π(3)(v) := z g(3)(v) := z2 + x2

These filter functions were concatenated in three different composite ECG filter func-

tions as discussed in 2.2.7. An example of them can be seen in figures 5.3 and 5.4. Explic-

itly, using the notation from subsection 2.2.7, the ECGs considered were yielded from the

following filter functions:

planar sweeps π := (Mπ − π(1))⊕ (Mπ − π(2))⊕ (Mπ − π(3)); (5.3.3)

cylindrical sweeps g := (Mg − g(1))⊕ (Mg − g(2))⊕ (Mg − g(3)); (5.3.4)

spherical sweeps h :=Mh − h(1). (5.3.5)
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Figure 5.3: Destroying the mask 38 with planar sweeps π on the left and with cylindrical sweeps g on the right.

Figure 5.4: Destroying the mask 38 with spherical sweeps h on the right.

As the meshes were embedded in a [−1, 1]3 cube, bounds for which 5.3.2 holds are

(Mπ,Mg,Mh) = (2, 2, 3). Close study of the particular 128 meshes suggested tighter

bounds, especially forMg andMh. The bounds considered for each possible filter function

were as follows.

Mπ Mg Mh

2 2 2√
2

√
2

1 1

Additionally, filter functions based on local curvature around each vertex were con-

sidered. However, these gave poor results in both supervised and unsupervised SVM

classification.

Auxiliary files were created for each mask. These files gave each vertex Cartesian

coordinates, which vertices were contained in each edge and which vertices contained

in each triangle. These auxiliary files were made employing the Point Cloud Library in C

[RC11]. The ECGs were computed using these auxiliary files and later saved in csv files.

The ECGs were later plotted using R base tools [R C18].

As mentioned in 4.6, it is important to keep in mind possible concentration of measure
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effects. Remember that at high dimensions, the vectors tend to cluster around a sphere as

stated in (4.6.21). For instance, when running either filter function π or g with 128 thresh-

olds, we obtained a 384-dimensional vector for each mask. The effects of concentration of

measure were seen as with higher numbers of threholds T the SVMs concluded that the

data tended form a unique large cluster.

5.4 Supervised Support Vector Machines

As stated in chapter 3, the performance of any support vector machine depends on a

training subset from the data to analyze. Due to their low number of items, the sets

03,04,06,07,08 and 09 are used as a whole for training. Certain items from sets 02

and 05 are used as well. From set 02 we excluded masks 16 and 23 (refer to figure A.1) as

they do not have holes in their eyes as the rest of masks within this set. We also excluded

masks 03, 09, 18, 20 and 21 since, as pointed out by Jiménez, the archaeological commu-

nity is still discussing their possible origins. From set 05, the masks 50, 51, and 53 (refer to

figure A.4) were not taken as part of the training data, as Jiménez points out that further

discussion is needed to assert their inclusion in this set. The mask 48 was not considered

either, as Jiménez strongly believes that it was misclassified. None of the masks from set

10 were considered for training, either. Later, the 128 masks are used as test data. The

SVM aims to classify the 128 masks into one of the 8 possible categories defined by sets

02,. . .,09.

The supervised SVMs were computed using the library e1071 available through R

[Mey+17]. The SVM follows the code of LIBSVM library based in C/C++ [CL11]. LIB-

SVM uses an All-vs-All with a max wins strategy approach to do multiclass classification

as discussed in subsection 3.5.2. Whenever different labels obtained the same amount of

votes, the algorithm simply picks the smallest of those labels. LIBSVM allows the use

of linear, polynomial, radial and sigmoid kernels with several parameters and costs as

follows.
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Linear: 〈x,y〉; (5.4.1)

Polynomial: (γ〈x,y〉+ k)δ; (5.4.2)

Radial: exp(−γ‖x− y‖2); (5.4.3)

Sigmoid: tanh(γ〈x,y〉+ k). (5.4.4)

Only polynomial kernels were considered for the results as the number of possible in-

put parameters was crucial for the classification methodology. Radial and sigmoid kernels

didn’t yield sensible results. Most of the SVMs were carried out with a fixed cost C = 10.

5.5 Unsupervised Support Vector Machines

The Furthest Hyperplane Problem and Maximum Margin Problem algorithms described

in Chapter 4 (algorithm 2) were implemented in C/C++. The singular values and overall

matrix object operations were computed with the GSL Library [Gal+17]. As it was pointed

out in the subsection 4.5, it is unclear how to generalize the algorithm to nonlinear, non-

separable cases. It is also unclear how to handle multiple labelling.

The methodology consisted of evaluating ECGs from two of the eight different training

sets. It was expected to determine the dividing hyperplane along the support vectors that

define each training set. As the computation of singular values and vectors is quite expen-

sive, the dimension of the ECGs was reduced to 25 dimensions using Principal Component

Analysis (PCA), cf. [Shl14]. The PCA procedure also minimized the efects of concentration

of measure as mentioned in the subsection 4.6. The PCA was implemented via computa-

tion of Singular Value Decomposition with the GSL Library.

5.6 Computation of algorithms

All the algorithms and procedures above where computed in a Personal Computer with

the following specifications

Processor: 4x Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz
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VGA controller: Intel Corporation Sky Lake Integrated Graphics

memory size: 7892MiB

memory description: SODIMM DDR3 Synchronous 1600 MHz (0.6 ns)

The computation of the ECGs was quite efficient. The computation and saving of the

ECGs for the 128 masks took less than 5 seconds overall per filtration. Thus the algorithm

1 proves to be quite efficient even when each mesh has 60,000 vertices on average. The

ECGs were saved in a .csv file which was later read and analyzed with the supervised

and unsupervised procedures as described above. The supervised SVM was quite efficient

as well as LIBSVM could compute 72 different SVM trainings and testings in less than 5

seconds. The unsupervised SVM was more computationally expensive, even when taking

into account dimension reduction via PCA. The algorithms and code might be available

at

5.7 Results with nonlinear SVMs

As stated above, the main interest lies in assigning a family to all the items in Set 10, as

well to the excluded items from Sets 02 and 05. However, it is not clear which assignment

is the correct one and hence, it is unclear which kernel and which parameters (if applica-

ble) are the correct ones. The strategy consisted of setting finite sets of possible values for

parameters δ, γ, k and evaluate a different SVM for every possible combination of such

parameters. Say N different combination of parameters are possible.

For every possible of combination above, every mask’s ECG would be assigned to one

of the possible 8 sets. Thus every mask is later associated to a N -dimensional vector vχ,

one entry per SVM test. Finally, for each of these N -dimensional vectors, the frequency of

the groups is tallied and the mode of these groups is taken.

The reasoning is that, for a mask whose ECGs is not close enough to a particular train-

ing cluster, its assignment to such cluster will vary when the SVM dividing hyperplane’s

parameters are perturbed. Thus we propose the mode of vχ as the best possible assign-

ment. The record of frequencies also tells us if a particular ECG is between two or more

families. For instance, if the mode of vχ represents less than 85% of the vector’s entries, it

would stand to reason that further testing is necessary.
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For the polynomial kernel case, the following results were obtained by considering all

72 possible combinations of parameters

δ ∈ {3, 5}, γ ∈ {0.001} ∪ {0.05, 0.15, . . . , 1.05}, k ∈ {−1, 0, 1}.

5.7.1 Planar sweeps

It is worth mentioning that every item used for training was assigned to its corresponding

group during the test phase. This is considered a positive first indicator.
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(a) 73 (b) 76 (c) 87 (d) 89 (e) 94 (f) 103 (g) 125

Figure 5.5: Masks assigned to Set 02 after running 72 polynomial SVMs
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Figure 5.6: ECGs of newly assigned Set 02 based on planar sweeps f and T = 32

Using T = 32 thresholds

When considering a polynomial kernel, following the procedure described above, the Set

02 was assigned 7 new items from Set 10. 2 items, masks 16 and 23, from the original

02 failed to be assigned to this set. As discussed above, this masks were the only ones

in 02 with no holes for either their eyes or mouth. Also, 6 of the 7 new items have holes

as well. These can be seen in figure 5.5. The ECGs seen in figure 5.6 follow roughly the

same pattern. As discussed in the appendix A, the ECGs corresponding to masks 17 and

24 have large peaks near the end. Mask 73 has a trough near the end as well.
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(a) 16 (b) 48 (c) 53 (d) 78 (e) 79 (f) 90 (g) 98 (h) 99

(i) 102 (j) 112 (k) 114 (l) 115 (m) 117 (n) 119 (o) 123 (p) 126

Figure 5.7: Masks assigned to Set 03 after running 72 polynomial SVMs
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Figure 5.8: ECGs of newly assigned Set 03 based on planar sweeps f and T = 32

There were 13 masks from Set 10 that were assigned to 03. Mask 16 and masks 48 and

50, which were originally assigned to Sets 02 and 05 respectively, were excluded from the

training set as discussed above. These three masks were now assigned to 03. The ECGs in

figure 5.8 reveal that masks 98 and 102 stand out with crests near the end. Mask 79 stands

out as well with a trough near the end. All the assigned masks can be seen in figure 5.7.

Notice that they share certain physical characteristics with the originals from Set 03, such

as elongated shapes (16, 48, 79, 90, 99, 114, 115, 119, 123, 126), defined and visible ears (53,

79, 90, 98, 112) and a clear “T”-shape formed by their nose and eyebrows (48, 53, 78, 79,

115, 119, 123, 126).
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(a) 50 (b) 111

Figure 5.9: Masks assigned to Set 04 after running 72 polynomial SVMs
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Figure 5.10: ECGs of newly assigned Set 04 based on planar sweeps f and T = 32

In the case of Set 04, two extra masks are assigned in it. One of them is an untrained

mask originally from 05 and the other is from 10. Mask 111 stands out with a downwards

acute peak in the last third of its ECG. As portrayed in figure 5.9, mask 111 has little actual

resemblance to the items in Set 04. Mask 50 is concave with a medium-sized nose, which

might explain why its ECG suggests some similarity.
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(a) 71 (b) 75 (c) 80 (d) 88 (e) 91

(f) 95 (g) 100 (h) 105 (i) 121

Figure 5.11: Masks assigned to Set 05 after running 72 polynomial SVMs
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Figure 5.12: ECGs of newly assigned Set 05 based on planar sweeps f and T = 32

In the case of Set 05, it gained 9 masks from 10. The masks 40, 38, 70 have troughs

while mask 80 stands out with the largest crest at the last third of their ECGs as seen

in the figure 5.12. These 9 masks also share physical similarities with masks in 05 used

for training. For instance, they share triangular shaped noses (88, 91, 100, 105, 121) and

slanted carved eyes (71, 80, 88, 95, 100, 105, 121). Observe that half of the masks in 05

have a triangular frame, which is found in masks 88, 91, 100, 105. Refer to figure 5.11.
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(a) 54 (b) 55 (c) 110

Figure 5.13: Masks in the new Set 06
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Figure 5.14: ECGs of newly assigned Set 06 based on planar sweeps f and T = 32

Set 06 was the smallest training set, with only two items. The polynomial SVM pro-

cedure assigned it only one extra mask from 10 as seen in figure 5.13. The difference

between the training ECGs and the ECG from mask 111, as shown in figure 5.14, makes

us conclude that the assignment ought to be due to 110 being least distant to 06 rather

than close to it. It can also be said that they share almond-shaped, protruding eyes and

the T-shaped eyebrows and nose.
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(a) 23 (b) 84 (c) 118

Figure 5.15: Masks assigned to Set 07 after running 72 polynomial SVMs
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Figure 5.16: ECGs of newly assigned Set 07 based on planar sweeps f and T = 32

One of the untrained masks from Set 02 and 2 masks from 10 were assigned to Set

07. As depicted by figure 5.15, aside from the rough aspect of mask 118, there are no

similarities of the suggested additional items when compared to the original items in Set

07 depicted in figure A.6. This lack of physical similarities in turn is reflected by no clear

pattern followed by the ECGs as seen in figure 5.16.
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(a) 77 (b) 104 (c) 106 (d) 107 (e) 108 (f) 109

Figure 5.17: Masks assigned to Set 08 after running 72 polynomial SVMs
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Figure 5.18: ECGs of newly assigned Set 08 based on planar sweeps f and T = 32

Set 08 gains 7 masks from Set 10. The ECG of masks 61, 77, 107, 108 present slight

downwards spikes while masks 62, 104 have small peaks through the last third of the

graph. Refer to figure 5.18. There are some physical similarities between the training and

test masks, such as triangular nose (77, 106, 107), round frame (104, 106, 108), and large

slanted eyes with thick eyelids (104, 106, 108).
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(a) 52 (b) 70 (c) 81 (d) 82 (e) 92 (f) 93 (g) 97

(h) 101 (i) 113 (j) 116 (k) 120 (l) 124 (m) 127 (n) 128

Figure 5.19: Masks assigned to Set 09 after running 72 polynomial SVMs
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Figure 5.20: ECGs of newly assigned Set 09 based on planar sweeps f and T = 32

Finally, one of the untrained masks from Set 05 and 13 masks from 10 are assorted in

Set 09, As seen in figure 5.20, there is no definite pattern followed by these family. Mask

52 has a large peak towards the last third of its ECG, while mask 97 has both peaks and

troughs in its final third as well. There is no definite common physical feature to be distin-

guished among all the new items in 09 although subsets of them share some similarities

with the items from the training set. For instance, some of them have a clearly defined

T-shaped nose and eyebrows (70, 81,82, 93, 101, 116, 127, 128), their eyes are carved into a

squint (52, 70, 81, 93, 97, 101, 116, 127, 128) and some of them have a squared frame (52,

70, 82, 116, 127, 128, 113).

There were also eight masks (6.2% of the total dataset) with undecided assignment,

as several of the different SVM tests would place them into different families. These are

depicted in figure 5.21, For instance, the mask 85 was assigned 35 times each to both Sets
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(a) 51 (b) 72 (c) 74 (d) 83 (e) 85 (f) 86 (g) 96 (h) 122

Figure 5.21: Masks assigned to different families by each SVM test

04 and 05. This could mean that mask 35 lies in between both classes and it is not clear

which is the right assignment.

Observe that mask 72 has carved slanted eyes, T-shaped nose and eyebrows and de-

fined ears, thus sharing physical similarities effectively to those in Set 03. This agrees

with the fact that it was assigned to Set 03 most of the times (61 times). Mask 51 was

found originally in Set 05 and excluded from the training set for testing purposes. It is

interesting to find that it was labeled as 05 most of the times (51 times).

It is worth noting that mask 85 has holes in its eyes but the SVM never consider it

assigning it to Set 02. The reason might be that the holes in 85 appear not to be part of the

original design of the mask. Thus the ECGs are sensitive enough to notice this difference.

Using T = 64 thresholds

Just as in the case above, when the three filter functions π(i) were run with T = 64 thresh-

olds, all the training data was classified in its original family. It stands out that 20 masks in

total (15.6% of the total dataset) were deemed undefined as less than 85% of the SVM tests

agreed on a same family. Other observations stood out when the results are compared

against the planar sweep filtering with T = 32 thresholds detailed above.

• Set 02 remained with the same items as in figure 5.5, which indicates that the classi-

fiers are still able to distinguish masks with holes apart from the rest.

• Set 02 still reports mask 125, although it has no holes.

• The Set 03 reports only 8 additional masks in total, all of them from Set 10, 9 masks

less than before.

• No masks from Sets 02 or 05 were reported in Set 03 as before.
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• Masks 101 and 102 were reported in Set 03 (refer to figure A.10, although their

squinted thick eyes resemble those found in the training Set 09.

• The Set 04 was assigned 6 additional masks in total, four items more than before.

• None of the assigned items to 04 share physical features (prominent nose) with the

training masks in 04.

• No items were reported in Set 06. As 06 training set contains only two different

items, it is possible that the data is too sparse (due to high dimensionality as men-

tioned in subsection 4.6) to define a training label at all.

• Set 07 reports the same additional three masks as before, albeit none of them share

strong physical features with the training items in 07.

Using T = 128 thresholds

When the three filter functions π(i) were run with T = 128 thresholds, 15 masks, 11.7%

of the total, were deemed unidentified by the stated SVM procedure. All the training

masks were assigned to their respective set during the test phase. A noticeable change

is the fact that Set 09 grouped more than 35 items in total while its training set consists

only of 7 different masks. At the same time, Set 05 reported only two additional masks

despite using than 13 training items in this set. This might indicate some negative effects

due to the high-dimensionality of the data, such as overfitting or sparsity as discussed

in section 4.6. Thus, we do not have as much confidence in these results as in the other

cases. Nevertheless, for Set 02 the same 7 masks in figure 5.5 remained assigned. Despite

the high dimensionality effects, the holes for either eyes or mouth are still a powerful

distinction captured by the ECGs.
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5.7.2 Cylindrical Sweeps

Just as with the planar sweeps, every item used for training was assigned to its corre-

sponding family when tested with the procedure initially described. The experiments

with planar sweeps proved that increasing the number T of thresholds did not yield bet-

ter results due to high dimensionality effects. For the cylindrical sweeps experiments, we

decided thus to keep fixed the number of thresholds T = 32 and instead vary the Mg

bound as referred in (5.3.2).

Using T = 32 and Mg =
√
2 thresholds
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Figure 5.22: ECGs of newly assigned Set 02 based on cylindrical sweeps f and T = 32

When considering a polynomial kernel, following the procedure described above, the Set

02 was assigned 6 new items from Set 10. These were masks 72, 76, 87, 89, 94 and 103 as

seen in figure 5.5. Contrary to the planar sweep filter, mask 125 was excluded and now

the only masks gathered in Set 02 are the ones with holes for their eyes or mouth. The

ECGs seen in figure 5.22 follow roughly the same pattern.
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(a) 48 (b) 50 (c) 83 (d) 90 (e) 92 (f) 96 (g) 99 (h) 106

(i) 108 (j) 109 (k) 111 (l) 112 (m) 114 (n) 115 (o) 124

Figure 5.23: Masks assigned to Set 03 after running 72 polynomial SVMs
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Figure 5.24: ECGs of newly assigned Set 03 based on cylindrical sweeps f and T = 32

There were 13 masks from Set 10 that were assigned to 03. Masks 48 and 50 (originally

from 05) are assigned again to Set 03. The ECGs in figure 5.24 reveal that masks 99 and 83

stand out slightly with peaks in the middle and last thirds respectively. All the assigned

masks can be seen in figure 5.23. Masks 48, 90, 99, 112, 114, and 115 were assigned once

again to 03. Notice that they share certain physical characteristics with the originals from

Set 03, such as an elongated frame (48, 50, 83, 90, 96, 99, 106, 114, 124), defined and visible

ears (50, 90, 92, 108, 109, 112, 124) a clear T-shaped nose and eyebrows (48, 50, 83, 92, 96,

99, 102, 109, 111, 114, 115), trapezoidal nose (48, 50, 90, 92, 96, 99, 106, 114, 124) and carved

eyes with out eyelids or no eyes at all (48, 83, 90, 92, 96, 99, 106, 115, 124).
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Figure 5.25: ECGs of newly assigned Set 04 based on cylindrical sweeps f and T = 32

In the case of Set 04, surprisingly no mask is assigned to this set except for its origi-

nal items which were used for training. This is an encouraging result, as no other mask

outside 04 shares their most prominent physical feature, which is a very protruding nose.

We see that the ECGs from the training items in 04 follow all a certain pattern.
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(a) 52 (b) 78 (c) 81 (d) 82 (e) 93 (f) 97

(g) 101 (h) 105 (i) 113 (j) 120 (k) 128

Figure 5.26: Masks assigned to Set 05 after running 72 polynomial SVMs
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Figure 5.27: ECGs of newly assigned Set 05 based on cylindrical sweeps f and T = 32

In the case of Set 05, it gained 10 masks from 10. It also recovered mask 52, which

was originally in 05 and excluded from training for testing purposes. Apart from a sharp

trough during the middle third in the ECG of mask 49, all the ECGs show a certain re-

semblance as seen in the figure 5.27. The proposed assortment in 05 with the cylindrical

sweeps filter is completely different from the one proposed by the planar sweeps filter.

The only non-training mask that both assignments have in common is mask 105. The 11

assigned masks also share physical similarities with masks in 05 used for training. For

instance, they share triangular shaped noses (52, 78, 82, 93, 97, 105, 113, 120) and slanted

carved eyes with eyelids (52, 93, 97, 105, 113), triangular-shaped chin (78, 81, 93, 101, 105)

and defined ears (52, 78, 82, 93, 97, 105, 113). Refer to figure 5.26.
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(a) 54 (b) 55 (c) 84

Figure 5.28: Masks in the new Set 06
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Figure 5.29: ECGs of newly assigned Set 06 based on cylindrical sweeps f and T = 32

The polynomial SVM procedure assigned Set 06 only one extra mask from 10 as seen

in figure 5.28. There is not a clear resemblance between the ECG of mask 84 and the

training ECGs from 06 as shown in figure 5.29. This poor resemblance in ECGs is also

reflected in poor physical resemblance of masks. Observe that mask 84 is different from

mask 111 proposed in the case of planar sweep filters (figure 5.13).
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(a) 80 (b) 123 (c) 126

Figure 5.30: Masks assigned to Set 07 after running 72 polynomial SVMs
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Figure 5.31: ECGs of newly assigned Set 07 based on cylindrical sweeps f and T = 32

Three masks from Set 10 were assigned to Set 07. Unlike the ECGs in figure 5.16, as

depicted by figure 5.30, aside from some erratic behavior in the ECG of mask 56, there is a

certain pattern followed by the items in this group. None of these three were considered

by the planar sweep filter. There is also physical resemblance among the items. The three

new items have an elongated and thin frame. The ECG seems to identify that the masks

lack eyes and have few details overall as if unfinished.
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(a) 75 (b) 104 (c) 121

Figure 5.32: Masks assigned to Set 08 after running 72 polynomial SVMs
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Figure 5.33: ECGs of newly assigned Set 08 based on cylindrical sweeps f and T = 32

For Set 08, it gains three masks from 10. The ECG of masks 75 and 121 present troughs

during their first and middle third respectively, as seen in figure 5.33. Mask 104 was

assigned here once again. All of the masks share a round frame, however, it is unclear

which other physical features they might share with the training items in 08.
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(a) 16 (b) 51 (c) 70 (d) 72 (e) 102

(f) 107 (g) 116 (h) 117 (i) 127

Figure 5.34: Masks assigned to Set 09 after running 72 polynomial SVMs
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Figure 5.35: ECGs of newly assigned Set 09 based on cylindrical sweeps f and T = 32

Finally, one of the untrained masks from Set 02, another one untrained from 05 and

7 masks from 10 are assorted in Set 09, Masks 70, 116 and 127 are assigned to 09 once

again. As seen in figure 5.35, there is some pattern followed by these family. The masks

also share some common physical features with the training items in 09. For instance,

a clearly defined T-shaped nose and eyebrows (16, 72, 102, 107, 116, 117), their eyes are

carved into a squint with thick protruding eyelids and lips (16, 72, 102, 116, 127) and some

of them have a squared frame (16, 70, 102, 116, 127).

There were also 18 masks (14.1% of the total dataset) with undecided assignment, as

several of the different SVM tests would place them into different families. Masks 74, 85,

86 and 122 were once again deemed with an uncertain labeling. These are depicted in

figure 5.36,

Observe that mask 119 has an elongated frame with rough facial features, so it is not
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(a) 23 (b) 53 (c) 71 (d) 74 (e) 77 (f) 79

(g) 85 (h) 86 (i) 88 (j) 91 (k) 95 (l) 98

(m) 100 (n) 110 (o) 118 (p) 119 (q) 122 (r) 125

Figure 5.36: Masks assigned to different families by each SVM test

surprising that it was predominantly labeled as Set 07. Masks 71, 79, 95 and 125 have a T-

shaped nose and eyebrows and clearly defined thick eyelids and lips, thus they were pre-

dominantly placed in Set 09. However, mask 79 also has a triangular nose, with slanted

eyes and defined ears, thus it is reasonable to also be confused with Set 05. Masks 100

and 110 have both carved eyes into a squint with thick eyelids and lips. Mask 100 also

has a triangular nose and a triangular chin, resembling items in 05, while mask 110 has

a more defined T-shaped nose and eyebrows, resembling items in 09. However, for both

masks 100 and 110, these physical features are less defined and protruding as with the

training masks. Thus the SVMs are usually confused about their labeling between these

two families.

It is worth noting again that mask 85 was never considered for assignment in Set 02

although it has holes in its eyes.

Using T = 32 thresholds with Mg = 1

With a tighter Mg bound, all the training items would still be classified in their respective

sets during the training phase. The SVM procedure in this case is inconclusive for 20
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masks (15.6% of the whole dataset), two masks more than the Mg =
√
2 case above. For

the remainder of the subsection, all the comparisons mentioned here will be made against

the SVM procedure above, with T = 32 thresholds and Mg =
√
2. Of all the new proposed

Sets, none of them coincide with the classified Sets proposed before. This shows that

changes in just one variable affect the overall classification of items in Set 10 during the

test phase. Several observations were made regarding the results obtained in this case.

• The Set 02 was assigned the same six masks as before, which shows that the filter

function still can distinguish holes from the masks eyes or mouth.

• Sets 03, 05 and 09 offer sensible results, where most of the additional proposed

masks for each of these Sets share some physical features with the training items.

• The Set 07 reports a total addition of 7 items, four more masks than before. Other

than rough, unfinished appearance, little is found in common with the training

items.

• Less than two additional masks were assigned for Sets 04, 06 and 08. This is

encouraging, as none of the items in Set 10 share any physical resemblance with the

training items from these sets.

Overall, the choice of parameters seems to produce sensible results that could be ex-

plored further. This result supports our hypothesis that tighter Mg bounds will produce

more detailed ECGs. This gain of details could be due to the fact that the separation be-

tween threshold values is smaller, while at the same time the dimension of the produced

ECG vector remains the same. Thus the ECG records finer changes while avoiding high

dimensionality effects.

Using T = 32 thresholds, Mg = 2

By using the rougher bound Mg = 2, all the training items were still predominantly as-

signed to their respective sets during the test phase. However, rougher bounds for a fixed

T value will imply that the threshold values are more distant from one another. This in

turn implies that the the resulting ECGs will be less detailed. This lack of detail is perhaps
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the reason on why 22 masks (17% of the total dataset) were deemed unidentified. Several

observations stand out after carrying the SVM procedure.

• Set 02 reported the same outcome as in the last two procedures. Even though the

Mg is rougher, the ECGs can still distinguish whether a mask has holes for eyes.

• Sets 02 and 05 report sensible assignments. The number of extra assignments, and

the assignments themselves, are similar to the ones presented when Mg =
√
2 or

Mg = 1.

• Sets 04 and 06 report less than 2 extra masks each, which is considered a good

result as none of the masks in Set 10 share physical features with either of these two

families.

• Sets 07 and 08 report six additional assignments, although each set has only 4 and

3 training items respectively. None of the extra items share strong physical features

with the training items.

• Set 09 reports only 3 additional items, although there are several masks in Set 10

that have thick, squinted eyes and T-shaped nose and eyebrows, the most distinctive

features of Set 09.
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5.7.3 Spherical Sweeps

The spherical sweeps filter function h as described above was the only non-compound

ECG filter function considered. Thus it seemed reasonable to use T = 128 and T = 64

thresholds for each ECG. The procedures were also carried with three different bounds

Mh as in (5.3.2). Just as with the planar sweeps, every item used for training was assigned

to its corresponding family when tested with the procedure initially described.

Using T = 128 thresholds and Mh =
√
2

0 20 40 60 80 100 120

−15

−10

−5

0

5

ECG − sphsqrt128 − fam 2

χ

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
17
18
19
20
21
22
24
73
76
87
89
94
103

Figure 5.37: ECGs of newly assigned Set 02 based on spherical sweeps f and T = 32

When considering a polynomial kernel, following the procedure described above, the Set

02 was assigned again the same 6 items as in the cylindrical sweeps case in figure ??. The

ECGs seen in figure 5.37 follow roughly the same pattern.
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(a) 70 (b) 83 (c) 92 (d) 96 (e) 99 (f) 104 (g) 106

(h) 108 (i) 112 (j) 117 (k) 121 (l) 122 (m) 124

Figure 5.38: Masks assigned to Set 03 after running 72 polynomial SVMs
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Figure 5.39: ECGs of newly assigned Set 03 based on spherical sweeps f and T = 32

There were 13 masks from Set 10 that were assigned to 03. Unlike the previous two

filters, no untrained mask from Set 05 were assigned to 03 this time. All the assigned

masks can be seen in figure 5.38. Masks 83, 92, 96, 99, 106, 108, 112 and 124 were assigned

once again to 03 as in the cylindrical sweeps filter. Notice that they share certain physical

characteristics with the originals from Set 03. Except for masks 108 and 106, all of them

share a triangular or trapezoidal nose. Except for mask 117, all the masks have carved,

horizontal eyes with no eyebrows, or no eyes at all. Except for masks 99, 108, 112, all of

them have a defined horizontal mouth and lips. Additionally, masks 70, 92, 104, 108, 112,

121 and 124 have defined ears. Masks 93, 96, 99, 106 and 122 have an oblong frame as

well.
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(a) 93 (b) 123

Figure 5.40: Masks assigned to Set 04 after running 72 polynomial SVMs
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Figure 5.41: ECGs of newly assigned Set 04 based on spherical sweeps f and T = 32

In the case of Set 04, two masks from 10 were added, 98 and 123. None of these two

had been considered as part of 04 before, although they share no physical resemblance

with the training items. We see that the ECGs from the training items in 04 follow all a

certain pattern.
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(a) 51 (b) 74 (c) 78 (d) 95 (e) 105 (f) 107

(g) 114 (h) 116 (i) 119 (j) 126

Figure 5.42: Masks assigned to Set 05 after running 72 polynomial SVMs
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Figure 5.43: ECGs of newly assigned Set 05 based on spherical sweeps f and T = 32

In the case of Set 05, it gained 9 masks from 10. It also recovered the untrained mask

51. The proposed assortment in 05 with the cylindrical sweeps filter is very different as

the proposed by the planar sweeps or cylindrical sweeps filters. The only non-training

mask assignments that it has in common with the planar sweep filter are masks 95 and

105; the only assignments in common with the cylindrical sweeps filter are masks 78 and

105. All of the labeled masks have a trapezoidal nose. Except for masks 78 and 126, all of

them have horizontally carved eyes with prominent eyelids and lips. Masks 74, 105, 107

and 116 have defined ears as well. Refer to figure 5.42.
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Figure 5.44: Mask 84, the only new assignment to set 06
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Figure 5.45: ECGs of newly assigned Set 06 based on spherical sweeps f and T = 32

Just as in the previous filter, the polynomial SVM procedure assigned Set 06 only one

extra mask from 10 as seen in figure 5.44. There is still not a clear resemblance between

the ECG of mask 84 and the training ECGs from 06 as shown in figure 5.45. As stated

before, there is no physical resemblance either.
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(a) 48 (b) 50 (c) 53 (d) 77 (e) 90 (f) 109

Figure 5.46: Masks assigned to Set 07 after running 72 polynomial SVMs
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Figure 5.47: ECGs of newly assigned Set 07 based on spherical sweeps f and T = 32

Three masks from Set 05 and other three from Set 10 were assigned to Set 07. There

little physical resemblance with the training items, expect for perhaps a rough, unfinished

appearance (48, 77, 109) and straight cuts that delimit the area of the nose (50, 77). On the

other hand, no additional mask was assigned in Set 08. As stated before, the training set

08 has only 3 items and no items in Set 10 resemble the training data.
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Figure 5.48: ECGs of newly assigned Set 08 based on spherical sweeps f and T = 32
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(a) 16 (b) 52 (c) 72 (d) 79 (e) 81 (f) 82

(g) 85 (h) 88 (i) 91 (j) 100 (k) 101 (l) 102

(m) 120 (n) 125 (o) 127 (p) 128

Figure 5.49: Masks assigned to Set 09 after running 72 polynomial SVMs
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Figure 5.50: ECGs of newly assigned Set 09 based on spherical sweeps f and T = 32

Finally, once again, one of the untrained masks from Set 02, another one untrained

from 05 were assigned to 09. Additionally, 14 masks from 10 are assorted in Set 09,

Masks 16, 72, 102 and 127 are assigned to 09 once again. As seen in figure 5.50, there

is some pattern followed by these family. The masks also share some common physical

features with the training items in 09. For instance, a clearly defined T-shaped nose and

eyebrows except for masks 52, 91 and 120. All of the masks’ eyes are horizontally carved

in a squint with very prominent eyelids and eyebrows, except for masks 82, 85, 91 and
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(a) 37 (b) 71 (c) 75 (d) 80 (e) 86 (f) 97

(g) 98 (h) 110 (i) 111 (j) 113 (k) 115 (l) 118

Figure 5.51: Masks unassigned to any set after running 72 polynomial SVMs

120.

There were also 12 masks with undecided assignment (9.3% of the total dataset), as

several of the different SVM tests placed them into different families. Masks 23, 71, 86, 98,

110 and 118 were once again given an uncertain labeling. These can be seen in figure 5.51.

Masks 71, 75 and 110 have common features with Set 09: a T-shaped nose and eye-

brows, with squinted eyes and thick eyelids and lips. However, mask 71 also has horn-

like appendages which might explain the confusion between being labeled both as 04 and

09. Mask 75 has a very round frame, which might confuse the SVM procedure between

labels 08 and 09. Mask 110 is confused between labels 05 and 09. Mask 111 was confused

between labels 03 and 05, although masks 110 and 111 look very much alike.

Using T = 64 thresholds and Mh =
√
2

When a smaller number of thresholds is used, the SVM procedure assigns all the training

items to their respective groups during the test phase. Moreover, most of the test masks

are assigned to the same Sets they were assigned during the T = 128 procedure above.

The procedure was deemed inconclusive for 19 masks (14.8% of the total dataset), 7 masks

more that before with T = 128. Other changes observed were as follows.

• Sets 03, 05 and 09 were assigned the same number of masks. Most of these masks

are the same from the T = 128 with two or three interchanges when compared to the

previous procedure.
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• Set 07 reports only two additional items, four items less than before. It is more

sensible to suggest 2 additional items or less, as no other mask in Set 10 shares

strong resemblance with the training items in 07.

Overall, the classification is very similar to the one suggested with T = 128 thresholds

above. This fact in turn suggests that it may not be necessary to use a large number of

thresholds, as the ECG is able to pick up basic differences with few threshold values.

The use of small T values in turn lessens negative effects due to high dimensionality and

concentration of measure.

Using T = 64 thresholds and Mh = 1

Based on the SVM procedure run previously with T = 64 and Mh =
√
2, it is suggested

that T = 64 is good enough to pick up relevant features of the masks. Thus we will work

with T = 64 onwards and rather tune the Mh bound value. When a smaller number

of thresholds and a tighter Mh bound are used, the SVM procedure is inconclusive for

11 masks (8.6% of the total dataset), which is a better result than before. However, it

stands out that Set 05 now reported an addition of 24 masks, making it the largest family

with 37 items in total. Although the vectors have a lower dimension and are supposedly

more detailed than with the T = 128,Mh =
√
2 procedure, the ECGs seem to cluster

around Set 05. This unusual clustering of masks suggests that we should not have as

much confidence with these results as in the previous procedures.

Surprisingly, Set 02 now reports only five additional items as opposed to the six items

as in the previous procedures. Item 103 was now excluded and deemed unidentified and

confused between Sets 04 and 09. Mask 103 was the most elongated mask of all the masks

with holes for eyes or mouth, which might explain the discrepancy. This discrepancy

might also deter us to trust the results obtained with the Mg = 1 bound.

Using T = 64 thresholds and Mh = 2

When a smaller number of thresholds and a softer Mh bound are used, it is expected

that ECG will convey only the a rough picture of the objects. All but one of the training

items were classified in their respective set during the test phase, indicating the the rough
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ECGs are still good enough. It is noted that the SVM procedure is inconclusive for 22

masks (17.1% of the total dataset), 10 masks more than in the T = 128,Mh =
√
2 case,

which might provide evidence of such rough information. All the comparisons refer to

the results obtained with T = 128,Mh =
√
2. Observation made from the procedure

results are as follows:

• Set 02 reported the same additional 6 masks as in previous procedures, which sug-

gests that ECGs with rough Mh bounds still convey sufficient information regarding

holes in the masks’ eyes.

• Set 03, 05 and 09 report a sensible number of extra assignments and items. At

least half of the additional items assigned to each of these sets had been considered

before in the T = 128 case.

• Set 07 actually missed one of its training items, mask 58. This mask was classified

as 07 only 60 times in total. That is, 83.3% of the times rather than the required

minimum of 85%.

• Set 08 reports 7 additional items, while it only has three training items. Moreover,

none of the suggested new items share any physical feature with the training items.

Overall, the Mh = 2 provides a sensible classification, although the number of unas-

signed items and the misclassification mentioned in Set 07 might suggest that a larger Mh

bound will result in a dubious classification.

5.8 Results with unsupervised SVMs

As it was described in Chapter 4 (algorithm 3), the (i, j)-the Furthest Hyperplane Problem

assumes that the two different training vectors xi,xj define the two possible different

families. Remember that the FHP algorithm assumes that the origin is at midpoint mi,j

between xi and xj and that all the training data has Euclidean norm less than 1. The

FHP returns an optimal hyperplane normal vector wi,j which was afterwards unscaled,

defining thus an unscaled margin θ̄i,j . That is

θ̄i,j := min
1≤k≤n

|〈wi,j,xk〉| . (5.8.1)
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Remember that the optimal unscaled margin of the MMP procedure is the maximum of

all the margins θ̄i,j , that is,

Θ̄ := max
1≤i<j≤n

θ̄i,j. (5.8.2)

During the computation of θ̄i,j it was also computed the sample mean µi,j and sample

variance σi,j of the distances {|〈wi,j,xk〉|}nk=1. The sample mean and sample variance for

all the means and variances were computed as well. That is, the following values were

computed

µi,j :=
1

n

∑

1≤k≤n

〈wi,j,xk〉 , σ2
i,j :=

1

n

∑

1≤k≤n

(xk − µi,j)
2 (5.8.3a)

M(µ) :=

(
n

2

)−1 ∑

1≤i<j≤n

µi,j , Σ(µ)2 :=

(
n

2

)−1 ∑

1≤i<j≤n

(µi,j −M(µ))2 (5.8.3b)

M(σ2) :=

(
n

2

)−1 ∑

1≤i<j≤n

σ2
i,j , Σ(σ2)2 :=

(
n

2

)−1 ∑

1≤i<j≤n

(σ2
i,j −M(σ2))2. (5.8.3c)

We will denote by î and ĵ the pair of indices i, j which yield the optimal unscaled

margin Θ̄. We will refer to µ(Θ̄) and σ2(Θ̄) as the mean distance and variance from every

data point xi respectively to the optimal hyperplane with maximum margin Θ̄. That is,

Θ̄ = θ̄î,ĵ, µ(Θ̄) := µî,ĵ, σ2(Θ̄) := σ2
î,ĵ
. (5.8.4)

If σ2(Θ̄) is small with respect to µ(Θ̄) might suggest that all the data points are roughly

at the same distance from the optimal hyperplane. This would imply that all data points

lie within a spherical shell, suggesting effects of high-dimensionality as shown by (4.6.6).

As mentioned above in section 5.5, the methodology consisted of evaluating ECGs

from two of the eight different training sets. Given two fixed families, our main aim was

to recover the members of each family based on an unsupervised approach. The four

benchmark families considered for this procedure are detailed in Table 5.1.

Sets 06, 07 and 08 were not considered as each of them has less than 4 items in total.

Set 10was not considered as there is ongoing discussion with respect the best way to label

its items.

As stated earlier, the computation of singular values is a tolling computation depen-

dent on the number of dimensions, It was implemented then an standard Principal Com-

ponent Analysis procedure based on Singular Value Decomposition (cf. [Shl14]). The PCA
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EXP. FAMILIES TO COMPARE 1ST NO. ITEMS 2ND NO. ITEMS

a. Set 02 vs. Set 05 24 17

b. Set 02 vs. Set 09 24 7

c. Set 03 vs. Set 04 6 6

d. Set 04 vs. Set 05 6 17

Table 5.1: Benchmark comparisons for the MMP procedure

technique was used to reduce the dimension of the ECGs to 6, 8, 10 and 12 dimensions

before running the MMP procedure as suggested in algorithm 3.

5.8.1 Set 02 vs Set 05

Planar sweeps

The ECGs used were obtained with T = 32 thresholds for each of the planar sweep func-

tions described in (5.3.3). A Mπ = 2 bound was considered as well. Even though the

variances in (5.8.3) were large, the MMP procedure would cluster every mask but one as

a unique family. Mask 40 from Set 05 (refer to Figure A.4) would be constantly excluded

from the rest regardless of any reduction in dimension. This failure suggests that in an

unsupervised setting, the planar sweeps provide little information to distinguish masks

with holes apart from masks without holes.

Cylindrical sweeps

First the ECGs used were obtained with T = 32 thresholds for each of the cylindrical

sweep functions described in (5.3.4). A Mg =
√
2 was considered as well. Second, the

procedure was run considering ECGs computed with T = 32 thresholds and a tighter

bound Mg = 1. The ECGs were reduced to 6 and 12 dimensions prior to start the MMP

procedure. In all cases, the optimal hyperplane would split the data in two disjoint subsets

S1 := {1, 2, . . . , 24} \ {16, 23}, S2 = {37, 38 . . . , 53} ∪ {16, 23}. (5.8.5)

Observe that masks 16 and 23 are the only masks in Set 02 which have no holes for their

eyes or mouth. Refer to figure A.1. It is also interesting that mask 46 in Set 05 was not
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considered in S1, even though it has a hole on the left side of its forehead. Thus the cylin-

drical sweeps suggest that are sensitive enough to differentiate if a mask has holes in its

eyes or mouth. This differentiation is possible even after aggressive dimension reduction,

suggesting that the distinction can be robust.

The details for each case regarding the optimal unscaled margin (5.8.2) of the optimal

dividing hyperplane and its mean distance from each point and its variance (5.8.4) are as

follows.

Mg dim Θ̄ î ĵ µ(Θ̄)
√
σ2(Θ̄)

√
2 6 9.8 24 47 23.9 6.3√
2 12 10.3 11 43 23.5 6.1

1 6 9.4 15 46 23.2 6.2

1 12 9.9 15 46 22.4 6.1

Data in the Mg =
√
2 case seemed slightly more separated than the Mg = 1 case, as the

margins, mean values and variances were slightly larger.

Spherical sweeps

First the ECGs used were obtained with T = 128 thresholds and Mg =
√
2 for each of the

cylindrical sweep functions described in (5.3.5). Second, the procedure was run consid-

ering ECGs computed with T = 64 thresholds and a tighter bound Mg = 1. Prior to the

MMP procedure, the ECGs dimension was reduced to 6, 8, 10 and 12 for each case. For

every case, the procedure split the training set in the disjoint sets S1 and S2 mentioned

in (5.8.5). Thus the spherical sweeps prove to be a sensitive choice as well to distinguish

holes in the masks’ eyes.

The details for each case regarding the optimal unscaled margin (5.8.2) of the optimal

dividing hyperplane and its mean distance from each point and its variance (5.8.4) are as

follows.

Mg dim Θ̄ î ĵ µ(Θ̄)
√
σ2(Θ̄)

√
2 6 10.3 3 47 27.3 8.2√
2 12 10.8 6 16 26.7 8.8

1 6 8.2 15 46 18.5 6.0

1 12 8.7 15 46 18.1 5.2
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As in the cylindrical sweeps ECGs above, large means and variances when T = 128

and Mg =
√
2 suggest that the ECGs obtained through spherical filtering are spread out.

This in turn makes the distinction between Sets 02 and 05 clear to pick up. Observe that

both the mean distance and variances when Mg = 1 decreases. This might suggest that

ECGs are closer together in this case, even when it is expected that such ECGs encode

more detailed information on the topological changes of each object.

5.8.2 Set 02 vs 09

Planar sweeps

As in the previous case involving the planar filters (5.3.3) and T = 32 thresholds, the MMP

procedure couldn’t find any significant differences between sets 02 and 09. Algorithm 3

clustered all the masks but one in a large cluster. Mask 17 from Set 02 (refer to figure A.1)

would be constantly excluded from the rest of the mask. This result was observed even

when the ECGs were reduced to 6 and 12 dimensions via PCA. Thus we may confirm that

the planar sweeps (5.3.3) are not sensitive enough to even tell apart masks with holes from

masks without holes.

Cylindrical sweeps

First, as in the previous test, we consider filters (5.3.4) with T = 32 thresholds and Mg =√
2. Second, we compute the ECGs with T = 32 and Mg = 1. Via PCA, we reduce the

dimension of the ECGs to 6 and 12 prior to run the algorithm 3. The MMP procedure was

able to distinguish masks with holes and masks with no holes. This distinction is reflected

by the partition of data in two disjoint sets

S1 := {1, 2, . . . , 24} \ {16, 23}, S3 = {63, . . . , 69} ∪ {16, 23}. (5.8.6)

Thus the cylindrical sweeps are again sensitive enough to distinguish holes in masks’

eyes despite aggressive dimension reduction. The details for each case regarding the op-

timal unscaled margin (5.8.2) of the optimal dividing hyperplane and its mean distance

from each point and its variance (5.8.4) are as follows.
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Mg dim Θ̄ î ĵ µ(Θ̄)
√
σ2(Θ̄)

√
2 6 11.4 15 42 24.1 7.1√
2 12 11.7 2 39 23.3 6.6

1 6 11.3 15 42 24.3 7.1

1 12 11.3 22 23 24.2 6.9

The mean distance, variance and optimal margin values are similar in all cases, which

suggests that data looks very similar in both cases, Mg =
√
2 and Mg = 1. The large

optimal margin and large mean distance value for all cases suggest that the two compared

families lie clearly separated.

Spherical sweeps

Just as in the previous case, first we consider spherical filters (5.3.5) with T = 32 thresholds

and Mh =
√
2. Second we consider ECGs computed with T = 64 and Mh = 1. The ECGs

are reduced to 6 and 12 dimensions prior to the algorithm 3. For all cases, the computed

optimal hyperplane separated the data in disjoint sets S1 and S3 as in (5.8.6).

Thus the spherical sweeps are again sensitive enough to distinguish holes in masks’

eyes. The details for each case regarding the optimal unscaled margin (5.8.2) of the optimal

dividing hyperplane and its mean distance from each point and its variance (5.8.4) are as

follows.

Mg dim Θ̄ î ĵ µ(Θ̄)
√
σ2(Θ̄)

√
2 6 13.9 22 37 29.1 9.2√
2 12 14.2 22 37 29.0 9.1

1 6 10.7 12 23 19.6 6.2

1 12 11.0 12 23 19.6 6.1

The larger margins, mean distances and variances in the first case, Mg =
√
2 indicate

that data is much more spread out and separable than in the second case, Mg = 1.

5.8.3 Set 03 vs 04

The MMP failed to recognize the difference between training items in Sets 03 and 04. The

planar and cylindrical sweeps filters used in the comparisons 02 vs. 09 above grouped all
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the masks but one in a single large cluster. The mask excluded in every case was mask 30

from Set 03 (refer to figure A.2.) The spherical sweeps also failed to split the two Sets and

clustered all but one mask in one single large group as well. The excluded mask in this

case was mask 32 from 04 (refer to figure A.3).

The mean distances and variances, as in (5.8.3b) and (5.8.3c), for the several filters used

are as follow:

g M dim Θ̄ M(µ)
√

Σ(µ) M(σ2)
√

Σ(σ2)

planar 2 6 5.4 5.1 1.8 1.3 1.6

planar 2 12 5.4 5.2 1.6 0.9 0.4

cylinder
√
2 6 7.9 7.4 2.5 0.7 0.5

cylinder
√
2 12 8.2 8.2 1.9 0.6 0.3

cylinder 1 6 7.6 8.0 1.3 0.8 0.3

cylinder 1 12 7.8 7.2 2.0 2.0 1.5

It is interesting the fact that the optimal margin Θ is close to the sample mean of mean

distances. Moreover, the fact that the sample standard deviation is relatively small sug-

gests that all the points are on average at the same distance from every splitting hyper-

plane. This last observation is also supported by the small values of mean variances and

the standard deviation from sample variances. In other words, the clustering might be

caused by high dimensionality effects as mentioned in section 4.6. Observe that the re-

sults were computed after the ECGs had been reduced to 6 and 12 dimensions. Thus

the MMP procedure proves to be unfit to distinguish finer details such as larger noses or

triangular frames.

5.8.4 Set 04 vs 05

The MMP failed to recognize any significant difference between these two training sets.

Just as above, the MMP clustered all but one mask into a single large group. The excluded

mask depended on the filter function. For planar filters, mask 40 was excluded. For cylin-

drical filters, mask 46 was excluded. Finally, for spherical filters, mask 47 was excluded.

Just as in the previous case, when observing the mean average distances and variances,

as in (5.8.3b) and (5.8.3c), it was observed that the optimal margin Θ̄ is very close to M(µ).
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The mean distance variance Σ(µ) was small as well. This suggests that the ECGs are

affected by high dimensionality. This negative effects are still present when the dimension

of the ECGs is lowered via PCA.

5.9 Conclusions and future directions

As discussed in the section 3.6, the assortments obtained from a SVM could be due to two

reasons

1. The ECG of the mask suggests that the given mask is similar to a certain group and

ought to assigned in such group.

2. The ECG of the mask is very distant from the rest of training ECGs and the SVM

picks the least distant group.

Part of the difficulties of the project is to determine which case occurred for each assign-

ment. A closer inspection to ECGs could perhaps help to explain which of those cases

occurred for each classification. For instance, the ECG of mask 110 yielded from planar

sweeps seen in figure 5.14 has a very prominent peak near the last third. The peak sets

this ECG apart from the other two ECGs of training items in Set 06. The fact that mask 110

does not resemble the training items could be an example of the SVM classifying based

on the “least distant” set rather than the “closest” set. This reasoning might explain the

classification of certain items in Set 10 that do not resemble any of the training sets, as

would be the case of masks 92 or 98.

The Euler Characteristic, as shown in chapter 1, is a summary of the Betti numbers

βq(K) of a simplicial complex K. Remember that the Betti numbers represent the number

of homologically different q-dimensional holes of a complex. Thus it makes sense that

the ECG is powerful descriptor to tell apart if a mask has holes in its eyes or mouth.

During both the supervised and unsupervised SVM procedures, the ECGs consistently

assigned all the masks with holes in their eyes and mouth in Set 02. This distinction was

possible even when the ECGs were high-dimensional vectors and despite the low number

of training items.

Overall, with the right parameters, some of the supervised SVM procedures produced

some sensible results. This is surprising considering the low number of training masks
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and the high number of different possible labels. Apart from the masks with holes, it was

observed that some non-training masks were consistently classified in the same Set, even

when the SVM procedures took different filter functions and parameters. For instance,

mask 105 was consistently labeled as Set 05 in several tests. It could be proposed that if

a mask is consistently assigned to the same set, then it should be considered as part of

the training set. Next the SVMs are run again and the process could be reiterated. This

dynamical training set might help to reduce the number of non-training items for the

supervised SVM procedures.

Remember that the computation of the ECG of a fixed complexK is linear on the num-

ber of vertices. Despite that each mesh model had on average 70, 000 different vertices,

each ECG could be computed instantly without requiring any special hardware. More-

over, more traditional techniques of topological data analysis, such as the computation of

persistence diagrams, are computationally quite expensive. The ECG proves a new tech-

nique to extract topological information from very large objects in a quite feasible manner.

This efficiency may be exploited in the future in real-time applications such as augmented

reality.

The curse of dimensionality most likely has a negative effect on some proposed assort-

ments as it was pointed with the ECGs yielded from planar sweeps filters and T = 128

thresholds. This curse was shown as most of the masks would be clustered in a single

large set. This curse seems to be specially present in the unsupervised setting. None of

the unsupervised procedures managed to tell apart the triangular frames and large noses

in Set 04 from the oblong frames and wide noses in Set 03. This failure is most likely due

to the lack of training data, although more experimentation is necessary.

The use of tighter M bounds (as in (5.3.2)) was proposed as a partial solution to this

dimensionality conundrum. TighterM bounds imply shorter distances between threshold

values. Thus, the ECGs would be able to capture more detailed changes of the Euler

Characteristic without increasing its dimension T . In the case of cylindrical and spherical

sweeps, for a fixed number of thresholds, the tighter bound M =
√
2 proved to yield

sensible results.

However, further exploration is needed on the particular effects of tightening or re-

laxing these M bounds. For instance, when the spherical filtration was considered the
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tight bound Mh = 1, a considerable number of masks clustered in Set 05. The unsuper-

vised SVM procedures also reveal that the ECGs computed with spherical filters (5.3.5)

and Mh = 1 are actually closer together. This assertion is suggested from the fact that

the mean distance and variance from each point to the optimal separation hyperplane is

smaller than in the Mh =
√
2 case. In other words, the tightest possible M bound might

not be the best choice.

A second problem on tightening M bounds is the fact that they are highly dependent

on the dataset. For instance, Mg = 2 and Mh = 3 are bounds that work for every complex

embedded in the [−1, 1]3 cube, as it was the case with the 128 meshes dataset. Tighter

Mg and Mh bounds were found through direct experimentation, and it is not clear that

they will work if additional models are considered. Thus tightening M bounds may risk

expandability of some results to larger data sets.

Filtrations based on curvature and (Euclidean) distance to the k-th nearest neighbor

were also considered as suggested in [RW14] to analyze archaeological data. The ECGs

yielded failed to produce sensible results, as most of the masks would be clustered in a sin-

gle large group. Our hypothesis to explain such failure is the fact that the 3D mesh models

are extremely details. Each model has on average 70, 000 vertices. Thus, locally, the model

looks the same everywhere as the vertices are spread out homogeneously throughout the

whole model. This homogeneity in turn produces small differences based on curvatures

or nearest neighbors which are difficult to pick up by our proposed method. An attempt

was made to lower the number of vertices of each mask to less than 5000 while still pre-

serving its basic shape and topology. This vertex reduction was carried out using MeshLab

v1.3.2 [Cig+08] and its inbuilt Quadratic Edge Collapse Decimation tool [PTC10]. Even after

aggressively reducing the vertices of each model, the ECGs still failed to produce sensible

results.

In conclusion, more experimentation is needed. The results above show that the pro-

posed classification depends heavily on the fixed filter function and its M bound. Further

discussion with the archaeological community is necessary to determine the best way to

tune the parameters.
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Appendix A

Original dataset

The dataset used consists of 128 digitized 3D meshes of the masks which are part of the

162 masks found at the Sacred Precinct of Tenochtitlán. The 34 remaining masks were not

considered as they are heavily damaged, incomplete and possibly unfinished. The data

was provided by Diego Jiménez and the National Institute of Anthropology and History

(INAH). The meshes of the masks were originally grouped in 9 different sets numbered

from 02 to 10. The items from each original set are numbered from 01 to 128.

A.1 Set 02

The main distinctive feature of the set picked by the ECGs are the holes in the eyes or

the mouth. 22 items out of 24 do have at least two holes. As they are the only set with

holed masks, their ECGs are quite distinctive from the rest. Most of them also have a

distinctive T-shape formed by their eyebrows and nose. It is the largest set of the eight

well-distinguished set.

129



A.2. SET 03 A. DATASET

(a) 01 (b) 02 (c) 03 (d) 04 (e) 05 (f) 06 (g) 07 (h) 08

(i) 09 (j) 10 (k) 11 (l) 12 (m) 13 (n) 14 (o) 15 (p) 16

(q) 17 (r) 18 (s) 19 (t) 20 (u) 21 (v) 22 (w) 23 (x) 24

Figure A.1: Masks in the original set 02

A.2 Set 03

(a) 25 (b) 26 (c) 27 (d) 28 (e) 29 (f) 30

Figure A.2: Masks in the original set 03

Masks in Set 03 have a wide, trapezoidal nose; carved slanted eyes with no eyebrows, or

even no eyes at all; carved horizontal mouth with clear lips; defined ears and an oblong

frame.

A.3 Set 04

The most distinctive feature for masks in Set 04 is their very prominent, triangular, sharp

nose. All of them have carved, slanted eyes with no eyelids as well. Except for mask 32,
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A. DATASET A.4. SET 05

all of them have a triangular frame. Except for mask 36, all of them have defined, thick

eyebrows.

(a) 31 (b) 32 (c) 33 (d) 34 (e) 35 (f) 36

Figure A.3: Masks in the original set 04

A.4 Set 05

(a) 37 (b) 38 (c) 39 (d) 40 (e) 41 (f) 42

(g) 43 (h) 44 (i) 45 (j) 46 (k) 47 (l) 48

(m) 49 (n) 50 (o) 51 (p) 52 (q) 53

Figure A.4: Masks in the original set 05

Masks from Set 05 have a triangular, thin nose. They also have carved, slanted eyes, and

most of the masks do have clear eyelids. They do have a carved, horizontal open mouth

and defined lips. Most of them have clearly defined ears. Roughly half of the masks do

have a triangular, shaped chin.
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A.5. SET 06 A. DATASET

A.5 Set 06

Set 06 is the smallest training set of all the 8 training sets. It just contains two items. Their

main feature seems to be their round, bulky frame, with heavy cheeks. They do have

a T-shaped nose and eyebrows. Their eyes are carved in a squint, with very prominent

eyelids. They do have very prominent lips as well.

(a) 54 (b) 55

Figure A.5: Masks in the original set 06

A.6 Set 07

Masks in Set 07 have a rough appearance, as if unfinished. With three clear cuts their

triangular nose is defined, and with two additional horizontal wedge cuts their eyes are

represented. Except for mask 58, one additional cut represents their horizontal mouth.

Except for mask 56, they have an elongated frame.

(a) 56 (b) 57 (c) 58 (d) 59

Figure A.6: Masks in the original set 07

A.7 Set 08

Masks in Set 08 main feature is their triangular nose defined by two deep, straight cuts.

Their eyes and mouth are carved horizontally with well defined eyelids and lips. They

also have a round frame.
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A. DATASET A.8. SET 09

(a) 60 (b) 61 (c) 62

Figure A.7: Masks in the original set 08

A.8 Set 09

Masks in Set 09 have a prominent T-shaped nose and eyebrows. They do have slitted

eyes and mouth as if squinting, with prominent eyelids and lips. Except for mask 65, all

of them have square-like frame.

(a) 63 (b) 64 (c) 65 (d) 66 (e) 67 (f) 68 (g) 69

Figure A.8: Masks in the original set 09

A.9 Set 10

The Set 10 consists of masks whose origins are unclear. Further discussion is needed

among the archaeological community to establish and distinguish the origin, style, and

classification of each of these items. As expected, there is no clear pattern followed by all

the 59 masks in the Set. Observe that almost half of the models of pre-Columbian masks

are in Set 10. This implies that only half of our total dataset is possible to use as training

data for any supervised classification approach.

133



A.9. SET 10 A. DATASET

(a) 70 (b) 71 (c) 72 (d) 73 (e) 74 (f) 75 (g) 76

(h) 77 (i) 78 (j) 79 (k) 80 (l) 81 (m) 82 (n) 83

(o) 84 (p) 85 (q) 86 (r) 87 (s) 88 (t) 89 (u) 90

(v) 91 (w) 92 (x) 93 (y) 94 (z) 95 (aa) 96 (ab) 97

(ac) 98 (ad) 99 (ae) 100 (af) 101 (ag) 102 (ah) 103 (ai) 104

(aj) 105 (ak) 106 (al) 107 (am) 108 (an) 109 (ao) 110 (ap) 111

(aq) 112 (ar) 113 (as) 114 (at) 115 (au) 116 (av) 117 (aw) 118

Figure A.9: Mask in the original Set 10
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A. DATASET A.9. SET 10

(a) 119 (b) 120 (c) 121 (d) 122 (e) 123 (f) 124 (g) 125

(h) 126 (i) 127 (j) 128

Figure A.10: Masks in the original set 10
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