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In this work will review some of the different alternative formulations of gravitation. Formulations in-

spired by the MacDowell-Mansouri formulation of gravity, which make an attempt to express General

Relativity as a gauge theory will be revised. In addition, the conditions in the symmetry breaking

in the MacDowell-Mansouri action will be analyzed. This symmetry breaking allows to obtain the

action of General Relativity from the MacDowell-Mansouri action, modulo additional terms, known

as topological invariants, which do not affect the equations of motion of the theory.

On the other hand, alternative approaches to gravity which consider the gravitational interaction

as an emerging phenomenon of thermodynamics have become relevant. From the point of view of

these approaches, gravity, being an emergent interaction, lacks a quantum description, which would

explain the well-known problem of the adequacy of a quantum theory of gravitation. Using the ideas

of emergent gravity, through a modified entropy-area relationship, we will present a model that adds

corrections to the Newtonian gravitational force. These corrections can be used to explain the anomaly

of the rotation curves of galaxies, a phenomenon attributed mainly to dark matter. Finally, taking

these same ideas to the cosmological scenario, we will find a modified Friedmann equation, whose

solution exhibits a behavior in accordance with the usual Friedmann-Robertson-Walker cosmological

model for small times, while, for large times, this solution behaves like a universe dominated by dark

energy. With this, we will find an effective cosmological constant in terms of the free parameter of the

model. From this perspective, a plausible entropic origin of the cosmological constant is proposed.
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Chapter 1

Introduction

The logical structure of General Relativity (GR) is one of the greatest achievements in theoretical

physics and is used to describe many phenomena related to the gravitational interaction, and the

current results from gravitational wave astronomy cements GR as the appropriate theory to describe

the gravitational interaction, together with the former classical test of GR [1], and the prediction of

black holes, the theory has been proven to be the best and more accurate description of gravity at

the classical level. Even if the open problem of dark energy and dark matter can be made compatible

with GR (if one proposes new exotic sources of matter and energy), observations do not discard

alternative theories of gravity. Although the current detections by LIGO impose strict constraints

on alternative theories of gravity, further developments on gravitational wave astronomy are needed

to establish GR or an extension of GR as the correct formulation for the gravitational interaction [2].

Despite the multiple accomplishments of the theory, there are some aspects of the nature of

gravity that the GR cannot explain. For example, the problem of the absence of a theory describing

gravity at a quantum mechanical level, that is, at a fundamental level, just as theories like quantum

electrodynamics (QED) and quantum chromodynamics (QCD) do for other fundamental interactions

of nature, is well known. Having a theory that describes gravity at both, classical and quantum level

is fundamental, in order to fully understand the physics of objects such as black holes, or events

where GR fails to explain, such as the big bang. Due to this problem, relevant theories have been

developed over the years that try to offer a quantum description of gravity, the most remarkable being

String Theory or Loop Quantum Gravity. These theories have offered important theoretical advances,

however, the absence of experimental evidence to support their results is well known, for which there

is controversy regarding these theories. Likewise, in order to understand gravity at a fundamental

level, and due to important advances in differential geometry, topology, and analysis, the community

has been motivated to study the gravitational interaction from another perspective perhaps different

from the originally conceived by Einstein, this approaches attempt grasp the gravitational interaction

at a deeper and more general geometric level. For this reason, several alternative formulations to

GR have been carried out continuously. These formulations involve deeper mathematical aspects of

the theory and, moreover, they could reveal a structure that helps to rethink the problem of the

quantization of gravity.
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It took decades until physicists understood that all known fundamental interactions can be

described in terms of what we know as gauge theories. Actually, The gauge theories that emerged in

a slow and complicated process gradually from GR, and the common geometrical structure between

these theories. It took several decades until the importance of the gauge symmetry principle, in its

generalized form to non-Abelian gauge groups developed by Yang, Mills, and others, became also

fruitful for a description of the weak and strong interactions. What is currently known as Yang–Mills

theories are gauge theories which describe the behavior of elementary particles using non-abelian Lie

groups and they are are the mainstay for the unification of the electromagnetic and weak interactions

In 1977, S. W. MacDowell and F. Mansouri developed a novel work[3] currently known as the

MacDowell-Mansouri formulation (MM), in which, for the first time, an attempt is made to conceive

GR as a gauge theory, in other words, through a deeper and more detailed geometric formulation, it

is intended to write the GR action as a Yang-Mills action. The idea behind this attempt is simple to

understand: we know that the theories describing the other fundamental interactions of nature are

gauge theories, and we know how to quantize those theories. Therefore, if one manages to express

gravity as a gauge theory, then, in principle, its quantization would be achievable. However, this

method is not easy to perform, the reality is that, due to the aspects that make the gravitational

interaction different from the rest of the interactions, and other difficulties that arise, such as the

well-known non-renormalization of gravity[4], it has not been possible to carry out this idea, however

these developments have allowed us to know more about the structure of gravitational interaction.

In the MacDowell-Mansouri formulation, the action of GR emerges from a more general action,

which is invariant under the SO(4, 1) group, called the Anti-de Sitter (AdS) group. (it can also be

considered the group SO(3, 2)) When the SO(4, 1) symmetry is broken down to the SO(3, 1) group,

called the Lorentz group, the MM action splits into the action of GR with cosmological constant

and a topological term, the so-called Euler’s term, or Gauss-Bonett term. Topological terms do not

affect the equations of motion of the classical theory, however, these terms have been shown to have

relevance at the semi-classical level. For example, the so-called θ-ambiguity is well known in QCD [5],

this ambiguity originates from the Pontryagin topological term. In gravity, the Pontryagin term is

related to the well-known problem of the Immirzi parameter [6, 7]. The Immirzi parameter is highly

relevant in theories such as Loop Quantum Gravity. Viewed in this way, a gauge invariant action

for gravity is achieved, being the Lorentz group the gauge group. Thus, instead of modeling GR by

means of an action whose fundamental field is the metric, it is modeled by means of an action whose

fundamental fields are the tetrad field and the spin connection field.

Likewise, the MM formulation has been the inspiration for the development of other Gauge

formulations of gravity, highlighting, for example, the one carried out in [8], in which, an MM-

type action featuring self-dual forms is built. This formulation naturally includes the Pontryagin

topological term in addition to the Euler term, featuring the fact that the action is quadratic in

the strength field, thus, having a Yang-Mills action-type structure. Moreover, as pointed out by

the authors, this formulation may contribute to understanding the fact that the physical states of

quantum general relativity are the exponential of the so-called Chern-Simons action.
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As mentioned before, in order to obtain GR from the MM action, it is necessary to break the

SO(4, 1) symmetry down to SO(3, 1), however, this breaking must be done ”by hand”. That is, there

is no known process that allows to naturally break down the symmetry (for example, as in the case of

the spontaneous gauge symmetry breaking in the electro-weak interaction). This is why there have

been several attempts with the purpose of equipping the formalism with something that allows the

breaking of the symmetry in a less artificial way. A remarkable attempt was made by K.S. Stelle and

P. C. West [9]. This formulation adds in the action an SO(4, 1) vector, and the idea is that, when

setting a privileged direction for this vector, then the breaking of the symmetry occurs. Inspired

by these ideas, in [10] it is analyzed in more depth what dynamic conditions must be met by this

new geometric element, which contains the relevant geometric information, that is, for example, the

space-time metric can be expressed in terms of this object.

The alternative formulations of GR, such as the MacDowell-Mansouri formulation, among others

have worked out to reveal in a clearer way the structure, both physical and mathematical, of the

gravitational interaction, at the same time, they give us clues about a possible way forward to

achieve a theory that describes gravity at a quantum level, however, it is clear that this task has

not yet been achieved. On the other hand, there are entities such as dark matter, which cannot be

integrated and described in these alternative theories of gravitation (Even trying to include ordinary

matter, for example fermions, is a complicated task to do). Also, although expressions for the

cosmological constant can be obtained in these formulations, it is impossible to detail the dynamics

when considering dark energy. For such reasons, there is the need to consider other alternatives,

more concretely phenomenological models that, in some way, do include the dark sector and, tell us

something about the quantization of gravity, or even more, we can ask ourselves: Is gravity really

quantizable? This is a controversial question, and, if the answer were negative, this would imply that

gravity is not a fundamental interaction, but rather is some effective interaction. In this way, any

attempt to obtain a quantum theory of gravity would be sadly fruitless. As evidence of these ideas, in

1995, in a masterly work [11], T. Jacobson showed that the GR field equations can be obtained from

the fundamental thermodynamic relation TdS = δQ, also called the Clausius relation. This result

is important since it constitutes a first indication that gravity is not a fundamental interaction, but

an effective interaction arising from thermodynamics. As mentioned in this paper: “in this sense,

quantizing gravity is analogous to the case of sound in a gas propagating as an adiabatic compression

wave: Since the sound field is only a statistically defined observable, it should be no canonically

quantized as if it were a fundamental field, even though there is no doubt that the individual molecules

are quantum mechanical. This suggests that it may not be correct to canonically quantize the Einstein

equations, even if they describe a phenomenon that is ultimately quantum mechanical”.

In the spirit of Jacobson’s work, recently, in a remarkable work [12], E. Verlinde, starting from

first principles and general assumptions, shows that Newton’s law of gravitation arises naturally

and unavoidably in a theory in which space is emergent through a holographic scenario. In Verlide’s

scheme, gravity is explained as an entropic force caused by changes in the information associated with

the positions of material bodies. (and, a relativistic generalization of these ideas directly leads to the

Einstein equations) In this sense, the scheme presented by Verlinde offers a powerful tool to study



4 Chapter 1. Introduction

gravity modifications from a thermodynamic perspective. For example, given that in this approach,

the dynamics are encoded in the area-entropy relationship, it is possible to obtain modifications to

Newton’s Law of Gravitation from modifications to the area law for Bekenstein’s entropy- Hawking

[13]. These modifications can be related to theories that try to alternatively explain phenomena

associated with dark matter, such as the discrepancy between the predicted and actual rotation

curves of galaxies. [14, 15]

On the other hand, the several proposals to solve what is currently known as the dark energy

problem can be divided in two classes. In the first class we remain in the context of general relativity

(GR) and assume that this acceleration is produced by an unknown energy density or by the existence

of a new type of matter that has the nonphysical property of negative pressure. In this context, it

seems that the best candidate is the cosmological constant Λ. Even if the observations are compatible

with the existence of Λ there are serious theoretical problems to consider this model as the final answer

[16, 17]. The second class, assumes that we do not need a new energy density with strange physical

properties, but instead considers that this acceleration is a consequence of a modified theory of gravity.

For the last decade, there has been a lot of work in modified theories of gravity [18], constructing

models that exhibit an accelerating scale factor in their late time dynamics [19]. The most successful

attempts are Horndenski type theories [20]. In summary one can address the dark energy problem

by either staying in the framework of GR and introducing a dark energy component, or be confident

with our knowledge of the energy and matter content of the universe and modify the gravitational

interaction. If we entertain the possibility that the dark energy problem is a consequence of the poor

understanding of gravity, we need to formulate an alternative to GR. In a more recent paper [21],

the author explores the possibility of a common origin of dark matter and dark energy in the context

of an emergent formulation of gravity. The dark matter predictions for this theory have been put

to test in several works [22, 23]. However, even if the specific formulation of Verlinde is not the last

answer, the entropic or emergent origin of gravity and its connection to the dark matter and dark

energy can shed some light to origin of the dark sector of the Universe.

The ideas of entropic gravity have been extended to cosmology. In recent works [24–27], it has

been possible to obtain the well-known Friedmann equations from thermodynamic considerations, in

the spirit of Jacobson’s ideas, one can obtain the Friedmann equations of a Friedmann-Robertson-

Walker (FRW) universe by applying the Clausius relation to the apparent horizon of the FRW solu-

tion. The entropy of the horizon is assumed to be proportional to its area. Under the same argument

as in the case of Verlinde’s emergent gravity, if one considers deviations from the area law for the

entropy, then one should expect to obtain a modified Friedmann equation whose modifications are

traced to the modifications of the entropy-area relationship. In a recent work[28] it has been shown

that, for an entropy-area relationship that contains a term proportional to the volume of the horizon,

the solution to the resulting modified Friedmann equation exhibits an exponential behavior for large

times, that is, this solution mimics the behavior attributed to dark energy. From this point of view

it can be argued that what is currently known as dark energy may have an entropic origin.

This thesis is structured as follows: In Chapter 2 we present a review of the basic concepts and

ideas of gravitation, first motivating the development of GR from Newtonian gravitation and finally,
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giving a brief study of the main ideas concerning GR.

In chapter 3, some formulations of gravity such as MM, self-dual MM, and Stelle-West-inspired

formulations will be reviewed.

In Chapter 4 we will present our work about the symmetry breaking conditions in MacDowell-

Mansouri-type actions. This is part of the work done in the doctoral process.

In chapter 5 the thermodynamic formulation of gravity is addressed. Jacobson’s ideas will be

presented, as well as Verlinde’s ideas about entropic gravity.

Chapter 6 corresponds to the other part of the original contribution developed in the doctoral

process, in this chapter, firstly, we obtain modifications to the Newtonian gravitational force will be

obtained from modifications to the area law for the area-entropy relationship. Lastly, by taking the

ideas of entropic gravity to the cosmological scenario, a modified Friedmann equation will be obtained

and solutions to that equation will be presented.

Finally, chapter 7 is devoted to conclusions and final remarks.
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Chapter 2

A Review on Classical Gravitation

“Gravitation surely is not the most appreciated of all forces. In its absence, my first steps as a child

would have been far easier to achieve, and my clumsiness would have less practical consequences.

This is unfair judgment though, for without gravitation there would be no one to enjoy floating

around. Without gravitation, the splendid structures of our Universe could not have formed. Without

gravitation, galaxies would not swirl and stars would not shine; planets would never have come to

existence, and life would not be. Because of its evidence and ubiquity in our daily experience of

motion, it is not surprising that gravitation was the first physical interaction ever described within

a solid scientific framework. Newton’s theory of the universal attraction of massive bodies was, at

the end of the 17th century, a proper scientific revolution. It remains one of the best examples of

conceptual unification – how audacious was it to claim that objects falling on the ground and the orbits

of celestial bodies are merely two facets of the same phenomenon? Albeit unchallenged for more than

two centuries, Newton’s formulation of physics was only a prelude. In the early 20th century, another

revolution occurred, and dramatically changed our conception of the Universe. With the advent of

Einstein’s relativity, the hitherto distinct concepts of space and time merged into a hybrid structure

called spacetime. Furthermore, this space-time turned out to be somehow malleable, gravity being

nothing but its geometry. This superb theory, formulated in 1915, was not less superbly confirmed,

in 1919, by Eddington’s measurement of the deflection of starlight by the Sun. Besides light bending,

relativity also predicted some exotic phenomena, among which gravitational waves and black holes.

The first ones, which are to gravity what light is to electromagnetism, were first detected in 2015, that

is, exactly one century after the formulation of the theory encompassing them. As these gravitational

waves were produced by the collision of two black holes, they also provided indirect proof of their

existence; and if this does not convince you, take a look at the 2019 photograph of the M87* super-

massive black hole! That picture, whose interest relies on the deviation of light by the black hole,

remarkably marked the centenary of Eddington’s observation. Could there be a better occasion to

start a journey around the world of gravity? Be careful though, as you may fall in love with it, just

like I did” . . . Pierre Fleury.
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2.1 Newtonian Gravity

In his celebrated work Philosophiæ Naturalis Principia Mathematica, or “Principia”, Isaac Newton

established that material bodies interact gravitationally exerting a force of magnitude given by

F =
Gm1m2

r2
(2.1)

where G is the gravitational constant G ≈ 6.67×10−11m3kg−1s−2. Taking this into account, Newton

was able to give a theoretical agreement with the previous results empirically found by Kepler in

1608.

It is simply to write down Newtonian gravity as a field theory. Let ρ describe the matter

distribution, and consider a test particle of mass m (the mass m is often referred as ”mass charge”).

Let this particle be located at some point represented by the vector ~x. Then, the force acting on the

particle is given by

~F = −m∇Φ, (2.2)

where Φ is called the gravitational field. Moreover, we can write

∇2Φ = 4πGρ, (2.3)

which is the gravitational Poisson equation. For a sphere centered at a particle of mass M , the

Poisson equation (2.3) gives

Φ = −GM
r
, (2.4)

which corresponds to the gravitational potential of a point mass.

Then, according to Newton, the equation of motion of the particle is given by

mi~̈x = −mg∇Φ (2.5)

where, now mi stands for the inertial mass and mg stands for the gravitational mass or the “grav-

itational charge”. Surprisingly, there exists an equivalence between these two masses. It turns out

that

mi = mg (2.6)

The observation that all particles fall the same way has led to the formulation of so called equivalence

principles. It is common to distinguish between three versions which we can summarize as follows

1. Weak Equivalence Principle: “Freely falling bodies with negligible gravitational self interaction

follow the same path if they have the same initial velocity and position”.

2. Einstein equivalence principle: “In a local inertial frame, the results of all non-gravitational

experiments are totally indistinguishable from those of the same experiment performed in an

inertial frame in Minkowski spacetime”.



2.2. General Relativity 9

3. Strong equivalence principle: The gravitational motion of a small test body depends only on

its initial velocity and position but not on the material constitution of the body.

For almost 300 years, Newtonian laws of motion and gravitation remained unchanged and they

conformed the ultimate theory to describe the gravitational interactions of objects on earth, planets,

and galaxies. However, it was a matter of time before some problems with Newtonian gravity arose,

and therefore, it was discovered that there was a need for a more complete theory describing the

gravitational interaction. Firstly, the lack of Lorentz invariance in Newtonian mechanics offers a clear

incompatibility between the latest and Special Relativity. Another failure of Newtonian mechanics

appears when trying to explain the precession of the orbit of mercury, concretely, there is a quantity

of 43 arcsec/century in the precession of the orbit that remain unexplained by using Newtonian

mechanics. Therefore, this was an indication that another theory of gravity was needed. With the

further development of GR, this phenomenon could be explained.

2.2 General Relativity

The theory of GR is a classical theory of gravity and so far the most successful for describing grav-

itational interaction. This theory is based primarily on the equivalence principle, which states that

a system immersed in a gravitational field is punctually indistinguishable from an accelerated non-

inertial reference system, that is, gravitational forces and inertial forces are equivalent. GR relates

gravity to purely geometric issues of a 4-dimensional space called spacetime, that is, gravity is gener-

ated by the curvature of that spacetime which in turn is due to the presence of matter, in other words,

matter curves into spacetime, causing the presence of gravity. Mathematically speaking, spacetime

is regarded as a differentiable manifold, but for the moment, we will not focus on such deep math-

ematical concepts, for the moment it will be enough to define the mathematical objects needed to

describe the theory.

In GR, the dynamics of spacetime is encoded in a second-rank tensor called the metric tensor gµν

, being, in this formulation, the fundamental object in which, all information of spacetime is stored.

Metric tensor allows to define the so called line element ds, interpreted as the infinitesimal distance

between to points in the manifold. For an n-dimensional space with coordinates xα the linea element

is given by

ds2 = gµνdx
µdxν , µ, ν = 0.1, ..., n, (2.7)

GR is governed by Einstein’s field equations, which relate the curvature of spacetime with the content

of matter, since, as mentioned, in this theory the gravitational field is the effect of spacetime curvature

due to the presence of matter. In the classical non-relativistic limit, that is, at small speeds compared

to the speed of light and weak gravitational fields, Einstein’s field equations are reduced to the Poisson

equation for the gravitational field that is equivalent to Newton’s law of gravitation. As mentioned

before, GR is strongly based on the equivalence principle, which is the statement that the laws of

physics, in small enough regions of spacetime, look like those in special relativity (SR). Interpreting

this in a mathematical fashion, regarding spacetime as a (pseudo) Riemannian manifold, this tell us
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that these laws, when written in normal Riemannian coordinates xµ at some pint p, are described

by equations which take the same form as they would have in flat space (later this will be better

understood in terms of tangent spaces). The simplest example is that of freely-falling particles (this is

why sometimes these are called freely-falling coordinates). In flat space such particles follow straight-

lines. If the curve is parametrized as xµ = xµ(λ), this statement means that the second derivative of

the parametrized line vanishes
d2xµ

dλ2
= 0, (2.8)

and according to the equivalence principle, this equation should hold in curved space as long as the

coordinates are normal Riemannian coordinates. For general coordinates, there would be a more

general equation which should reduce to equation (2.8) for flat space. In fact, one can find such

equation, by minimizing the distance between to points in an arbitrary space, of course, for this

distance we use the line element, equation (2.7), this means, given the distance

I[xµ, ẋµ] =

∫ √
gµν(xα)ẋµẋνdλ, (2.9)

where ẋµ = dxµ

dλ , we can use standard techniques of variational calculus in order to obtain the

extremal and obtain the equation giving the path corresponding to minimal length between the two

points. In equation (2.9) we identify the Lagrangian L =
√
gµν(xα)ẋµẋν , although, for simplicity, it

is customary to use not this lagrangian, but L = 1
2gµν(xα)ẋµẋν . Hence, using the Euler-Lagrange

equation
∂L
∂xµ

− d

dλ

(
∂L
∂ẋµ

)
= 0 (2.10)

one obtains the well-known geodesic equation

d2xσ

dλ2
+ Γσµν

dxµ

dλ

dxν

dλ
= 0. (2.11)

A geodesic is a curve representing in some sense the shortest path between two points in a Riemannian

manifold. It is a generalization of the notion of a straight line to a more general setting. Therefore,

in GR, free particles move along geodesics. In equation (2.11) the quantities Γσµν are to the metric

tensor via

Γσµν =
1

2
gσκ (∂µgνκ + ∂νgµκ − ∂κgµν) . (2.12)

This is known by different names: sometimes the Christoffel connection, sometimes the Levi-Civita

connection, sometimes the Riemannian connection, and this is one of the most important formulas

in this subject, since this connection is the one on which conventional general relativity is based.

Connections are important objects in differential geometry, the study of manifolds with metrics and

their associated connections is called “Riemannian geometry”. So far, we have argued that curvature

of spacetime is a necessary ingredient to describe gravity, and, to show that this is a sufficient

condition, we can analyze how the results of Newtonian gravity fit into the picture. In order to define

the Newtonian limit, we consider the following requirements: The speed of the particles is small

compared with the speed of light, secondly, we require the gravitational field to be weak, this means,
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we regard it as a small perturbation of flat space. Finally we consider this field to be static, that is,

independent of time. We impose this conditions in the geodesic equation (2.11), where we take the

parameter λ to be the proper time τ . The first statement means that

dxi

dτ
<<

dt

dτ
, (2.13)

so the geodesic equation becomes

d2xµ

dτ2
+ Γµ00

(
dt

dτ

)2

= 0. (2.14)

Now, since we do not have explicit dependence of time, the relevant Christoffel symbols, from (2.12)

simplify to

Γµ00 =
1

2
gµλ (∂0gλ0 + ∂0g0λ − ∂λg00)

= −1

2
gµλ∂λg00.

(2.15)

Finally, the weakness of the gravitational field can be expressed as a decomposition of the metric of

the form

gµν = ηµν + hµν , (2.16)

where ηµν is the Minkowski metric (flat metric), and hµν is a small perturbation |hµν | << 1. From

the condition gµνg
µα = δαν we find gµν = ηµν − hµν . Indices of the perturbation metric can be raised

or lowered using the flat metric. Using the decomposition (2.16), we obtain

Γµ00 = −1

2
ηµλ∂λh00, (2.17)

and the geodesic equation becomes

d2xµ

dτ2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

, (2.18)

using ∂0h00 = 0, the µ = 0 component of this equation is

d2t

dτ2
= 0, (2.19)

which has the solution dt
dτ = constant. As for the spatial components of equation (2.18), we take into

account that the spatial components of ηµν are just those of the 3× 3 identity matrix, therefore, this

equation becomes

d2xi

dτ2
=

1

2

(
dt

dτ

)2

∂ih00, (2.20)

which, after dividing by
(
dt
dτ

)2
can be written as

d2xi

dt2
=

1

2
∂ih00, (2.21)

where, for the derivative of the left hand side, we have used to chain rule to convert it into a derivative
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with respect to t. So far we have achieved an important result. Note that the left hand side of the

latest equation is just an acceleration, hence, comparing with the Newtonian equation

ai = −∂iΦ, (2.22)

where Φ is a scalar field regarded as the gravitational field, we identify

h00 = −2Φ, (2.23)

or

h00 = −(1 + 2Φ). (2.24)

Therefore, this interpretation of gravity as the curvature of space time is indeed sufficient to describe

gravity in the Newtonian limit. What comes next is the employment of the Principle of Covariance,

this principle can be seen as the Einstein equivalence principle plus the intuitive requirement that

the laws of physics be independent of the used coordinates. Using this argument we can think of

this as rule to take equations in flat space into the form they would have in general curved space.

For instance, it is well known that ordinary partial derivative ∂µ should be changed to covariant

derivative ∇µ, where the covariant derivative of a tensor of rank r + s is

∇βAµ1...µr
ν1...νs =∂βA

µ1...µr
ν1...νs + Γµ1

βγA
γ...µr
ν1...νs + ...+ ΓµrβκA

µ1...µr−1κ
ν1...νs

− Γρβν1A
µ1...µr
ρ....νs − ...− ΓλβνsA

µ1...µr
ν1...νs−1λ

.
(2.25)

For instance, if we consider the conservation of energy in flat space, written as ∂µT
µ = 0, the

corresponding law in curved space is just

∇µTµ = 0. (2.26)

Of course, one has to be careful with this rule, since it is not a universal rule, that is, there might

be some ambiguities when translating equations from flat space into equations in curved space. For

example, consider some law written in flat space as Y µ∂µ∂νX
ν = 0. We know that partial derivatives

commute, however, covariant derivatives do not. If one simply replaces these partial derivatives for

covariant derivatives, we would have a problem of ordering, The prescription for generalizing laws

from flat to curved spacetimes does not guide us in choosing the order of the derivatives, There

exist several techniques for dealing with such ambiguities, however, there is no way to resolve these

problems by pure thought alone; the fact is that there may be more than one way to adapt a law

of physics to curved space, and ultimately only experiment can decide between the alternatives.

Actually, one can find that the commutator between covariant derivatives yields

[∇µ,∇ν ]ωρ = Rρµναω
α, (2.27)
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where Rρµνα is the Riemann curvature tensor, given by

Rσµγν ≡ ∂γΓσµν − ∂νΓσµγ + ΓρµνΓσργ − ΓκµγΓσκν , (2.28)

A flat space is one for which all the components of the Riemann tensor vanish, while for a curved

space not all of its components are zero, in other words, having a non-zero Riemann tensor is a

necessary and sufficient condition for having a curved space. The Riemann tensor in n dimensions

has n4 components, however, its symmetry properties imply that in the end it has only n2(n2−1)/12

independent components. Therefore, in 4 dimensions the Riemann tensor has 256 components of

which only 20 are independent. The Riemann tensor satisfies the symmetry property

Rαβµν = −Rβαµν = −Rαβνµ = Rνµαβ , (2.29)

where Rαβµν = gασR
σ
βµν . In addition, it obeys a cyclic relationship as follows

Rαβµν +Rαµνβ +Rανβµ = 0. (2.30)

Another important property of the Riemann tensor is that it satisfies

∇λRρσµν +∇ρRσλµν +∇σRλρµν = 0, (2.31)

and this is known as the Bianchi identity. This identity is intimately related to the fact that the

commutator of covariant derivatives satisfies the Jacobi identity

[[∇λ,∇ρ] ,∇σ] + [[∇ρ,∇σ] ,∇λ] + [[∇σ,∇λ] ,∇ρ] = 0. (2.32)

Having established how physical laws govern the behavior of fields and objects in a curved spacetime,

we can complete the establishment of GR by introducing Einstein’s field equations, which dictates the

dynamics of spacetime, via how the metric responds to energy and momentum present in spacetime.

The way Einstein originally realized the problem was that one would like to obtain an equation that

replaces the Poisson equation for the Newtonian gravitational field

∇2Φ = 4πGρ. (2.33)

Thinking of this as a limit equation, using the previous results and regarding the mass density ρ and

as the T00 component of a tensor Tµν , we see that the general equation we should have should predict

the equation

∇2h00 = −8πGT00, (2.34)

of course, in order to generalize this equation to curved space, we could think of replacing the second

order operator in the left hand side by covariant derivatives, however, it turns that ∇g = 0 (this is also

known as metric compatibility). The other approach is to consider a quantity involving derivatives of

second order of the metric. We see, from equations (2.28) and (2.12) that the Riemann tensor, indeed

has the required derivatives, however, the indices counting does not match. Nevertheless we can
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construct a “required-index” tensor obtained by a contraction of the Riemann tensor in the following

way

Rµν = Rσµσν = ∂αΓαµν − ∂νΓββµ + ΓρµνΓλλρ − ΓκµξΓ
ξ
κν . (2.35)

This is a symmetric tensor Rµν = Rνµ, and in 4 dimensions it has 10 independent components. It is

important to note that in general, having a vanishing Ricci tensor for a certain space does not mean

that this space is flat, since this does not imply that the Riemann tensor is also vanishes. Hence, the

candidate equation would be

Rµν = κTµν , (2.36)

however, energy-momentum conservation would imply ∇µRµν = 0, which, in general does not hold,

since, one finds

∇µRµν =
1

2
∇νR, (2.37)

where R is the Ricci curvature scalar and is the trace of the Ricci tensor

R = gµνR
µν = gµνRµν = Rµµ, (2.38)

however, if we consider the tensor

Gµν = Rµν −
1

2
Rgµν , (2.39)

which, from the Bianchi identity (2.31), satisfies ∇µGµν = 0, we are led to propose

Gµν = κTµν (2.40)

as the field equation for the metric. It is clear that this equation satisfies all the requirements. And

these are, in fact, Einstein’s Field Equations for GR. These equations, and they tell us how the

curvature of spacetime reacts to the presence of energy-momentum. Einstein’s Field Equations are

six independent second order differential equations for the metric tensor. In vacuum, Einstein’s Field

Equations reduce to

Rµν = 0. (2.41)

In general, these equations are very difficult to solve. Even the vacuum equations turn to be almost

impossible to solve unless one assumes a sort of simplifying assumption, such that the metric has a

significant degree of symmetry.

It is important to recall that Einstein equations can be obtained in a more modern fashion,

starting from a variational principle1. Hilbert himself noticed that the only scalar constructed from

the metric which is no higher than second order derivatives for the metric, as required, is the Ricci

scalar, therefore, he proposed as the simplest choice for a Lagrangian density for GR

LH =
√
−gR, (2.42)

1In fact the equations were first derived by Hilbert, not Einstein, and Hilbert did it using the action principle. But
he had been inspired by Einstein’s previous work, and Einstein himself derived the equations independently, so they
are rightly named after Einstein. The action, however, is rightly called the Hilbert action
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hence, the action principle for GR is

SEH [gµν ] =

∫
M

√
−gRd4x, (2.43)

which is commonly known as the Einstein-Hilbert action, while, the Lagrangian density (2.42) is

known as the Einstein-Hilbert term. The equations of motion are obtained by varying the action

(2.43) with respect to the metric. This variation yields

δSEH =

∫
M
d4x

[√
−ggµνδRµν +

√
−gRµνδgµν +Rδ

√
−g
]

= δS1 + δS2 + δS3. (2.44)

after some tedious calculations one finds

δS1 =

∫
M
d4x
√
−g∇σ

[
gµσ

(
δΓλλµ

)
− gµν

(
δΓσµν

)]
, (2.45)

this is an integral of a total derivative, over all space, which, using the Stokes’ theorem, can be

converted into an integral over the boundary ofM, which can be set to zero by making the variation

vanish at infinity. As for the term δS3 , one finds

δ
√
−g = −1

2

√
−ggµνδgµν , (2.46)

therefore the total variation of the action is

δSEH =

∫
M
d4x
√
−g
[
Rµν −

1

2
Rgµν

]
δgµν , (2.47)

and this must vanish for arbitrary variations, so we are led to Einstein’s equations in vacuum

Rµν −
1

2
Rgµν = 0. (2.48)

The non-vacuum equations are obtained by adding to the Einstein-Hilbert action a term related to

matter SM . If we write the total action as

S =
1

8πG
SEH + SM , (2.49)

the variation becomes

1√
−g

δS

δgµν
= κ

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM
δgµν

= 0, (2.50)

if we set

Tµν = − 1√
−g

δSM
δgµν

, (2.51)

Then we obtain

Rµν −
1

2
Rgµν = κ−1Tµν . (2.52)
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It is worth mentioning that it is possible to add a constant to the Einstein-Hilbert action, which

conduces to interesting dynamics. If we consider the action

S =

∫
d4x
√
−g(R− 2Λ) (2.53)

where Λ is some constant. The resulting field equations are

Rµν −
1

2
Rgµν + Λgµν = 0. (2.54)

This constant Λ is the well-known and infamous cosmological constant , which was originally intro-

duced by Einstein after it became clear that there were no solutions to his equations representing a

static universe with a nonzero matter content. Currently, the cosmological constant represents one of

the principal unsolved problems in physics. Although in this work we will not deal with cosmological

solutions in GR, the cosmological constant will be important from a group-theoretical point of view,

and, in Chapter 4 the subject will be addressed by attempting to explain the origin of the cosmological

constant through entropic arguments. It is clear that obtaining the Einstein-Field equations from the

Einstein-Hilbert action is, mathematically more formal, however, in this formulation, the calculations

turn to be somehow tedious. In the following section we will see that, rewriting all the above in

terms of the more modern and transparent language of differential geometry turns to simplify the

calculations and shed a different perspective on the geometrical aspects of the theory.

Despite its many great achievements, there is evidence that suggests that GR is not the most

complete theory to describe the gravitational interaction, or to give a complete explanation to cer-

tain phenomena. For example, GR has nothing to say concerning “dark matter” or “dark energy”,

currently described as “mysterious” and requiring much further research. If GR is defective in the

particulars cited above, how should it be reformulated? or, by what should it be replaced?
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Chapter 3

Form Theories of Gravity

3.1 First Order Gravity

A common approach to GR is know as first order gravity, in which, the formulation of gravity becomes

metric independent, that is, one introduces new variables, or, in other words, the geometric insight of

the theory is different from the usual one. In this formulation, instead of the metric, the new relevant

quantities are now the so called tetrad field and the spin connection. The orthonormal basis for the

1-forms is given by

θa = eaµ(x)dxµ, (3.1)

note that Greek indices are used for spacetime objects whilst Latin indices are used for local Minkowski

objects (sometimes Greek indices are referred as curved indices while Latin indices are referred as flat

indices). The vielbein allows us to relate the spacetime metric gµν with the flat Minkowskian metric

ηab as

gµν = eaµe
b
νηab. (3.2)

Note that, taking determinant on the last equation we get g = −e2, that is, e =
√
−g. In this sense,

the vielbeins are sometimes referred as the square root of the metric. Using the inverse eµa of the

vielbein, which satisfy

eµae
a
ν = δµν , eµae

b
µ = δba, (3.3)

equation (3.2) can be written as

ηab = gµνe
µ
ae
ν
b , (3.4)

This allows us to obtain the metric from the tetrad, and the way around. The tetrad should transform

as a Lorentz vector under SO(3, 1) transformations, while the metric should remain invariant under

such transformations, hence, we have the condition known as Lorentz condition

Λac (x)Λbd(x)ηab = ηcd, (3.5)

where Λab (x) are the corresponding Lorentz transformations. Due to the fact that this group acts

separately at each point, when comparing tangents spaces at different points one needs to introduce

a connection ω, and ,with this connection one can perform covariant derivatives of tensors in the
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tangent space similar to what one does with tensors in spacetime using the Levi-Civita connection.

For example

∇µXa = ∂µX
a + ωaµbX

b, ∇µXa
b = ∂µX

a
b + ωaµcX

c
b − ωcµbXa

c , (3.6)

and so on. Of course, ω transforms as a connection under Lorentz transformations

ωaµb → ΛacΛdbω
c
µd − Λcb∂µΛac . (3.7)

Using this covariant derivative, metric compatiblity ∇g = 0 implies

∇µηab = ∂µηab − ωcµaηcb − ωcµbηac = 0, (3.8)

which implies

ωµab = −ωµba. (3.9)

We can also relate the spin connection field ωbµa to a 1-form, to obtain what we shall refer as 1-form

connection, as

ωab = ωaµbdx
µ, , (3.10)

We can construct the curvature 2-form using the spin connection as 1

Rab(ω) = dωab + ωac ∧ ωcb :=
1

2
Rabµν(ω)dxµ ∧ dxν , (3.11)

where

Rabµν(ω) = ∂µω
ab
ν − ∂νωabµ + ωaµcω

cb
ν − ωaνcωcbµ . (3.12)

the “usual”Riemann tensor (2.28) is obtained as

Rρσµν(g) = Rabµν(ω(e))eρaeσb (3.13)

where Rabµν is given by equation (3.12). Note that the form in which we construct the curvature

2-form is very similar to the way one constructs the field strength in gauge theories F = dA+A∧A,

where A is the gauge potential, hence, in this sense, the object ω is some kind of “gravitational gauge

potential‘”. Now we introduce another object, this is a 2-form called the torsion 2-form, defined as

T a = dθa + ωab ∧ θb := Dωθ
a, (3.14)

where Dω = d+ ω is the covariant exterior derivative. Equations (3.12) and (3.14) are known as the

Maurer-Cartan structure equations. For the case of vanishing torsion we recover GR, and from the

latest equation we can obtain a relation between the tetrad and the spin connection

dθ = −ω ∧ θ (3.15)

1We can always rise or lower latin indices using ηab or ηab
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from this equation, when translating to components notation one obtains the well known expression

for the affine connection, that is, equation (2.12), which, as we know, is the only one symmetric torsion-

free, metric compatible connection. The components of the torsion are easily obtained, yielding

Tλµν = eλaT
a
µν = eλa

(
∂µe

a
ν − ∂νeaµ + ωaµbe

b
ν − ωaνbebµ

)
= Γλµν − Γλνµ, (3.16)

therefore, we see explicitly that for a symmetric connection, such as the Levi-Civita connection used

in GR, the torsion vanishes. Although in GR one has vanishing torsion, there exist theories in

which non-symmetric connections are considered, yielding to non zero torsion. even more, there are

connections which yield to zero curvature, but non-zero torsion. A remarkable example is that of the

Weitzenböck connection. These torsional theories conform what is known as Teleparellel Gravity [29].

There exist other formulations of gravity where an arbitrary connection is considered, then, covariant

derivatives can be constructed out of this connection, as long as it is metric compatible, this is, as long

as the condition ∇g = 0 holds. This yields to non-symmetric part of the Ricci tensor and therefore a

non-symmetric sector of the Einstein’s Field equations is obtained. A simple calculation shows that

DωR
ab = 0,

DωT
a = Rab ∧ θb,

(3.17)

the first equation is the generalization of equation (2.29), while the second is the Bianchi identity

(2.31)2.

With the given information, we are led to construct the so called Einstein-Cartan action, which

reads

S =

∫
d4xεabcd

(
Rµνab(ω)eρkeσd −

Λ

3
eµaeνbeρceσd

)
εµνρσ, (3.18)

if we rewrite this action in terms of differential forms we obtain

S(ω, e) =
1

32πG

∫
εabcd

(
Rab(ω) ∧ ec ∧ ed − Λ

6
ea ∧ eb ∧ ec ∧ ed

)
. (3.19)

It is important to mention that in this formalism, the connection ω and the tetrad e are treated

as independent variables, therefore, when varying this action we have to do it independently with

respect to both quantities. Variation of this action with respect to ω gives

T a = 0 (3.20)

which is clearly recognized as the torsion free condition, which, as mentioned before, implies

dea + ωab ∧ eb = 0, (3.21)

this establishes the relation between the tetrad and the spin connection ω

ωabµ (e) = eνa
(
∂µe

b
ν − Γλµν(g)ebλ

)
. (3.22)

2Sometimes both equations are called Bianchi identities
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Variation of the action with respect to θ yields(
Rab(ω) ∧ ec − Λ

3
ea ∧ eb ∧ ec

)
εabcd = 0, (3.23)

which is recognized as the Einstein field equations in vacuum, that is, equation (2.48). Even when

we did not assume any relation between ω and e a priori, the equation of coming from the equation

of motion (3.21) establishes the equivalence between tetrad and spin connection, and therefore this

establishes the link between tetrad and metric formulation (where torsionless is assumed a priori)3.

3.2 MacDowell-Mansouri Formulation

The formulation by MacDowell and Mansouri[3] combines the spin connection ωab and the tetrad ea

as parts of a “Bigger” connection AIJ (I, J = 0, 1, 2, 3, 4) which is a connection of the anti-deSitter

group SO(2, 3) (AdS). The split goes as follows

Aabµ = ωabµ , Aa4
µ =

1

`
eaµ. (3.24)

The Lorentz part, corresponds to a, b = 1, 2, 3. The constant l is related to the cosmological constant

via
Λ

3
= − 1

`2
. (3.25)

We can construct a curvature 2-form associated to the connection A (similar to what we did for the

curvature (3.11)) as

FIJ(A) = dAIJ +AIK ∧AJK :=
1

2
FIJµν dxµ ∧ dxν , (3.26)

where

FIJµν = ∂µA
IJ
ν − ∂νAIJµ +AIµKA

KJ
ν −AIνKAKJµ . (3.27)

If we split this curvature into components, it follows that

Fa4
µν =

1

`

(
∂µe

a
ν + ωaµbe

b
ν − ∂νeaµ − ωaνbebµ

)
, (3.28)

from equation (3.16) we identify this component of the curvature as the torsion T aµν , therefore

Fa4
µν =

1

`
T aµν . (3.29)

As for the remaining components we have

Fabµν = ∂µω
ab
ν − ∂νωabµ + ωaµcω

cb
ν − ωaνcωcbµ +

1

`2
(
eaµe

b
ν − eaνebµ

)
, (3.30)

3Alternatively, one can easily check that action (3.19) is equivalent to the usual Einstein-Hilbert action of GR (with
cosmological constant)
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we identify the first part of the right hand side as the curvature (3.12), therefore

Fabµν = Rabµν +
1

`2
(
eaµe

b
ν − eaνebµ

)
. (3.31)

Finally if we define Σabµν := eaµe
b
ν − eaνebµ, we can write this as

Fabµν = Rabµν +
1

`2
Σabµν := Rabµν (3.32)

and this is de so called AdS curvature. Therefore, we see that both, torsion and Lorentz curvature

are “included” in the “bigger” curvature F . Despite the fact that one cannot use the curvature F
to construct the action for the dynamical theory in four dimensions, it is possible to “break down”

the symmetry by projecting the curvature down to Lorentz indices F → R. Then, if we propose the

action

SMM (A) = κ

∫
Rab ∧Rcdεabcd = κ

∫ (
Rab +

1

`2
ea ∧ eb

)
∧
(
Rcd +

1

`2
ec ∧ ed

)
εabcd, (3.33)

we see that it splits into the different terms

SMM = SEC + SCC + SE , (3.34)

where

SEC =

∫
Rab ∧ ec ∧ edεabcd,

SCC =

∫
ea ∧ eb ∧ ec ∧ edεabcd,

SE =

∫
Rab ∧Rcdεabcd,

(3.35)

we immediately recognize the first term as the Einstein-Cartan action, that is, it is the action of GR.

The second term is just the cosmological constant term, while, the last term, is the so called Euler

invariant, also called the Gauss-Bonnet term. This is a term which does not affect the equations of

motion since, when varying the action, one can show, that this term yields DωR
ab, which vanishes,

from the Bianchi identity (3.17). It is customary to write this term in tensor notation, yielding

SGB =

∫ √
−g
(
R2 − 4RµνRµν +RµνρσRµνρσ

)
d4x. (3.36)

The Gauss-Bonnet term, as said before is trivial in 4D, however, it turns to be non-trivial in 4+1D

or greater, where its used to construct models known as Gauss-Bonett gravity[30].

Therefore, in this formalism, we can regard GR as a gauge symmetry breaking theory that

emerges from the action (3.33). This action is the so called MacDowell-Mansouri action, first proposed

by MacDowell and Mansouri[3] as a first attempt to regard gravity as a gauge theory. In fact, more
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formally, action (3.33) can be written as

SMM = κ

∫
Tr(F̂ ∧ ?F̂ ), (3.37)

where F̂ is the projection of F into the AdS curvature, and ? denotes the Hodge dual, this is an

operator that maps, in n dimensions, p−forms into (n− p)-forms. In this case, the Hodge dual and

the trace are taking into the Lorentz group. Therefore, action (3.37) offers an action from gravity

and, at the same time, from a formal point of view, it establishes gravity in a form known from

Yang-Mills theories. The reader is encouraged to read references[31, 32] for deeper geometrical and

physical aspects on MacDowell-Mansouri theory.

3.2.1 Equations of Motion of the MacDowell-Mansouri Action

In order to simplify calculations, we will like to rewrite the MacDowell-Mansouri action (3.33) in a

more slightly convenient form. This First we define the dual of the 2-form R as

R̃ab :=
i

2
εabcdRcd. (3.38)

Therefore, the action (3.33) can be written as

SMM =

∫
M
εabcdRabµνRcdαβdxµ ∧ dxν ∧ dxα ∧ dxβ

=

∫
M
εabcd(2Rab) ∧ (2Rcd)

= 8 i

∫
M
Rab ∧ R̃ab

≡ 8 i

∫
M
R∧ R̃

(3.39)

Now, we can write this action in terms of the forms R and Σ by replacing R = R−λ2Σ (and its dual

R̃ = R̃− λ2Σ̃ ) in the above action, thus

SMM = 8 i

∫
M

(R− λ2Σ) ∧ (R̃− λ2Σ̃)

= 8 i

∫
M

[R ∧ R̃+ λ2(R ∧ Σ̃− Σ ∧ R̃) + λ4Σ ∧ Σ̃].

(3.40)

In order to obtain the equations of motion from the MM action, we consider it in the form (3.39) and

take the total variation as follows

δSMM = 8 i

∫
M
δR∧ R̃+R∧ δR̃

= 16 i

∫
M
δR∧ R̃

(3.41)
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of course, we are considering the fields e and ω as independent, so we can take the variations with

respect to these two fields . Variation with respect to e gives:

δeSMM = 16 i

∫
M
δe(R(ω)− λ2e ∧ e) ∧ R̃

= −16 iλ2

∫
M
δe(e ∧ e) ∧ R̃

= −16 iλ2

∫
M

2δee ∧ e ∧ R̃,

(3.42)

since the variation must vanish for arbitrary variation of the tetrad, we must have

e ∧ R̃ = 0, (3.43)

which means that for arbitrary e we must have

R̃ = 0 or R = 0, (3.44)

Therefore, the equation of motion is

R = λ2Σ. (3.45)

In a similar manner we can calculate the variation with respect to ω:

δωSMM = 16 i

∫
M
δω(R(ω)− λ2e ∧ e) ∧ R̃

= 16 i

∫
M
δω(dω + ω ∧ ω − λ2e ∧ e) ∧ R̃

= 16 i

∫
M

(δωdω + δω(ω ∧ ω)) ∧ R̃

= 16 i

∫
M
dδωω ∧ R̃+ δωω ∧ ω ∧ R̃ − δωω ∧ R̃ ∧ ω

= 16 i

∫
M
dδωω ∧ R̃+ δωω ∧ [ω, R̃],

(3.46)

integrating by parts and using Stokes’ theorem we have∫
M
dδωω ∧ R̃ =

∫
∂M

δωω ∧ R̃+

∫
M
δωω ∧ dR̃ =

∫
M
δωω ∧ dR̃, (3.47)

where we have neglected the surface term. Hence the variation of the action becomes

δωSMM = 16 i

∫
M
δωω ∧ dR̃+ δωω ∧ [ω, R̃]

= 16 i

∫
M
δωω ∧ (dR̃+ [ω, R̃])

= 16 i

∫
M
δωω ∧DωR̃,

(3.48)
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Therefore, setting the variation equal to zero, the equation of motion we obtain is

DωR̃ = 0, (3.49)

which means

Dω(R̃ − λ2Σ̃) = 0. (3.50)

On the other hand, we know that the curvature form is given by R = dω + ω ∧ ω, hence

dR = dω ∧ ω − ω ∧ dω

= (R− ω ∧ ω) ∧ ω − ω ∧ (R− ω ∧ ω)

= R ∧ ω − ω ∧R

= −[ω,R],

(3.51)

thus, we obtain the Bianchi identity for R:

DωR = dR+ [ω,R] = 0, (3.52)

similarly DωR̃ = 0 and therefore the equation of motion (3.50) becomes

DωΣ̃ = 0. (3.53)

3.3 Autodual MacDowell Mansouri Formulation

Let us consider the gravity action proposed in[7]

S =

∫
M
d4xεµναβεabcd

+Rabµν+Rcdαβ . (3.54)

In order to define +Rabµν it is necessary to define the autodual connection

+ωabµ :=
1

2

(
ωabµ −

1

2
εabcdω

cd
µ

)
, (3.55)

and similarly for +Σabµν we have

+Σabµν :=
1

2

(
Σabµν −

1

2
εabcdΣ

cd
µν

)
, (3.56)

where Σabµν = eaµe
b
ν − eaνe

b
µ, as before. With these definitions we are now ready to construct the

autodual part of Rabµν which reads

+Rabµν = +R
ab
µν − λ2+Σ

ab
µν , (3.57)
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with
+R

ab
µν = ∂µ

+ω
ab
ν − ∂ν+ω

ab
µ + +ω

ja
µ

+ω
b
νj − +ωjaν

+ω
b
µj . (3.58)

In terms of these new variables, the action (3.54) becomes

S =

∫
M
d4xεµναβεabcd

+R
ab
µν

+Rcdαβ−2λ2

∫
M
d4xεµναβεabcd

+R
ab
µν

+Σ
cd
αβ+λ4

∫
M
d4xεµναβεabcd

+Σ
ab
µν

+Σcdαβ .

(3.59)

With some algebra, it can be easily seen that the real part of the last term reduces to

2λ4

∫
M
d4xεµναβεabcdΣ

ab
µνΣcdαβ = 8λ4

∫
M
d4xεµναβεabcde

a
µe
b
νe
c
αe
d
β , (3.60)

while the imaginary part yields

4λ4

∫
M
d4xεµναβηalηbmΣalµνΣbmαβ . (3.61)

The second term of this action (3.59) is the Ashtekar term while the last one is the cosmological

constant term, so this two terms correspond to Ashtekar theory[? ]. We can see what are the other

terms, for instance, the fist term slits in the two terms

1

2

∫
M
d4xεµναβεabcdR

ab
µνR

cd
αβ + i

∫
M
d4xεµναβηacηbdR

ab
µνR

cd
αβ , (3.62)

where we have used the identity εabcdε
ab
cd = −2(ηceηdf − ηcfηde). We identify the fist term as the

Euler topological term while the second term is Pontrjagin topological term, hence the fist term is

purely topological . Similarly , the second term yields

2

∫
M
d4xεµναβεabcdR

ab
µνΣcdαβ + 2 i

∫
M
d4xεµναβηacηbdR

ab
µνΣcdαβ . (3.63)

Putting all these results together, the autodual MacDowell-Mansouri action becomes

S =
1

2

∫
M
d4xεµναβεabcdR

ab
µνR

cd
αβ + i

∫
M
d4xεµναβηacηbdR

ab
µνR

cd
αβ

− 4λ2

∫
M
d4xεµναβεabcdR

ab
µνΣcdαβ − 4 iλ2

∫
M
d4xεµναβηacηbdR

ab
µνΣcdαβ

+ 2λ4

∫
M
d4xεµναβεabcdΣ

ab
µνΣcdαβ + 4 iλ4

∫
M
d4xεµναβηalηbmΣalµνΣbmαβ .

(3.64)

In order to obtain the equations of motion of this action it more convenient to rewrite it in terms

of differential forms, and we do this by invoking again the definitions previously established. Hence,

making also a redefinition of constants in terms of the constants α1, . . . , α6, it is easy to see that the

action is written as

S = iα1

∫
M
R ∧ R̃+ iα2

∫
M
R ∧R+ iλ2α3

∫
M

Σ ∧ R̃+ iλ2α4

∫
M

Σ ∧R

+ iλ4α5

∫
M

Σ ∧ Σ̃ + iλ4α6

∫
M

Σ ∧ Σ.

(3.65)
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Total variation of this action gives

δS = 4 i(α1 +α2)

∫
M
δR∧+R+ 2 iλ2(α3 +α4)

∫
M

(δΣ∧+R+ δR∧+Σ) + 4 iλ4(α5 +α6)

∫
M
δΣ∧+Σ,

(3.66)

where we have used

R ∧ δR̃ = R̃ ∧ δR

Σ ∧ δΣ̃ = Σ̃ ∧ δΣ

Σ ∧ δR̃ = Σ̃ ∧ δR

2+Σ = Σ + Σ̃

2+R = R+ R̃.

As in the MM case, we can consider the variations with respect to ω and e independently. Variation

with respect to ω yields

δωS = 4 i(α1 + α2)

∫
M
δR ∧ +R+ 2 iλ2(α3 + α4)

∫
M
δR ∧ +Σ, (3.67)

we can set α1 + α2 = −(α3 + α4)/2 ≡ β without changing the equations of motion, and hence

δωS = 4 iβ

∫
M

(δR ∧ +R− 2λ2δR ∧ +Σ)

= 4 iβ

∫
M
δ(dω + ω ∧ ω) ∧ (+R− 2λ2+Σ)

= 4 iβ

∫
M
dδω ∧ +R+ δω ∧ [ω,+R]− 4 iλ2β

∫
M
dδω ∧ +Σ + δω ∧ [ω,+Σ],

(3.68)

integrating by parts the first terms of each integral we have∫
M
dδω ∧ +R =

∫
M
δω ∧ d+R,∫

M
dδω ∧ +Σ =

∫
M
δω ∧ d+Σ,

which takes the variation δωS to

δωS = 4 iβ

∫
M
δω ∧

{
d+R+ [ω,+R]− λ2(d+Σ + [ω,+Σ])

}
= 4 iβ

∫
M
δω ∧ (Dω

+R− λ2Dω
+Σ)

(3.69)

hence, δωS = 0 gives us the equation of motion

Dω
+R = λ2Dω

+Σ. (3.70)
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From Bianchi identities we know that DωR = DωR̃ = 0, and therefore Dω
+R = 0. Therefore the

equation of motion reduces to

Dω
+Σ = 0. (3.71)

Now we take the variation with respect to e

δeS = 2 iλ2(α3 + α4)

∫
M
δΣ ∧ +R+ 4 iλ4(α5 + α6)

∫
M
δΣ ∧ +Σ, (3.72)

setting α3 + α4 = −2(α5 + α6) ≡ γ this becomes

δeS = 4 iλ2γ

∫
M
δΣ ∧ (λ2+Σ− +R)

= 4 iλ2γ

∫
M
δ(e ∧ e) ∧ (λ2+Σ− +R)

= 8 iλ2γ

∫
M
δe ∧ e ∧ (λ2+Σ− +R),

(3.73)

setting this variation equal to zero yields

e ∧ (λ2+Σ− +R) = 0, (3.74)

which means that for arbitrary e we must have

λ2+Σ = +R. (3.75)

In summary, the equations of motion of the Autodual MacDowell-Mansouri are

Dω
+Σ = 0

λ2+Σ = +R
(3.76)

3.4 Symmetry breaking Proposal on MacDowell-Mansouri The-

ory

We can propose an action from which one can obtain all the topological terms in 4-dimensions in a

natural way, without imposing any additional condition or introducing terms by hand. The action

proposed bellow is inspired in the work by Stelle and West [9]. The proposed action is the following

S =

∫
M
d4xεµναβRABµν RCDαβ

(
ΦEεABCDE + ηABηCD

)
, (3.77)

where ΦE is a vector in the internal space, which, in this case we take as ΦE = (0, 0, 0, 0, 1). Therefore

RABµν RCDαβ ΦEεABCDE = RABµν RCDαβ εABCD4. (3.78)
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We define εABCD5 ≡ εabcd, then

RABµν RCDαβ ΦEεABCDE = RabµνRcdαβεabcd. (3.79)

The second term in the action can be expanded as

RABµν RCDαβ ηABηCD = RABµν RαβAB

= RabµνRαβab +Ra4
µνRαβa4 +R4b

µνRαβ4b +R44
µνRαβ44

= RabµνRαβab + 2Ra4
µνRαβa4,

(3.80)

moreover, we know that the term Ra4
µν can be identified with the torsion Ra4

µν ≡ T aµν , where

T aµν = ∂µe
a
ν − ∂νeaµ + ωaνbe

b
µ − ωaνbebµ, (3.81)

therefore

RABµν RCDαβ ηABηCD = RabµνRαβab + 2T aµνTαβa. (3.82)

Hence, collecting all the previous terms, the action reads

S =

∫
M
d4xεµναβ

(
RabµνRcdαβεabcd +RabµνRαβab + 2T aµνTαβa

)
. (3.83)

we can study the terms in the action separately, for the first term we have (setting λ = 1)

S1 =

∫
M
d4xεµναβRabµνRcdαβεabcd

=

∫
M
d4xεµναβεabcd

(
Rabµν − Σabµν

) (
Rcdαβ − Σcdαβ

)
=

∫
M
d4xεµναβεabcd

(
RabµνR

cd
αβ −RabµνΣcdαβ − ΣabµνR

cd
αβ + ΣabµνΣcdαβ

)
,

(3.84)

if we wish to rewrite this term in terms of differential forms, following the customary procedure, it is

clear that

d4xεµναβεabcdR
ab
µνR

cd
αβ = 4Rab ∧Rcdεabcd,

d4xεµναβεabcdR
ab
µνΣcdαβ = 4θa ∧ θb ∧Rcdεabcd,

d4xεµναβεabcdΣ
ab
µνΣcdαβ = 4θa ∧ θb ∧ θc ∧ θdεabcd.

Similarly, for the second term in the action we have

S2 =

∫
M
d4xεµναβRabµνRαβab

=

∫
M
d4xεµναβ

(
Rabµν − Σabµν

)
(Rαβab − Σαβab)

=

∫
M
d4xεµναβ

(
RabµνRαβab −RabµνΣαβab − ΣabµνRαβab + ΣabµνΣαβab

)
,

(3.85)
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and again, in terms of differential forms, these terms become

d4xεµναβRabµνRαβab = 4Rab ∧Rab,

d4xεµναβRabµνΣαβab = 4θa ∧ θb ∧Rab,

d4xεµναβΣabµνΣαβab = 4θa ∧ θb ∧ θa ∧ θb,

the last term vanishes due to the antisymmetry of the wedge product. Finally, the last term in the

action reads in terms of differential forms

d4xεµναβT aµνTαβa = 4T a ∧ Ta.

Collecting all the terms, the action becomes

S = 4

∫
M
εabcd

(
Rab ∧Rcd − 2θa ∧ θb ∧Rcd + θa ∧ θb ∧ θc ∧ θd

)
+Rab ∧Rab − 2θa ∧ θb ∧Rab + 2T a ∧ Ta.

(3.86)

We see that this action contains the terms: GR, cosmological constant, Euler density, Pontryagin

density and the Nieh-Yang density, which arises in a natural way and in its complete form N4 =

T a ∧ Ta − θa ∧ θb ∧ Rab. There are works in which the magnitude of the vector ΦE is arbitrary, so,

a variation with respect to this quantity may be performed and the magnitude fluctuates around a

minimum. The importance of this vector lies not only in the fact that it allows to obtain all the

topological terms, but it also offers a natural way of breaking the symmetry of the theory. Although

this new formulation offers a better way of constructing a full action which, when breaking the

symmetry down to Lorentz symmetry, by virtue of inclusion of the vector ΦE gives GR plus some

of the topological invariants in 4D. However, there is another proposal which attempts to construct

a full SO(4, 1)−invariant action with a vector field, which, is not supposed to be constant a priori,

but it is an arbitrary vector field, which, once the appropriate conditions are set, the symmetry is

broken down so obtaining GR and all the topological invariants in 4D. These are called the symmetry

breaking conditions (SBE). This approach is described in the following chapter.
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Chapter 4

Analysis Over the Symmetry

Breaking Condition in

MacDowell-Mansouri Action

4.1 Considering an Stelle-West type action

MM theory is a gauge theory of gravity with the gauge group G ⊃ SO(3, 1), where G depends on

the sign of the cosmological constant Λ. In this work we will consider the case when Λ > 0, therefore

we will use SO(4, 1) (the case with Λ < 0 and Λ = 0 can be calculated straightforward). Let us take

the de Sitter group SO(4, 1) as our gauge group, and a 4-dimensional oriented smooth manifold M,

and in order to avoid spacetimes with bad causality properties, let us consider M = R × Σ, Σ is

compact and without boundary, and R represents an evolution parameter. Now choose a principal

SO(4, 1)-bundle P over M . Let tAB be the skew-symmetric generators of the Lie algebra so(4, 1)

[tAB , tCD] = f EF
ABCD tEF =

1

4
η E
AB,[Cη

F
D] tEF , (4.1)

where A,B, . . . = 0, 1, 2, 3, 5 and ηAB = diag(−1, 1, 1, 1, 1) and ηAB,CD = ηACηBD − ηBCηAD. The

Cartan-Killing form κABCD in the adjoint representation is given by

κABCD =
1

2
ηAB,CD. (4.2)

We define the connection A as a so(4, 1)-valued 1-form on M, A = A AB
µ tABdx

µ. Then due that

so(4, 1) is a reductive geometry, so(4, 1) ∼= so(3, 1) ⊕ R3+1, we can make the following identification

for the gauge field

A AB
µ =

(
A ab
µ A a5

µ

A 5b
µ 0

)
=

(
ω ab
µ − 1

l e
a
µ

1
l e

b
µ 0

)
(4.3)

where ωab is the well-known spin connection, ea is the frame field, l a is constant of the dimension

of length, introduced for units requirement. The covariant derivative D of the de Sitter group acts
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over Lie algebra valued fields ξ = ξABtAB as follows

Dξ =

[
Dξab +

1

l

(
ea ∧ ξb5 − eb ∧ ξa5

)]
tab + 2

[
Dξa5 − 1

l
eb ∧ ξ ab

]
ta5. (4.4)

where we have introduced the Lorentz covariant derivative Dχab = dχab + ωac ∧ χ b
c + ωbc ∧ χ a

c .

The field strength, as usual, is defined as F = dA+ 1
2 [A,A],

FAB =

(
F ab F a5

F 5b 0

)
=

(
Rab − 1

l2 Σab − 1
l T

a

1
l T

b 0

)
(4.5)

where T a = Dea = dea +ωac ∧ ec is the two-form torsion and Rab = dωab +ωac ∧ω b
c is the two-form

curvature, both are so(3, 1) valued and, we also have defined, Σab = ea ∧ eb.
Stelle and West considered the action

IMM [A, v] =

∫
M

εABCDEFAB ∧ FCDvE + ρ(vEvE − l−2) (4.6)

where v is an arbitrary vector field with dimension of length, ρ is four-form acting as a Lagrange

multiplier and l is a real number. We also have defined the totally anti-symmetric tensor field ε with

ε01235 = +1 and ε01235 = −1. The action (4.6) is invariant under SO(4, 1), but in order to obtain

GR from it, we have to break the SO(4, 1) symmetry down to SO(3, 1), and this can be made by

choosing a preferred direction for the vector field vE and asking for a subgroup of SO(4, 1) which

leaves v fixed, we will refer at these two conditions as the symmetry breaking conditions (SBC). For

simplicity, let us consider va = 0 then v5 = 1/l and the action (4.6) reads

IMM [A] =

∫
M

εabcdFab ∧ Fcd
1

l
=

1

l

∫
M

εabcd
(
Rab ∧Rcd −

1

l2
Rab ∧ Σcd +

1

l4
Σab ∧ Σcd

)
(4.7)

where εabcd is the Levi-Civita tensor in so(3, 1), i.e., ε0123 = +1. From the last action, we can

recognize the Euler class plus the Palatini action of GR with non-vanishing cosmological constant

term ( 1
l2 = Λ

3 ). As we can observe, (4.6) is essentially GR since the variation of the topological

term vanishes due to the Bianchi identity. let us introduce a more general action that involves more

topological terms as the Nieh-Yan term and the second Chern class in SO(4, 1). To do so, let us

define a pseudo-projector for so(4, 1) as follows

ΠABCDξCD =
1

2

(
αηAB,CD + εABCDEvE

)
ξCD =

1

2

(
αηAB,CD + ε̃ABCD

)
ξCD = ξ̃AB (4.8)

where α is a constant with units of length−1. The main idea in defining (4.8) is to construct the action

as some kind of pure connection (anti) self-dual formulation for gravity, inspired by the formulation

of Plebański and the Ashtekar’s canonical formulation of gravity.

We consider the action

IGMM [A, v] =

∫
M
≺ F̃ ∧ F̃ � +ρ(vEvE − `−2) (4.9)
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where ≺ , � is the trace over the Lie algebra generators. Written in this form and since the metric

structure is not present explicitly through the frame field, this approach is closer to the (Anti) self-

dual pure connection formulation of gravity given by Capovilla, Dell and Jacobson. That formulation

we have a simple solution for the equations of motion, and this solution, known as the instanton

solution, is given by the (anti) de Sitter or even flat space-time (F = 0).Then by considering the

definition of the pseud-projector, the action (4.9) can be rewritten as

IGMM =

∫
M

(α2−vEvE)FAB∧FAB+αε̃ABCDFAB∧FCD−2FAC∧F B
C vAvB+ρ(vEvE−l−2). (4.10)

Now, let us consider the equation of motion associated with ρ together with the SBC, then the action

reads

IGMM [e, ω] =
2Λγ

3

∫
M

γ2 − 1

2γ
FAB ∧ FAB + 2εabcdRab ∧Rcd + d

(
1

γ
ea ∧ Ta

)

−
(
εabcdRab ∧ Σcd −

1

γ
Rab ∧ Σab −

Λ

6
εabcdΣab ∧ Σcd

)
. (4.11)

where we have defined α = 1/(lγ) and γ is the Barbero-Immirzi (BI) parameter, which is a nonzero

dimensionless parameter. We have separated the action into the topological sector, which correspond

to the firs three terms in the action: the second Chern class, the Euler class and the Nieh-Yan

Class, and the dynamical sector, which corresponds to the last three terms: the Palatini action, the

Holst modification and the cosmological constant sector. It is important to mention that the Holst

modification is not topological neither dynamical, since its its variation is non-zero, and it cannot

be rewritten as total divergence, and even more, at the classical level doesn’t affect the dynamical

behavior of the theory, but we associate it to the dynamical sector due to its apparent effects at

the quantum level since it appears at the prediction of the spectra of geometrical operators, area

and volume, and consequently appearing in the black hole entropy calculation, even more it labels

inequivalent quantizations in the framework of kinematical loop quantum gravity and modifies the

symplectic structure which can not be unitarily implementable at quantum level.

On the other hand, the metric tensor is constructed by using the covariant derivative on vA

gµν = e aµ eνa = Dµv
ADνvA (4.12)

where we have used the SBC and the fact that the metric tensor is defined upon a constant factor.

Then as we can observe, the tetrad field is given essentially in function of the vector field v, but even

more, from the action IGMM is possible to obtain as equation of motion, a well-known equation, the

zero torsion condition that let us write the spin-connection as a function of the tetrad field and so, the

spin connection as a function of the vector field v. Finally, the fundamental fields in this framework,

the tetrad field and the spin connection, i.e., the components of the so(4, 1)-valued connection A are

given as functions of v. Being the vector field v a main ingredient that let us view gravity as a gauge

theory of SO(4, 1), then it is important to find why it arises is fundamental.
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4.1.1 Equations of motion without SBC

Let us start by considering the action in eq.(4.9)

IGMM [A, v] =

∫
M
≺ F̃ ∧ F̃ �, (4.13)

where we have taken into account the equation of motion from ρ, i.e., v2 = l−2. This action can not

be written as a total derivative therefore this is not a topological action. Since v is not necessarily a

constant vector, it implies, by taking its covariant derivative that

D(vAvA) = D(l−2) ⇒ vADvA = 0 ⇒ dv4 = − 1

v4
vadva, (4.14)

where we have written vA = (va, v4) and v4 6= 0. The equations of motion from IGMM , are given by

εABCDEFAB ∧ FCD =
4

α
FEA ∧ F B

A vB , (4.15)

εABCDEFCD ∧DvE =
2

α
FC[A ∧D(vB]vC), (4.16)

where the former equation is related to the variation with respect to v, and the second with respect

to A. The equation of motion coming from A implies a dynamical equation for v, then our task is to

find some solutions for this dynamical behavior which led us to understand the role played by v in a

more fundamental level. In the next subsections we will present two different dynamical solution for

v.

4.1.2 Case DvE = AE4v4

Let us consider the case DvE = AE4v4, with v4, non-vanishing at least for one component of v. This

gauge implies the following equations

vADvA =
1

l
vaeav

4 = 0, (4.17)

Dva = 0, (4.18)

dv4 = −1

l
vaea. (4.19)

From eq.(4.17) we observe two different cases, one of them is that v4 vanishes, but from eq.(4.19) we

see that vaea vanishes as well, however since we are considering the case with non-degenerate tetrad

field then va also vanishes, then vE = 0 which it’s the trivial case that we are not considering. In

view of this, let us consider the second case, let v4 be non-vanishing (at least some finite points at the

manifold). Nonetheless, as v4 6= 0, then we have again the case vaea = 0, implying that va = 0 since

we are considering non-degenerate tetrad fields and from eq.(4.19), we observe that v4 is constant,

and equal to l−1 due to the algebraic constraint imposed over v · v, and as we remember, this is just

the case we considered when the SBC was taken into account.

Our new step is to consider equations eq.(4.15) and eq.(4.16), and substitute back vE = (0, 0, 0, 0, l−1)
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together with our gauge condition, yielding the following equations

(γηab,cd + εabcd)Tc ∧ ed = 0, (4.20)

εabcdRbc ∧ ed −
Λ

3
εabcdeb ∧ ec ∧ ed =

1

γ
DT a, (4.21)

the first equation is the well-known zero torsion condition which let us write the spin connection

as a function of the tetrad field, the second one is the Einstein equations in vacuum. This pair of

equations come directly from the condition in eq.(4.16).

From eq.(4.15) and as well as eq.(4.16), we obtain

Λ2

9
=

εabcdR
ab ∧Rcd

εabcd ea ∧ eb ∧ ec ∧ ed
, (4.22)

which provides an algebraic equation for the cosmological constant that can allow us to fix its value

[33, 34]. So the gauge given on shell in this subsection, over the covariant derivative of v, not only

gives us GR with cosmological constant, but even more, it fixes the value of the cosmological constant,

too. In some sense, this gauge is almost the same as breaking the symmetry group from the beginning,

but it gives us more information by consistently deliver us the value of the cosmological constant, so

Λ is calculated within the theory, rather than being a free parameter that has to be measured.

4.1.3 Case DvE = 0

This case is particularly interesting since we cannot construct the metric by considering equation

(4.12), as in the previous cases. Im this case we obtain the equations

Dva =
1

l
eav4, (4.23)

dv4 = −1

l
vaea, (4.24)

from eq.(4.14) and eq.(4.24) we obtain that the one-form tetrad field is completely defined by the

components of the vector field v and its derivatives, as follows

ea =
l

v4
dva. (4.25)

From the last equation and eq.(4.23) we obtain

ωabv
b = 0, (4.26)

which tell us that the spin connection must be orthogonal to the Minkowski components of v. On

the other hand, by applying the so(3, 1) covariant derivative to equation eq.(4.23), we obtain

v4Dea = 0 ⇒ Dea = 0, (4.27)
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where we have considered FABvB = 0 (this is so by taking the so(4, 1) bundle covariant derivative

to the gauge), and also, in general v4 6= 0. Then, as well as in previous cases, we find the torsion

condition, this equation let us write the spin connection as function of the tetrad field, but since the

tetrad field depends on v, so ω. Finally we obtain

ω = ω(e) = ω(va, v5) e = e(va, v5). (4.28)

Then, as we can observe, all the fundamental objects are given by the vector field vA, so this vector

let us construct the frame bundle and (locally) the SO(3, 1)-bundle, where the spin connection must

be orthogonal to the vector va.

Now, from FABvB = 0 and eq.(4.26), we obtain

χabvb = 0 where χab = dωab − 1

l2
Σab. (4.29)

Let us note that if det|χ| 6= 0 then va = 0 so the component v4 is constant and the tetrad field

and spin connection vanishes identically, so the theory gives no useful information. So we have two

different cases, one of them is by considering the determinant det|χ| = 0 and calculating the null

vectors va (this case goes beyond the scope of this work), and the second case is by considering

χab = 0, this case implies l2dωab = Σab. Thus, by taking into account this last case and the zero

torsion condition, we observe that the dynamical equation coming from the equations of motion for

v is

εabcdFab ∧ Fcd = 0 ⇒ εabcdω f
a ∧ ωfb ∧ ω g

c ∧ ωgd = 0, (4.30)

this equation vanishes identically, so we do not have any dynamical equation of motion hence this

gauge together with the condition χ = 0 are requirements related to topological field theories. Then

as we can observe, v parametrizes a family of topological torsionless field theories. For an e-print

of the work described in this section see [10]. On the other hand, recently attention has been paid

to the fact that some results indicate that some models of gravity in three and four dimensions

seem to emerge from certain theories of higher dimensionality. In particular, under the scheme of

the so-called Topological M-Theory, it has been possible to obtain gravity actions in three and four

dimensions[35, 36]. In this approach, an action constructed as a volume functional of a 7-dimensional

manifold is considered. This functional is known as the Hitchin Functional and is constructed from

“stable” 3-forms. from this point of view, all relevant information is contained in the 3-forms. When

considering an appropriate ansatz for the 3-form and performing a dimensional reduction of the

theory to 4 or 3 dimensions, the resulting equations of motion coming from the equations of motion

of Toplogical M-Theory are those of 3D gravity, or those of 4D self dual gravity. In particular, it

was shown that the equations of motion of Topological M-Theory reduce to the equations of motion

(3.76). Therefore it is interesting to study whether it is possible to obtain more general gravity actions

such as those described in this chapter from theories of higher dimensionality such as Topolgical M-

Theory. With this we could see, for example, if the SBC described in section in the action 4.9 arise

as a consequence of purely geometric property of the 7D manifold, among other things. This is being

worked on and results could be reported in the future.
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Chapter 5

Entropic Approach to Gravity

5.1 Thermodynamics of Space Time

In his celebrated work[11], Jacobson first established the relation between thermodynamics and Gen-

eral Relativity by demanding that the fundamental thermodynamical relation δQ = TdS holds

through each spacetime point, interpreting δQ and T as the energy flux and Unruh temperature

seen by an accelerated observer just inside the so called Rindler horizon. Viewed in this way, the

Einstein field equations emerge as an equation of state of spacetime. In order to understand the main

ideas of Jacobson’s approach let us briefly describe his procedure in this section. For more details

about the derivation, the reader is encouraged to read the main reference.

Jacobson’s ideas can be illustrated by the thermodynamics of a simple homogeneous system.

By knowing the entropy function S(E, V ) one can obtain the equation of state from the relation

δQ = TdS. For instance, in the case of weakly interacting molecules, one has that the entropy

S(E, V ) = ln Ω, where Ω is the number of accessible states. For an ideal gas this entropy can be

written as S ∼ lnV +f(E) for some function f(E). This gives ∂S
∂V ∼ V

−1, and we know that ∂S
∂V = P

T ,

therefore PV ∼ T , which is the equation of state for an ideal gas.

In spacetime dynamics, one defines heat as the energy that flows across a causal horizon and it

can be detected via the gravitational field it generates, but one cannot know its particular nature

from outside the horizon. This horizon is not necessary a black hole event horizon, It can be simply

the boundary of the past of any observer O. In addition, as known from previous results[37], entropy

is assumed to be proportional to the area of the horizon. The temperature of the system is related

to the Unruh temperature T = ~κ/2π as observed from the perspective of a uniformly accelerated

observer inside the horizon. In this expression the temperature, κ is the so called surface gravity.

The same observer should measure the energy flux defining the heat flow. One important fact of

the procedure is the following: Note that, until now, the system has been considered as any causal

horizon. However, such system, in general, is not in equilibrium, since the horizon is not static; it

is expanding, contracting, or shearing, therefore, equilibrium thermodynamics cannot be applied is

this way, hence, it is necessary to impose the equivalence principle, that is, a small neighborhood of

each spacetime point p is seen as a piece of flat spacetime. Through p a small 2-surface element P
is considered such that it has vanishing expansion and shear at p. It is always possible to choose P



38 Chapter 5. Entropic Approach to Gravity

through p so that the expansion and shear vanish in a first order neighborhood of p. the past horizon

of such a region P is called the “local Rindler horizon of P”, in other words, this local Rindler horizon

is instantaneously stationary, or, in “local equilibrium” at the point p.

We know consider any local Rindler horizon through a spacetime point p. Let χa be any be an

approximate local boost Killing field generating this horizon, with the direction of χa chosen to be

future pointing to the “inside” past of the horizon. The heat flux is given by

δQ =

∫
H
Tabχ

adΣb, (5.1)

If ka is the tangent vector to the horizon generators for an affine parameter λ that vanishes at P and

is negative to the past of P, then χa = −κλka, and dΣa = kadλdA, where dA is the area element on

a cross section of the horizon. Thus we can rewrite the heat flux as

δQ = −κ
∫
H
λTabk

akbdλdA. (5.2)

If now we take into consideration that the entropy is proportional to the horizon area, dS = ηδA,

where η is an undetermined dimensional constant. The area variation is given by

δA =

∫
H
θdλdA, (5.3)

where θ is the expansion of the horizon generators.

Recalling that the local Rindler horizon has vanishing expansion, this vanishing expansion ex-

pansion must appear just the right rate so that the area increase of a portion of the horizon will be

proportional to the energy flux across it. This requirement imposes the following condition on the

curvature

θ = −λRabkakb, (5.4)

where Rab is the Ricci tensor. Therefore, the fundamental relation δQ = TdS = (~κ/2π)ηδA estab-

lishes

κ

∫
H
λTabk

akbdλdA =
~κ
2π
η

∫
H
λRabk

akbdλdA, (5.5)

which is valid only if

Tabk
akb =

~η
2π
Rabk

akb. (5.6)

The latest equation implies that
2π

~η
Tab = Rab + fgab (5.7)

for some function f . Moreover, local conservation of energy ∇T = 0 implies that

f = −R
2

+ Λ, (5.8)
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for some constant Λ. Therefore, finally we obtain

Rab −
1

2
Rgab + Λgab =

2π

~η
Tab, (5.9)

if we define the Newton’s graviational constant as G = (4~η)−1 we finally obtain

Rab −
1

2
Rgab + Λgab = 8πGTab, (5.10)

which we immediately recognize as the Einstein field equations (Non vacuum version of (2.52) with

cosmological constant. It is important to recall that this thermodynamic derivation of the Einstein

equation of state Jacobson employed the existence of local equilibrium conditions. The relation

δQ = TdS only applies to variations between nearby states of local thermodynamic equilibrium. For

instance, in free expansion of a gas, entropy increase is not associated with any heat flow, and this

relation is not valid. Moreover, local temperature and entropy are not even well defined away from

equilibrium. In the case of gravity, the systems were defined by local Rindler horizons, which are

instantaneously stationary, in order to have systems in local equilibrium. In this sense, as pointed out

by Jacobson: given local equilibrium conditions, the Einstein equation gives a system of local partial

differential equations whose solutions include propagating waves. This can be seen as something

analogous to sound in a gas propagating as an adiabatic compression wave which is a traveling

disturbance of local density, and it should not be canonically quantized as if it were a fundamental

field, even though the individual molecules are quantum mechanical. By analogy, this suggests that it

may not be correct to canonically quantize the Einstein equations, even if they describe a phenomenon

that is ultimately quantum mechanical.

5.2 Newtonian Gravity as an Entropic Force

In this section we will review the work by Verlinde[12] and describe the main ideas on the entropic

origin of gravity. An entropic force is an effective macroscopic force that has its origins in a system due

to the tendency of entropy to increase, and no fundamental fields are associated with this force, which

is expressed in terms of entropy gradients and is totally independent of the microscopic dynamics.

Entropic forces are found in systems such as colloids or biophysical systems, in particular, osmosis

is a phenomenon caused by entropic forces. The statistical tendency to return to a configuration of

maximum entropy is translated into a macroscopic force, points in the direction of increasing entropy.

This force is known as entropic force. Entropic forces turn to be proportional to the temperature,

and, at the macroscopic level an entropic force can be conservative as long as the temperature is kept

constant. In the case of osmosis across a semi-permeable membrane which carries a temperature T ,

a particle ’entropically’ compelled on one side of the membrane experiences and effective force equal

to

F∆x = T∆S, (5.11)
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and this is the entropic force, and we see that, in order to have a non zero force, we need a non zero

temperature. This expression for the entropic force is fundamental in order to derive the Newtonian

force as an entropic force. Verlinde’s idealization of gravity features a conception of space as a “device”

that stores information. That is, for example, the information on the movement of a particle (position,

momentum, etc.) is stored in space, and of course, the ability to store information in a certain region

of space is finite. In this sense, it is assumed that the information is stored on surfaces called “screens”

and this information is stored in discrete bits. Moreover, the dynamics of the screens are determined

by some rules related to the way the information is being processed on the screens, With these ideas,

and motivated by Bekenstein’s work[38], one postulates that the change of entropy associated with

the information on the screens is given by

∆S = 2πkB when ∆x =
~
mc

, (5.12)

where ∆x is the separation between the particle and the screen. By assuming that the change of

entropy is linear in the displacement ∆x this can be rewritten as

∆S = 2πkB
mc

~
∆x. (5.13)

The change of entropy is also linear in the mass m since, if the consider a splitting of the particle

into two or more lighter sub-particles, each of them will carrying its own associated change of entropy

after a shift ∆x, and we know that mass and entropy are additive, therefore it is natural that the

change of entropy is proportional to the mass as well. Now main the question is still unanswered:

How does force emerge? the key idea is to assume that the force is given by the entropic force (5.11).

Now, what is the temperature T? From Newtonian mechanics, we know that a force leads to an

acceleration, and, we know from Unruh’s works[39] that acceleration and temperature are intimately

related via the Unruh effect: an observer in an accelerated frame experiences a temperature

kBT =
1

2π

~a
c
, (5.14)

where a is the acceleration. Now we consider that this is the temperature associated with the bits on

the screen. Note that doing so, from equations (5.13) and (5.11) we obtain Newton’s law

F = ma. (5.15)

It is important to mention that, in this case, equation (5.14) must be interpreted as the temperature

required to cause an acceleration a, and not as the temperature caused by an acceleration. If now we

consider that the surface is a closed surface, concretely a sphere. The maximal storage space will be

proportional to the area A. That is, If we denote the number of bits on the surface by N , we write

N =
Ac3

G~
. (5.16)
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The constant G is not a priori assumed to be Newton’s gravitation constant. Now suppose that the

energy present in the system is E, then, by the equipartition rule we have

E =
1

2
NkBT, (5.17)

from which we can determine the temperature. In addition, we can relate this energy with the mass

that would emerge in the part of space enclosed by the surface by

E = Mc2, (5.18)

this mass may not be visible in the emerged space, but we would note its presence through its energy.

Then, from the equations above, we obtain

Mc2 =
1

2
NkBT, (5.19)

using the equations for the number of bits and the temperature (5.14) and (5.16) we get

M =
aA

4πG
, (5.20)

finally, inserting A = 4πR2 and a = F/m, and solving for F , we obtain the familiar law

F = G
Mm

R2
, (5.21)

and we have recovered Newton’s law of gravitation, practically from first principles. In this sense,

gravitational force is seen as an entropic force. For deep comments on the naturalness and robustness

of this derivation, and more details see[12].

According to a work by Andrew Randono[13], by considering that the entropy related to the

screens is not the typical entropy-area relationship found by Bekenstein, but a generic modification

to this law given by

S[A] =
Ac3kB
4~G

+ kBs(A). (5.22)

one can follow Verlinde’s approach (apart from some details in the derivation) and obtain deviations of

the Newtonian gravitational force (5.21) which arise from the deviations of the entropy from the area

law. The considerations needed to derive this modified force are very similar to those in Velrinde’s

derivation. In consonance with this work, the corresponding force is given by

F = −GMm

R2

[
1 + 4`2P

∂s

∂A

]
A=4πR2

, (5.23)

where the first term corresponds to the usual area law and the second term, s(A), includes the other

contributions to the entropy. This formula will be of great importance for us in the following section,

since it will used to derive a modified Newtonian force, by using a specific form for the corrected

entropy-area relationship. This derivation will be described int he following chapter.
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Chapter 6

Some New Results in Entropic

Gravity

6.1 Obtaining an Emergent Modified Newtonian Gravity

Verlinde’s ideas have inspired several models that attempt to modify Newtonian gravity. This has

been achieved by proposing quantum modification to the entropy or by using new definitions of

entropy [40] to find modifications to Newton’s gravitational force and in some cases modifications to

gravity in the cosmological scenario [27]. As mentioned before, We can write a generic modification

to the entropy-area relationship according to (5.22) with te resulting modified force given by (5.23).

With this in mind, let us find the emergent modified Newtonian force related with the area-entropy

derived in Appendix A. This entropy-area relationship reads

S[A]

kB
= (1 + ∆(ε))

A

4l2P
− 1

2
ln

A

4l2P
+ Γ(ε)

(
A

4l2P

)1/2

+ ε

(
A

4l2P

)3/2

. (6.1)

The modifications to the entropy of the proposed supersymmetric Schwarzschild model can be under-

stood as follows: The first term is the usual Bekenstein-Hawking entropy, the logarithmic correction

seems to be a universal correction and has been derived in different approaches in the study of black

holes [41–44]. This volumetric correction is physically natural since one expects that the ordinary

degrees of freedom of quantum fields scale as the volume instead of the area. Therefore, this cor-

rection can be interpreted as a transition between the holographic phase of gravity and the field

theoretical phase. Different LQG-inspired models of black hole entropy derive precisely a correction

of this type, for example see [45], which result suggests to study the entropy correction of the form

s(A) ∼ kB
(
Ac3/G~

)3/2
. Moreover, a correction of this type has been also considered in [13]. In

our work this term will play a fundamental role, and an important feature of our work is that we

do not just propose this correction to the entropy-area law, but we obtain it from a supersymmetric

minisuperspace model, which we widely discuss in appendix A. The third term is proportional to a

linear length, this term can be interpreted as an effective contribution due to a self-gravitating gas,

this behavior in the scaling is consistent with the entropy calculated for a self-gravitating gas where

S ∼ V 1/3 [46].
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In order to proceed, let us split the entropy (6.1) in accordance to Eq.(5.22), and the calculation

for the modified Newtonian force follows straightforwardly from (5.23). For our entropy, the resulting

modified force is

FM = −GeffMm

R2

[
1 +

3
√

2π

lP (1 + ∆(ε))
εR +

lPΓ(ε)

2
√
π(1 + ∆(ε))

1

R
− l2P

2π(1 + ∆(ε))

1

R2

]
R̂, (6.2)

where Geff = (1 + ∆(ε))G is an effective gravitational constant. In this force we identify We see

that we recover the usual Newtonian force in the limit ε → 0 modulo a term O(R−4) which can be

neglected since it is suppressed by l2p. In this force we identify the following corrections: the term

proportional to R−1 corresponding to the volumetric correction of the entropy, the term proportional

to R−3 corresponding to the linear correction to the entropy and finally the term proportional to R−4

corresponding to the logarithmic correction. The implications of these correction terms, in particular,

the term arising from the volumetric correction in the entropy, will become clearer bellow.

We can obtain the modified gravitational potential by integrating the force (6.2). Up to an

arbitrary integration constant σ the potential yields

ΦM = −GeffM
R

[
1− 3

√
2π

lP (1 + ∆(ε))
εR ln

R

σ
+

lPΓ(ε)

4
√
π(1 + ∆(ε))

1

R
− l2P

6π(1 + ∆(ε))

1

R2

]
. (6.3)

The effective matter density such that the Poisson equation ∇2ΦM = 4πρeff is satisfied is straight-

forwardly calculated, resulting in

ρeff =
GM

2πR

l2P
2πR4

1−
√
π

2lP
Γ(ε)R+

3

2

(√
2π

lP

)3

εR3

 . (6.4)

We can have different interpretations to this modified matter density, one can consider that the origin

of ρeff is a consequence to the presence of a point mass M and through some unknown process gives

ρeff . The other possibility is to consider that we have a point particle of mass M that generates the

potential ΦM by using the appropriate limit of some unknown theory of gravity.

In order to analyze the consequences of the modifications in the force (6.2) let us consider a

particle of mass m in circular motion with the radius of the orbit being R. According to Eq.(6.2),

the velocity of the particle is given by

mv2

R
=

GeffMm

R2

[
1 +

3
√

2π

lP (1 + ∆(ε))
εR (6.5)

+
lPΓ(ε)

2
√
π(1 + ∆(ε))

1

R
− l2P

2π(1 + ∆(ε))

1

R2

]
.

We can see that for large R, the second term in (6.5), corresponding to the entropic volumetric

correction is the leading term. Concretely, in the limit of large R the velocity results in

v2 ≈ 3
√

2πGM

lP
ε, (6.6)
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We can relate this example with the case of some star in circular motion around the center of

a galaxy, and we can investigate the consequences of the modification to the Newtonian force on

its rotation velocity. For this purpose, let us make use of one of the main ideas of the Modified

Newtonian dynamics[15]. Roughly speaking, MOND is a one parameter phenomenological theory

that reproduces the observed galactic rotation curve. It is of particular interest the behavior in the

limit of large R, since in this limit the obtained rotation velocity is a constant, which is in accordance

with the observations, and this behavior is not predictable by ordinary Newtonian Dynamics. In

MOND, the rotation velocity for large R is given by

v2 =
√
GMa0, (6.7)

where a0 is the characteristic MOND acceleration a0 ≈ 10−10m/s2. At this point, we observe that

our model bears one free parameter ε, and, the idea is that, since for large R our model yields a

constant velocity, such as in MOND, then we can exploit this fact in order to relate our parameter ε

with the characteristic quantities of MOND, so that we can reproduce the observed galactic rotations

curves. Thus, comparing (6.6) with (6.7) we can see that, in order to both results to agree we must

have

ε =
1

6π

√
a0h

Mc3
. (6.8)

With this, we can obtain an approximate value for ε by using the characteristic MOND mass M ≈
1058kg. This gives

ε ≈ 10−58. (6.9)

Of course, in order to obtain a more accurate value for our parameter, it is necessary a deeper analysis

by comparing our model with actual observational data on galactic rotation curves. Nonetheless, it is

worth mentioning that in a recent work this model has been used to study the anomalous precession

of the perihelion of Mercury[47]. In this work, in order to have the right precession for the orbit of

Mercury the authors find the bound

ε ≤ 7, 755× 10−58. (6.10)

This result strengths the former prediction for the value of ε in a more accurate way, however, as

mentioned before, further analysis is needed.
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6.2 Cosmological Scenario: A Plausible Entropic Origin of

the Cosmological Constant Λ

As it is well known, the Friedmann equations are a set of equations in cosmology that govern the

dynamics of the universe assuming homogeneity and isotropy at large scales. These equations can be

obtained by different approaches, being the one in the context of GR the most acclaimed. However,

other approaches based on Newtonian considerations are also well-known to obtain the Friedmann

equations. Although,, there exist novel approaches relying in the spirit of Jacobson’s derivation

of Einstein field equation (section 5.1), in which one is able to derive Friedmann equations of a

Friedmann-Robertson-Walker (FRW) universe with any spatial curvature by applying the Clausius

relation to apparent horizon of the FRW universe, where the entropy of the horizon is assumed to be

proportional to its area. Furthermore, if one considers deviations of the area law for the entropy, then

one should expect to obtain a modified Friedmann equation whose modifications are traced to the

modifications of the entropy-area relationship. These ideas will be further detailed in the upcoming

sections.

6.2.1 The Friedmann Equations: The Standard Cosmological Model

Let us briefly review how the well-known Friedmann equation arises from GR by solving Einstein’s

field equations when considering the Universe at large scales as a perfect, homogeneous and isotropic

fluid described by the FRW metric

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
, (6.11)

where a(t) is the scale factor and κ is the spatial curvature. Let us consider the energy-momentum

tensor for a perfect fluid

Tµν = pgµν + (p+ ρ)vµvν , (6.12)

where ρ and p are the energy density and pressure, respectively, as measured by an observer which is

at rest with respect to the fluid. In the so called comoving reference system, the energy-momentum

tensor takes the diagonal form

(Tµν) = diag (ρ, p, p, p) . (6.13)

On the other hand, for the FRW metric, one finds the following non-zero components of the Ricci

tensor

R00 =
3ä

a
,

Rij = 6

(
ä

a
+

2ȧ2

a2
+

2k

a2

)
δij i, j = 1, 2, 3.

, (6.14)

and the Ricci scalar results in

R = 6

(
ä

a
+
ȧ2

a2
+

k

a2

)
, (6.15)
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Putting all together, the Einstein field equation (2.54) gives the following differential equation for the

scale factor a(t) (
ȧ

a

)2

+
κ

a2
=

8πG

3
ρ+

Λ

3
, (6.16)

and this is the Friedmann equation. From the Einstein field equation one also obtains a second

equation for a(t), although, it is not an independent equation as one can obtain it by taking the

time derivative of the Friedmann equation. Moreover, local conservation of energy ∇T = 0 gives the

continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (6.17)

We can define the Hubble parameter as

H(t) =
ȧ

a
(6.18)

so the friedmann equation is now written as

H2 +
κ

a2
=

8πG

3
ρ+

Λ

3
. (6.19)

In order to solve the Friedmann equation, it is clear that one needs to provide an equation of

state ρ = ρ(p). Let us consider the barotropic equation of state for the perfect fluid,

ρ = ρ0a
−3(1+ω) (6.20)

where ω = 0 stands for dust and ω = 1/3 stands for radiation. The solution to the Friedmann

equation (6.16) with κ = 0 and Λ = 0 is

a(t) ∝ t
2

3(1+ω) . (6.21)

On the other hand, if we consider the Friedmann equation with only cosmological constant Λ

(ρ = 0) we obtain the solution

a(t) ∼ exp

(√
Λ

3
t

)
(6.22)

Notice the Universe grows exponentially fast in this case, which is what we know about the evolution

of the Universe in current times. The cosmological constant solution can also be obtained by setting

ω = −1 in the equation of state (6.20), obtaining a constant energy density and an exponential

behavior of the scale factor.

Of course we can consider mixtures of different components or different equations of state (REf)

but this will nor be of interest in the present work.
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Figure 6.1: Solutions to the Friedmann equation for dust a(t) ∼ t2/3 and radiation a(t) ∼ t1/2

6.2.2 Derivation of the Friedmann Equation From Thermodynamical Con-

siderations

Let us first review how the Friedmann equation arises by means of entropic considerations, For this

purpose, we will follow the procedure explained in[26]. In this approach the evolution will be dictated

by the fundamental thermodynamical law δQ = TdS (Clausius Relation) applied on the so called

apparent horizon of a FRW universe. The key idea is to demand that this relation holds on every

point of the horizon, with δQ and T interpreted as the energy flux and Unruh temperature at the

horizon. As for the entropy, one associates an entropy-area relationship to the horizon, first, by

considering the usual S ∼ A, where A is the horizon area.

Let us proceed with the derivation of the Friedmann equation. Let us consider the metric of a

FRW universe

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
. (6.23)

The apparent horizon is determined by the relation

hab∂ar̃∂br̃ = 0, (6.24)

where hab is extracted by writing the metric as ds2 = habdx
adxb + r̃2dΩ2. With this in mind, we can

easily see that the radius of the apparent horizon is given by

r̃2
A =

(
H2 + κ/a2

)−1
, (6.25)
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where H = ȧ/a is the Hubble parameter. As usual, we consider the matter content in the form of

a perfect fluid, described by the energy-momentum tensor Tµν = (ρ + p)UµUν + pgµν , where ρ and

p are the energy density and pressure, respectively. Similarly, the energy-momentum conservation

leads to the continuity equation

ρ̇+ 3H(ρ+ p) = 0. (6.26)

Let us now introduce the work density W and the energy-supply vector Ψ defined as

W = −1

2
T abhab, Ψa = T ba∂br̃ +W∂ar̃, (6.27)

where r̃ = a(t)r and Tab is the projection of Tµν in the normal direction of the 2-sphere. Using the

energy-momentum tensor for a perfect fluid, the work density and the energy supply vector is

W =
1

2
(ρ− P ), Ψa =

(
−1

2
(ρ+ P )Hr̃,

1

2
(ρ+ P )a

)
. (6.28)

The amount of energy δQ crossing the apparent horizon during the time interval dt is given by[24]

δQ = −AΨ = A(ρ+ P )Hr̃Adt, (6.29)

and A = 4πr̃2
A is the area of the apparent horizon. In order to proceed, we make the following

assumptions: One is that the apparent horizon has am entropy proportional to its area, that is, its

entropy is given by the Bekenstein-Hawking entropy, written as

S =
A

4G
, (6.30)

the other one, is that the apparent horizon has a temperature

T =
1

2πr̃A
. (6.31)

With these considerations, the Clausius relation δQ = TdS gives

4πr̃2
A(ρ+ P )Hr̃Adt =

1

8πG

1

r̃A
dA, (6.32)

For dA, from (6.25) we obtain

dA = −8πr̃4
AH

(
Ḣ − κ

a2

)
dt. (6.33)

Then, equation (6.32) becomes

− 4π(ρ+ P )G =
(
Ḣ − κ

a2

)
. (6.34)

If we use the continuity equation, together with the identity 2H(Ḣ − κ/a2)dt = d[H2 + κ/a2] we

obtain
8πG

3
ρ̇ =

d

dt

(
H2 +

κ

a2

)
, (6.35)
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finally after integrating the last equation we arrive to the well-known Friedmann equation of FRW

universe
8πG

3
ρ = H2 +

κ

a2
, (6.36)

which is, of course, the form of Einstein Field Equations in the metric (6.23). Thus, we have derived

the Friedmann equation of a FRW universe with any spatial curvature by applying the Clausius

relation to apparent horizon of the FRW universe and assuming that the apparent horizon has an

entropy satisfying the area formula like black hole horizon and a temperature given by (6.31). In the

following section, we will attempt to obtain a modified version of the Friedmann equation (6.36) by

assuming that the horizon has, not the usual entropy (6.30), but a modified version of this entropy-

area relationship, identified with the modified entropy-area relationship used in the previous section.

6.2.3 Obtaining a Modified Friedman Equation From a Modified Entropy-

Area Relationship

In this section we will be using an entropy area relationship that has a term linear on the area A

(this is the usual term for the GR formulation), but we also add a term proportional to A3/2 (our

volumetric contribution to the entropy). Entropy terms that scale on the volume are typically related

to ordinary degrees of freedom of quantum field theories. The modified entropy-area relationship that

we will use is

S =
A

4G
+ ε

(
A

4G

)3/2

. (6.37)

Where ε is a free parameter. Therefore, we expect modifications to the Friedmann equation arise

from the modification added to the entropy-area relationship. The procedure to obtain the modi-

fied Friedmann equation is the same as the used for the usual Friedmann equation in the previous

subsection, however, in this case, the entropy-area relationship will be given by equation (6.37).

As before, we consider the Clausius relation on the apparent horizon, assuming the horizon has

an entropy given by (6.37). This gives

4πr̃2
A(ρ+ P )Hr̃Adt =

1

8πG

1

r̃A

[
1 +

3ε√
2G

A1/2

]
dA, (6.38)

using again the expression

dA = −8πr̃4
AH

(
Ḣ − κ

a2

)
dt, (6.39)

from Eq.(6.38) we obtain

− 4π(ρ+ P )G =

[
1 +

3ε

4
√
G
A1/2

](
Ḣ − κ

a2

)
.

If we use the continuity equation ρ̇+ 3H(ρ+ P ) = 0, together with 2H(Ḣ − κ/a2)dt = d[H2 + κ/a2]

we get
8πG

3
ρ̇ =

[
1 +

3

2

√
π

G
ε
(
H2 +

κ

a2

)−1/2
]
d

dt

(
H2 +

κ

a2

)
, (6.40)
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finally after integrating Eq.(6.40) we arrive to the modified Friedmann equation

8πG

3
ρ =

(
H2 +

κ

a2

)
+

√
9π

G
ε
(
H2 +

κ

a2

)1/2

, (6.41)

the integrating constant can be absorbed in ρ and could be interpreted as a cosmological constant.

However as we are interested in studying the contributions from the volumetric term, we will set it

to zero. If we set the constant to zero when using the usual entropy area relationship we get the

Friedmann equation with vanishing cosmological constant and when comparing with the equations

derived from the corrected entropy-area relationship we can clearly see the effects of the volumetric

correction. Solving for H2 + κ/a2 in Eq.(6.41) we get

H2 +
κ

a2
=

8πG

3
ρ+

9π

2G
ε2 ± 1

2

√
81π2

G2
ε4 + 96π2ε2ρ. (6.42)

6.2.4 Solving the Modified Friedmann Equation

Before solving this equation, we will center our attention to the late time behavior. In this limit, if

we take the negative sign of the square root the constant term cancels out and we do not have any

terms that behave as a cosmological constant. For this reason we are not interested on this branch

of the solution and will focus our attention on the solution with the positive sign.

Now if we take the positive sign for the square root in Eq.(6.42) and analyze the late time

behavior, it is simple to see that we get a de Sitter solution for the scale factor. This solution is given

by

H2 +
κ

a2
≈ 9π

G
ε2, (6.43)

comparing with the Friedmann equation for the de Sitter cosmological model we can identify an

effective cosmological constant Λeff , which to leading order in ε is given by

Λeff =
27π

G
ε2. (6.44)

This is a surprising result, as we have obtained an effective cosmological constant from the modifi-

cation to the entropy-area relationship. From the effective cosmological constant Λeff , we can argue

that the cosmological constant originates from the modification to the entropy-area relationship.

Again, let us consider the barotropic equation of state for the perfect fluid, then ρ = ρ0a
−3(1+ω).

The solution to Eq.(6.41) with κ = 0, is

144
√
πGρ0(ω + 1)t = 3a

√
96Gρ0a3ω+1 +

81ε2a6ω+4

G
− 27εa3(ω+1)

√
G

(6.45)

+

32G3/2ρ0a
−3(1+ω)/2

√
32G2ρ0a3ω+1 + 27ε2a6ω+4 sinh−1

(
3
√

3
2 εa

3(1+ω)/2)

4G
√
ρ0

)
ε
√

27ε2a3ω+3 + 32G2ρ0

.
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Unfortunately, the expression for the scale factor is given in implicit form, nonetheless we can obtain

the asymptotic behavior in the limit of large t, where we obtain

a(t) ∼ exp

(√
9π

G
εt

)
. (6.46)

This is the kind of behavior we expected for the scale factor in the late time limit. On the other hand,

for a FRW model with cosmological constant only we know that the solution for the scale factor is

a(t) ∼ exp

(√
Λ

3
t

)
, (6.47)

thus, comparing both solutions we can identify√
9π

G
ε =

√
Λ

3
, (6.48)

or

Λ =
27π

G
ε2, (6.49)

which is the same expression for Λeff found before.

In fig.(1) we compare the model with the de Sitter model. If we consider dust (thick line) or

radiation (thin line) we see that the scale factor in the late time scenario corresponds to a de Sitter

universe. We can also notice that for early times the behavior of the model is not an exponential

scale factor, this is clear in small graph in the fig.1, where we have zoomed the plot for small t.

In order to understand the behavior before exponential growth, we will explore the small t limit

of Eq.(6.45). In this limit, we get for the scale factor

a(t) ∼

{
t
2
3 , for ω = 0,

t
1
2 , for ω = 1/3.

(6.50)

Which are the same results as those of the usual Friedmann equation with a perfect fluid and a

barotropic equation of state as described in subsection 6.2.1. In fig.(2) we compare the solution

to our model with the solution for the usual Friedmann equation, and we can see that there is a

correspondence between the two models. For small t the volumetric term of the entropy has negligible

effects and therefore we have the same behavior as that of the usual FRW universe, while for late times

the volumetric contribution dominates the dynamics and gives scale factor that behaves similarly to

a dark energy dominated universe.

As pointed out before, we can define an effective cosmological constant Λeff in terms of the

parameter ε, that is associated to the volumetric contribution to the entropy. Using the current

observed value for the cosmological constant Λ, we fix the value of the parameter ε ∼ 10−60. This

gives a simple solution to the origin of Λ in the context of entropic gravity.

Finally we will like to point out that the modified entropy that gives the effective cosmological
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Figure 6.2: In this plot we compare the scale factor of this model with that of a de Sitter Universe.
The thick line corresponds to our model with dust, Eq.(6.45) with ω = 0. The dotted line corresponds
to a de Sitter universe and one can clearly see that for large t the behavior is the same. For radiation,
ω = 1/3, the thin line corresponds to our model and the dashed line for a de Sitter Universe, as
before we see that the two curves are exponential for large t. In the two cases(ω = 0 and ω = 1/3)
our model differs to the de Sitter case for small t, this can be seen in the box. For all plots we took
ρ0 = 3

8πG and ε = 10−4.

constant Λeff , is the same modified entropy that gives the correction to the Newtonian gravitational

force that accounts for the anomalous galactic rotation curves. If we estimate the value of ε from

the result in [14], using the mass of a typical galaxy (i.e. our galaxy) we get ε ∼ 10−58, this value is

consistent with the estimated value we have obtained from Eq.(6.44). Currently we can only say that

it is an interesting coincidence, but it might point to a deeper relationship, this is currently under

research and will be reported elsewhere.

It is worth to be added that further analysis can be made on the modified Friedmann equation

obtained in this work. For instance, by defining a parameter associated with the parameter of our

model ε as

Ωε =
1

2H2

√
9π

G
ε, (6.51)

together with the other parameters associated to matter and spatial curvature

Ωm =
8πG

3H2
ρ, Ωκ = − κ

a2H2
, (6.52)
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Figure 6.3: This plot is a comparison between our model and the standard FRW cosmology with
a barotropic fluid and with the same matter content. The thick line corresponds to our model with
dust (Eq.(6.45) with ω = 0), the dashed line is for the FRW model with dust. One can clearly see
that for early time the behavior is the same. For radiation (ω = 1/3), the thin line corresponds to
our model and the dotted solid line for the FRW model with radiation, as before the to models have
the same behavior for small t. For all plots we took ρ0 = 3

8πG and ε = 10−4.

equation (6.41) can be written as

1 = Ωm + Ωκ + Ωε ±
√

Ω2
ε + 2ΩεΩm. (6.53)

The latest equation is to be recognized as the modified constriction for the densities parameters. Of

course, by choosing the plus sign in equation (6.42) motivates to choose it in this equation as well.

Now, for example if we consider dust, that is, ρ = ρ0a
−3, then we have

Ω0 ≡ Ω0m =
8πG

3H2
0

ρ0, Ω0κ = −κ/H2
0 , Ωε = Ω0ε, (6.54)

where H0 is the Hubble constant (current value of the Hubble parameter H), and equation (6.42)

becomes

H2 = H2
0

(
Ω0a

−3 + Ω0κa
−2 + Ω0ε +

√
Ω2

0ε + 2Ω0εΩ0ma−3

)
. (6.55)

In cosmology it is convenient to express the quantities in terms of the redshift z, which is related to

the scale factor a as

a =
1

1 + z
, (6.56)
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with this, we can write

H2(z) = H2
0

[
Ω0(1 + z)3 + Ω0κ(1 + z)2 + Ω0ε +

√
Ω2

0ε + 2Ω0εΩ0m(1 + z)3

]
. (6.57)

Finally we obtain the equation that dictates the evolution of the matter parameter Ωm

Ωm(z) = Ω0
(1 + z)3

Ω0(1 + z)3 + Ω0κ(1 + z)2 + Ω0ε +
√

Ω2
0ε + 2Ω0εΩ0m(1 + z)3

. (6.58)

A deeper cosmological analysis can be made by formally solving the system of equations (6.53) and

(6.58) in order to obtain the evolution of the matter density parameter predicted by this model. This

is under consideration and will be worked out in the future.

Moreover, we can consider the more general entropy-area relationship (see appendix A)

S =
A

4G
+ Γ(ε)

(
A

4G

)1/2

+ ε

(
A

4G

)3/2

. (6.59)

If we follow the procedure to obtain the modified Friedmann equation corresponding to this entropy,

just as we previously did in this section, we obtain the modified Friedmann equation

8πG

3
ρ = H2 +

κ

a2
+ α(ε)

(
H2 +

κ

a2

)3/2

+ β(ε)
(
H2 +

κ

a2

)1/2

, (6.60)

where α(ε), β(ε) are some functions of the parameter ε. This more general modified Friedmann

equation has not been solved yet, and of course, solving it would let us inquire about the repercussions

of the new term A1/2 onto the evolution of the universe, and perhaps this could be related with the

predictions of some other cosmological model.
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Chapter 7

Conclusions and Final Remarks

The complexities of defining a quantum theory of gravity has led to consider gravity as an emergent

phenomena. This opens a new paradigm for the understanding of the origin of the gravitational

interaction.

In the work described in section 4 we have considered a generalized Stelle-West formulation by

means of introducing a pseudoprojector Π acting on so(4, 1) Lie algebra valued field strength, this

projector has the shape of a complex (anti)self-dual projector in a Plebański like formulation. Like-

wise, as the original Stelle-West formulation the vector field v hidden into the projector Π, plays a

central role by breaking the symmetry down to SO(3, 1) by considering SBC, but this time, along

with Einstein-Cartan theory plus the Euler class, we have also obtained the Holst modification with

Immirzi parameter, the Nieh-Yan form and the Pontryagin invariant. Then, we went further by

considering the action without the SBC. The equations of motion imposed by this action are not

trivial, so we had to impose some constraints on the covariant derivative of v. First, we imposed

a condition that let us recover back the Einstein field equations, but the equation of motion for v

imposed a condition over the cosmological constant, so Λ is calculated within the theory, rather than

being a free parameter that has to be measured. The second case we have considered, let us construct

topological torsionless field theories, where the Minkowski part of the vector v is orthogonal to the

spin connection and χ = 0. Also, since the Lie algebra is a reductive algebra, and the connection is

an so(3, 1) valued field, then the vector v tell us how to construct locally the SO(3,1)-bundle together

with the frame bundle. It will be interesting to find numerical solutions for the field v, under the

second condition, for topological torsionless field theories, obtaining the explicit form of the spin con-

nection and the tetrad field. As a result, we can calculate the metric field itself that let us characterize

certain resulting manifolds and their topological structures.

A complex (anti)self-dual formulation could be compelling to consider in a future work. Since we

have investigated just the pure bosonic case, it will be fascinating to consider also a supersymmetric

extension for N = 1.

Also, it will be intriguing to compare the relationship between the action in eq.(4.9) and the qua-

sitopological principle proposed by Alexander et. al. in [34], for their θ term and the non-constant

cosmological constant Λ.
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A higher dimensional internal symmetry group based on MM approach for pure connection for-

mulations of gravity for real fields, inspired in [51] may be considered in order to obtain a family of

torsionless conformally flat Einstein manifolds, this work is in progress and will be reported elsewhere.

By assuming an entropic origin of Newtonian gravity we can study new effects by considering

modifications to the Bekenstein-Hawking entropy. In this work, we used the supersymmetric min-

isuperspace approach for the Schwarzschild black hole to construct a supersymmetric generalization

and from the Feynman-Hibbs approach we obtained the entropy-area relationship. It is worth men-

tioning, that except for the logarithmic term that has a quantum origin, the remaining terms are

related to the supersymmetric modification. Assuming an entropic origin to gravity, we constructed

a generalized Newtonian force, the modified gravitational potential and the effective matter density.

When considering the case of circular orbit for very large radius, this modified theory of gravity can

account for the anomalous galaxy rotation curves. Therefore one can conjecture that if gravity is

emergent, supersymmetry can substitute (under some conditions) the need for dark matter to explain

the rotation curves. Although this results are encouraging, further exploration is needed to establish

this model as a replacement to dark matter.

In this work we set our interest on the origin of the cosmological constant. Using the new

entropy-area relationship, we derive a modified Friedmann equation. Focusing our interest in the

late-time limit, we find out that the asymptotic behavior is that of a de Sitter cosmology. Then one

can define an effective cosmological constant Λeff in terms of the model parameter ε. This gives a

simple solution to the origin of Λ in the context of entropic gravity. Also it is of great interest for

us to test our models with observational data, this would allow us to obtain a better bound for the

parameter ε. Finally It remains to be seen why the obtained values for ε are of similar order for

two totally different phenomena: the anomaly of rotation curves and the cosmological scenario. Is

it possible that what we know as dark energy and dark matter are somehow connected with each

other? For example, it would be perhaps daring but interesting to consider the following: Since from

the modified Friedmann equation (6.41) we found an effective cosmological constant in terms of the

parameter ε, we can invert this relationship and express ε in terms of Λ. On the other hand, we know

that the rotation velocity (6.5) depends on ε, so it would be possible to express it in terms of Λ, in

this way, we could claim that dark energy could influence the phenomenon of the anomaly of rotation

curves in galaxies.
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Appendix A

Derivation of the Modified

Entropy-Area Relationship

A.1 The supersymmetric WDW equation for the Schwarzschild

Metric

The Schwarzschild black hole is described by the metric

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 (A.1)

+ r2
(
dθ2 + sin2 θdϕ2

)
,

for the case r < 2m the grr and the gtt components of the metric change in sign and ∂t becomes a

space-like vector, hence if we perform the transformation t↔ r, we find

ds2 =−
(

1− 2m

t

)−1

dt2 +

(
1− 2m

t

)
dr2

+ t2
(
dθ2 + sin2 θdϕ2

)
.

(A.2)

When compared with the Misner parametrization of the KS metric

ds2 = −N2dt2 + e2
√

3ξdr2 + e−2
√

3(ξ+Ω)
(
dθ2 + sin2 θdϕ2

)
, (A.3)

we identify

N2 =

(
2m

t
− 1

)−1

, e2
√

3ξ =
2m

t
− 1, e−2

√
3(ξ+Ω) = t2, (A.4)

this establishes the diffeomorphism with the Kantowski-Sachs metric. Using this result in the

Einstein-Hilbert action and performing an integration over the spatial coordinates, we get an ef-

fective Lagrangian from which it is straight forward to obtain the Hamiltonian constraint

H = p2
ξ − p2

Ω − 48e−2
√

3Ω. (A.5)
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From standard canonical quantization, with the usual identifications for the canonical momenta

pξ = −i ∂∂ξ , pΩ = −i ∂∂Ω , the WDW equation derived from the Hamiltonian constraint is

(
− ∂2

∂Ω2
+

∂2

∂ξ2
+ 48e−2

√
3Ω

)
Ψ(Ω, ξ) = 0, (A.6)

Using the plane wave solution for the variable ξ, the WDW equation takes the form(
− d2

dΩ2
+ 48e−2

√
3Ω

)
χ(Ω) = 3ν2χ(Ω). (A.7)

We now proceed to obtain the supersymmetric version of the WDW equation Eq.(A.6), for this

purpose we will follow [52]. For homogeneous models the Hamiltonian H0 can be written as

2H0 = Gµνpµpν + U(qµ), (A.8)

where qµ are the minisuperspace coordinates, Gµν is the minisuperspace metric and U(qµ) is the

potential. Also, it is possible to find a function Φ(qν) satisfying

Gµν ∂Φ

∂qµ
∂Φ

∂qν
= U(qα). (A.9)

To construct the supersymmetric Hamiltonian first we need the supercharges

Q = ψµ
(
pµ + i

∂Φ

∂qµ

)
, Q̄ = ψ̄µ

(
pµ − i

∂Φ

∂qµ

)
, (A.10)

where ψ̄µ, and ψν are Grassmann variables and satisfy the algebra

{
ψ̄µ, ψ̄ν

}
= {ψµ, ψν} = 0,

{
ψ̄µ, ψν

}
= Gµν . (A.11)

The supersymmetric Hamiltonian is obtained from the algebra of the supercharges 2HS = {Q, Q̄},
this gives

2HS = Gµνpµpν + U(qµ) +
∂2Φ

∂qµ∂qν
[
ψ̄µ, ψν

]
. (A.12)

This supersymmetric Hamiltonian is the supersymmetric generalization of Eq.(A.8), it is the sum of

the “bosonic” Hamiltonian and the contribution ∂2Φ
∂qµ∂qν . This Hamiltonian is fully determined once

we adopt a suitable representation of the Grassmann variables

ψξ =

(
0 0 0 0
1 0 0 0
0 0 0 0
0 0 -1 0

)
, ψ̄ξ =

(
0 1 0 0
0 0 0 0
0 0 0 -1
0 0 0 0

)
,

ψΩ =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)
, ψ̄Ω =

(
0 0 -1 0
0 0 0 -1
0 0 0 0
0 0 0 0

)
.

(A.13)

From Eq.(A.6) we identify U(Ω, ξ) = 48e−2
√

3Ω and from Eq.(A.9) we obtain a differential equation

for Φ (
∂Φ

∂Ω

)2

−
(
∂Φ

∂ξ

)2

= 48e−2
√

3Ω. (A.14)
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The solution for Φ is given by

Φ = −4

[√
e−2
√

3Ω + ε−2/3 − ε−1/3arcsinh
(
ε−1/3e

√
3Ω
)]

+ 4
√

3ε−1/3ξ, (A.15)

with ε = constant. Since
[
ψ̄Ω, ψΩ

]
= diag(−1,−1, 1, 1), the supersymmetric Hamiltonian will have

two independent components which only differ in the sign of the modified potential. Now the proposed

WDW equation for the supersymmetric quantum Schwarzschild black hole is

[
− ∂2

∂Ω2
+

∂2

∂ξ2
+12

(
4± 1√

e−2
√

3Ω + ε−2/3

)
e−2
√

3Ω

]
ΨS
±(Ω, ξ) = 0. (A.16)

The wave function has four components, although only two are linearly independent, also the con-

tributions of supersymmetry are encoded in the modified potential. Finally, it is worth mentioning

that Eq.(A.6) is recovered from Eq.(A.16), by taking the limit ε→ 0.

Calculation of the Modified Entropy-Area relationship

Let us start by reviewing the calculation of the entropy for the Schwarzschild black hole, using the

Feynman-Hibbs procedure. This approach was originally applied to the Schwarzschild black hole [41]

and subsequently used for different black hole models [53–55]. In the limit of small Ω and taking

x = lP (
√

6Ω− 1/
√

2), Eq.(A.7) can be written as(
−1

2
l2PEP

d2

dx2
+ 4

EP
l2P

x2

)
χ(x) = EP

(
ν2

4
− 2

)
χ(x), (A.17)

we can see that Eq.(A.17) is the usual quantum harmonic oscillator if we identify ~ω =
√

3
2πEp and

~2

m = l2PEP .

To compute the “corrected” partition function of the black hole we apply the Feynman-Hibbs proce-

dure. This approach is based on exploiting the similarities of the expression of the density matrix and

the kernel of Feynman’s path integral approach to quantum mechanics. By doing a Wick rotation

t→ iβ, we get the Boltzmann factor and the kernel is transformed to the density matrix. The kernel

is calculated along the paths that go from x1 to x2, if we consider small ∆t (small β). Then, when

calculating the partition function, only the paths that stay near x1 have a non-negligible contribu-

tion (the exponential in the expression for the density matrix gives a negligible contribution to the

sum from the other paths). Therefore, the potential to a first-order approximation can be written

as V (x) ≈ V (x1) for all the contributing paths. In this approximation, we can formally establish a

map from the path integral formulation of quantum mechanics to the classical canonical partition

function. To introduce quantum effects, we must incorporate the changes to the potential along the

path; in particular, we are interested in the first-order effects. For this, we start by doing a Taylor

expansion around the mean position x̃ along any path. Calculating the kernel with x̃ and doing the

Wick rotation, we get the modified partition function. This partition function is calculated in a clas-

sical manner, but with the corrected potential, which is a mean value of the potential V (x) averaged
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over points near x̃ with a Gaussian distribution. Therefore, to calculate the partition function with

quantum corrections [41, 53, 54], we use the corrected potential. According to this procedure, the

corrected partition function is

Z =

√
m

2πβ~2

∫ ∞
−∞

e−βU(x̃)dx̃, (A.18)

where β = 1/kBT and U(x̃) is the corrected potential given by

U(x̃) =

√
12m

2πβ~2

∫ ∞
−∞

V (x̃+ y)e−6y2m/β~2

dy. (A.19)

Now we substitute the potential of the WDW equation in Eq.(A.18) and Eq.(A.19), this gives the

corrected partition function

Z =

√
2π

3

1

βEP
e−β

2E2
P /16π. (A.20)

From the partition function it is straightforward to calculate the temperature and entropy for the

Schwarzschild black hole. We begin with the internal energy

E = − ∂

∂β
lnZ, (A.21)

which gives a relation between the black hole corrected temperature β and its mass M . In terms of

Hawking temperature βH = 8πMc2

E2
P

, the corrected temperature of the black hole is

β = βH

(
1− 1

βH

1

Mc2

)
, (A.22)

where we can observe an extra contribution to the temperature proportional to β−1
H .

To calculate the entropy we use
S

kB
= lnZ + βE, (A.23)

by relating the Bekenstein-Hawking entropy to the Hawking temperature as Mc2βH = 2SBHkB we get

entropy
S

kB
=
SBH
kB
− 1

2
ln
SBH
kB

+O(S−1
BH). (A.24)

This result has the interesting feature that the logarithmic correction agrees with the one obtained

in string theory as well as in loop quantum gravity [42–44].

Now we apply this method to obtain the temperature and entropy of the supersymmetric

Schwarzschild black hole. Since the potential in Eq.(A.16) depends only on the Ω coordinate, we

use the plane wave solution for ξ. Following the same procedure and similar approximations as in

the original case, the equation takes the form[
−1

2
l2PEP

d2

dx2
+ 4

EP
l2P

x2 ± 1

2

EP
l4P

εx4

]
χS±(x) = η2χS±(x). (A.25)

From now on we will take the (−) case, the (+) case follows straightforwardly by transforming ε→ −ε.
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Now we apply the Feynman-Hibbs procedure for the potential of the form V (x) = mω2

2 x2 + λx4.

Following the bosonic case a straightforward calculation gives the corrected partition function for the

supersymmetric model

ZS =

√
2π

3

1

βEP
exp

(
−β

2E2
P

16π
− β3E3

P ε

96

)(
1 +

πβEP ε

3

)−1/2

.

As before, this partition function reduces to the original one in the limit ε→ 0. For temperature we

proceed as before, using the partition function Eq.(A.26) the internal energy is

1

β
+
E2
Pβ

8π
+
E3
Pβ

2

32
ε+

πEP
6

ε− π2E2
Pβ

18
ε2 = Mc2, (A.26)

solving for β in terms of the Hawking temperature gives

β = βH

[
1− 1

βHMc2
+ f(ε)

1

(βHMc2)
1/2

]
, (A.27)

where f(ε) = 2
3ε

3 − ε, and for convenience, the parameter ε has been redefined by ε→ 21/2π3/2

3 ε. We

see the supersymmetric contribution to the temperature is proportional to β
−1/2
H , also in the limit

ε→ 0 we recover Eq. (A.22).

From the partition function Eq.(A.26) and the temperature, the entropy for the supersymmetric

model is given by

S

kB
= −1

2
ln

3E2
Pβ

2

2π
+
E2
Pβ

2

16π
+
E3
Pβ

3

48
ε− π2E2

Pβ
2

18
ε2 + 1. (A.28)

Solving in terms of the Bekenstein-Hawking entropy SBH/k = A/4l2P we arrive to the entropy-area

relationship

S[A]

kB
=

[1 + ∆(ε)]

4l2P
A− 1

2
ln

A

4l2P
+ Γ(ε)

(
A

4l2P

)1/2

+ ε

(
A

2l2P

)3/2

, (A.29)

where Γ(ε) = 21/2f(ε)− 3 · 21/2ε+ 3 · 21/2εf2(ε)− 25/2ε2f(ε) and ∆(ε) = 6εf(ε)− 4ε2.
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contenidos teóricos y prácticos, así como su presentación (incluyendo redacción y 
ortografía), los cuales resultan ser adecuados. Con base a esto considero que dicho trabajo 
manifiesta los elementos necesarios y suficientes para ser presentados como tesis del 
Programa Académico de Doctorado en Física y con ello aspirar a obtener el grado de Doctor 
en Física. 
 
Esperando que la presente sirva para proceder con los trámites administrativos 
conducentes y sin otro particular por el momento, me despido de usted enviándole 
un cordial saludo. 

 
 
 
 
 

Atentamente 

 
Dr. Julio César López Domínguez 

Unidad Académica de Física 
Universidad Autónoma de Zacatecas 

 
 
 
 
 

 
 
c.c.p archivo 



 

 

 

 

 

 

 

 

 

 Puebla, Pue., a 2 de diciembre de 2020. 

 

 

Dr. David Delephine 
Director de la División de Ciencias e Ingenierías 
Campus León, Universidad de Guanajuato 
PRESENTE 
 
 
Estimado Dr. Delephine 
 
              Por medio de la presente, me permito responder a la solicitud de 
revisión del trabajo de tesis titulado “Alternative Theories of Gravity” que realizó el Maestro 
en Física Alberto Isaac Díaz Saldaña y dirigido por el Dr. Oscar Miguel Sabido Moreno y el 
Dr. Julio César López Domínguez, con el fin de obtener el grado de Doctor en Física que otorga 
la Universidad de Guanajuato. 
 
Después de haber leıd́o detenidamente el escrito y de discutir el tema con Isaac, considero 
que su trabajo de tesis tiene la profundidad, claridad, extensión y originalidad necesaria para 
ser presentada en un examen para obtener el grado de Doctor en Física. 
                                                      
Sin más por el momento y agradeciendo su valioso tiempo, me despido. Saludos cordiales.  
 

 

 

 

 

 

_______________________________________________ 

Dr. José Eduardo Rosales Quintero 

Preparatoria 2 de octubre de 1968 

Benemérita Universidad Autónoma de Puebla 

 

Free Hand
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León Guanajuato, a; 2 de Diciembre de 2020 
 
 
 
Dr. David Delepine 
Director de la División de Ciencias e Ingenierías 
Campus León, Universidad de Guanajuato 
PRESENTE 
 
 
 Estimado Dr. Delepine: 
 
 
 Por este medio, me permito informarle que he leído y revisado la tesis titulada “Alternative 
Theories of Gravity ” que realizó el Maestro en Física Alberto Isaac Díaz Saldaña, como requisito 
para obtener el grado de Doctor en Física.  
 
 Considero que el trabajo de doctorado realizado por Isaac es de interés para la comunidad 
científica del área de gravitación y por lo tanto reúne los requisitos necesarios de calidad e interés 
académico para que sea defendida en un examen profesional, razón por la cual extiendo mi aval 
para que así se proceda.      
 
 Sin más que agregar, agradezco su atención y aprovecho la ocasión para enviarle un cordial 
saludo. 
 
 
 

ATENTAMENTE 
“LA VERDAD OS HARÁ LIBRES” 

 
 
 
 
 
 
 

DR. Juan Barranco Monarca 
Departamento de Física 

DCI, Campus León 
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Asunto: Revisión de Tesis de Doctorado. 
 

León, Gto., a 1 de diciembre del 2020. 
 

 
 
 
 
Dr. David Delepine 
Director de la DCI-UG 
Campus León. 
Presente: 
 
 Por medio de la presente quiero responder a la solicitud de revisión del trabajo 
de tesis titulado “Alternative Formulations of Gravity”, realizado por el M. en F. 
Alberto Isaac Díaz Saldaña. 
 

Después de leer  el trabajo en el que se estudian teorías alternativas de gravedad. 
En la primera parte de la tesis trata con la generalización de la teoría MacDowell-Mansouri 
introduciendo nuevos campos a la teoría. Se analizan las condiciones de rompimiento 
para escribir las ecuaciones de campo y encontrando que la constante cosmológica es el 
cociente del término de Euler entre el volumen. La segunda parte, trata con el estudio de 
una formulación entrópica de la gravedad. Se estudian las consecuencias a la escala 
galáctica como la cosmológica, concluyendo que una corrección volumétrica a la entropía 
de Hawking-Bekenstein puede utilizarse en el contexto de materia y energía oscura. 

 
En base a esto concluyo que es un estudio interesante y muy relevante en la 

gravitación y puede dar luz a problemas fundamentales como el del sector oscuro del 
universo y la cuantización de la gravedad. 

 
Por lo mencionado anteriormente creo que el trabajo de tesis ha sido concluido, es 

original  y esta listo para defensa pública. 
 

Sin más por el momento  
     

Atentamente 
 
 
 

Dr. Oscar Miguel Sabido Moreno. 
 

 
C.c.p. Archivo 

 


