
UNIVERSITY OF GUANAJUATO

IRAPUATO - SALAMANCA CAMPUS

ENGINEERING DIVISION

Automatic Tuning of Machine Learning Systems
for Novelty Detection

THESIS

TO OBTAIN THE DEGREE OF:

DOCTOR OF ELECTRICAL ENGINEERING

PRESENTED BY:

M.Eng. Marco Antonio Contreras Cruz

SUPERVISORS:

Dr. Juan Pablo Ignacio Ramírez Paredes
Dr. Víctor Ayala Ramírez

SALAMANCA, GTO. October 2020



__________________, Gto., a _____ de ____________________ del 20____.

M. en I. HERIBERTO GUTIÉRREZ MARTIN
JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR
P R E S E N T E.-

Por medio de la presente, se otorga autorización para proceder a los trámites de impresión,

empastado de tesis y titulación al alumno(a) ____________________________________________________

del Programa de Doctorado en_ ___________________________________________________________

y cuyo número de NUA es: __________ del cual soy director. El título de la tesis es:

________________________________________________________________________________________

________________________________________________________________________________________

Hago constar que he revisado dicho trabajo y he tenido comunicación con los sinodales asignados

para la revisión de la tesis, por lo que no hay impedimento alguno para fijar la fecha de examen de titulación.

A T E N T A M E N T E

_________________________________ _______________________________
NOMBRE Y FIRMA NOMBRE Y FIRMA

DIRECTOR DE TESIS DIRECTOR DE TESIS
SECRETARIO

_______________________________ _______________________________
NOMBRE Y FIRMA NOMBRE Y FIRMA

PRESIDENTE VOCAL

_______________________________ _______________________________
NOMBRE Y FIRMA NOMBRE Y FIRMA

VOCAL VOCAL

Marco Antonio Contreras Cruz

Ingeniería Eléctrica

143709

Automatic Tuning of Machine Learning Systems for Novelty Detection

Salamanca 202

Dr. Juan Pablo Ignacio Ramírez Paredes Dr. Víctor Ayala Ramírez

octubre

Dra. Dora Luz Almanza Ojeda Dr. Carlos Hugo García Capulín

Dr. Héctor Manuel Becerra Fermín Dr. Rafael Eric Murrieta Cid



Acknowledgment

• To God, for giving me strength and support to overcome all the obstacles.

• To my mother Gricelda, for her help during all my life.

• To my father Jose Antonio, for all his support and being an example of
responsibility.

• To my wife Azucena, my love, you are the reason I want to be a better person,
thank you for everything. Every day, I love you more.

• To my sisters (Andrea, Nayeli), brother (Juan), nephews (Angel, Jaffet,
Mateo) and niece (Sofía), thank you for your support and patience.

• To my whole family (Tita, all my aunts and uncles, Grandma Maria,
Doña Leyva, Don Montes), thank you for being there when I need you.

• To my adopted daughter (Sophia), thank you for turning the quarantine into
something fun. I love you, baby.

• To my sister-in-law Esmeralda for her strength and happiness. Keep dream-
ing!

• To my supervisors, Victor Ayala, Juan Pablo Ramirez, and Gabriela Ochoa
for your advice and good talks.

ii



Institutional Acknowledgments

To the University of Guanajuato, and to its Engineering Division at the Campus
Irapuato-Salamanca, for the academic training provided by the Electrical Engineer-
ing Doctoral program.

To the Office of Research and Graduate Programs (Dirección de Apoyo a la In-
vestigación y al Posgrado) DAIP, of the University of Guanajuato, for the financial
support during my research visit to the University of Stirling (from June to De-
cember 2019), and the financial support for presenting the work Distributed Path
Planning for Multi-Robot Teams based on Artificial Bee Colony in the Congress on
Evolutionary Computation 2017.

This work was supported by the grant 237/2020 from the Institutional Awards
for Scientific Research (Convocatoria Institucional de Investigación Científica 2020)
of the University of Guanajuato, as part of the project Anomaly Detection in Aerial
Images Using Adversarial Neural Networks (Detección de Anomalías en Imágenes
Aéreas con Redes Neuronales Adversarias).

iii



To the National Council of Science and Technology (Consejo Nacional de Ciencia
y Tecnología) CONACYT, for the financial support provided during the doctoral pro-
gram and during my research visit to the University of Stirling (Scotland), through
the scholarship 568675/302121.

To the Secretary of Innovation, Science, and Higher Education (Secretaría de
Innovación, Ciencia y Educación Superior) SICES, for the financial support in the
project “Development of learning object for higher education and industrial training”
of the program “ Support for Graduate Entrepreneurs 2017 (Apoyo a Emprendedores
de Posgrado 2017) SICES/CON/200/2017”.

To the Laboratory of Vision, Robotics, and Artificial Intelligence (Laboratorio
de Visión, Robótica e Inteligencia Artificial) LaViRIA, for the resources and support
provided during the development of this research project.

University of Guanajuato iv



Automatic Tuning of Machine Learning Systems
for Novelty Detection

by
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Abstract

Novelty detection is the ability to identify test data that are different in some
aspects to the usual normal data. This ability is particularly useful for applications
such as fraud detection, failure detection, medical diagnosis, video surveillance, se-
lective learning, and obstacle detection in robotics, among others. Novelty detection
often uses machine learning algorithms, where their hyperparameter values define
their performance. Therefore, it emerges the need for automatic configuration tech-
niques. This thesis shows the application of automatic design configuration tools to
novelty detection problems and related areas. We showed the advantage of these
tools in two study cases. In the first case, we adopted the artificial bee colony al-
gorithm for tuning novelty detectors in robotics, specifically the grow-when-required
neural networks and the simple evolving connectionist systems. We trained the nov-
elty detectors in an outdoor environment with images captured by an unmanned
aerial vehicle. Then, we added some objects to the environment that should be de-
tected as novel objects. Under this setup, we explored the performance of traditional
visual features such as color histograms, GIST descriptors, and color angular index-
ing. We also proposed using the pre-trained MobileNetV2 as a feature extractor.
Our results showed the benefits of using tuned novelty detectors with the features
extracted by the MobileNetV2. Our second study proposed an automatic design
methodology based on genetic programming to select and combine saliency detec-
tion algorithms using fuzzy logic combination rules, morphological operations, and
image processing filters. Saliency detection is strongly related to novelty localization
in images. We perform two experiments: first, we combine the response of some
of the faster algorithms in the state-of-the-art, the Minimum Directional Contrast,
the Minimum Barrier Salient Object Detection, the Frequency-Tuned approach, and
the Histogram-based Contrast; and the second set includes four machine learning
algorithms, the Deep Hierarchical Saliency Network, the Discriminative Regional
Feature Integration Approach, the Dense and Sparse Labeling, and the Local Esti-
mation and Global Search. The improvements offered by the combination models
are demonstrated by comparing their performance against several state-of-the-art
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saliency detection methods, several classic combination models, and other evolution-
ary computation-based approaches on four benchmark datasets. The results were
analyzed using two statistical tests: the Wilcoxon rank-sum test and the t-test. Both
tests confirmed that the proposed method outperforms all of the other algorithms
under test and that its performance advantage is statistically significant.
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CHAPTER 1

Introduction

This thesis focuses on the automatic configuration of machine learning techniques
applied to novelty detection problems. We apply the automatic configuration con-
cepts in two study cases: the automatic tuning of online machine learning approaches
for visual novelty detection and the automatic selection and combination of salient
object detectors. Saliency detection is strongly related to novelty localization in im-
ages. The proposed automatic design techniques are based mainly on metaheuristics
and evolutionary computation techniques.

We explore two online machine learning algorithms and different visual features
extracted from images captured by an unmanned aerial vehicle for the visual nov-
elty detection problem. We used a metaheuristic-based optimization algorithm to
tune the hyperparameters of the novelty detectors. In the salient object detection
problem, we propose a framework for selecting and combining the outputs of differ-
ent algorithms, which include machine and non-machine learning approaches. The
automatic design tool used an evolutionary computation technique.

In this chapter, we present our problem statement and its motivation; we in-
troduce the novelty detection problem; we describe our research objectives and the
target applications of this study, and finally, we show the summary of this chapter
and the thesis organization.
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CHAPTER 1. INTRODUCTION

1.1 Problem statement
The novelty detection problem has been addressed by machine learning algorithms,
where a model of normality is built, and then the model is used to identify novel
data. Despite the success of machine learning algorithms in classification problems,
their application in new problems or new instances of the same problem is not a
trivial task. The use of machine learning algorithms requires highly specialized
human designers to generate high-performance machine learning applications. Many
times, this implies the proper selection of the parameters of the algorithms. However,
some difficulties emerge due to the wide range of design selections and the lack of
orientation to obtain good selections.

Instead of creating new algorithms, recent advances have focused on studying
existing algorithms and their parameters to reach higher performances. Automatic
algorithm configuration is one of these areas. Automatic algorithm configuration
techniques aim to reduce human designer intervention and exploit the current ca-
pabilities of computers to search for the best parameters of the algorithms. In this
study, we explore automatic algorithm configuration techniques applied to novelty
detection problems.

1.1.1 Motivation

The development of autonomous robots with capabilities to learn and to execute new
tasks by themselves is one of the significant challenges in robotics. This characteristic
would be especially useful in dangerous environments where humans can be at risk,
some repetitive tasks where the fatigue can reduce the efficiency of human operators,
and when it is required precision capabilities in which human operators can not
satisfy the required quality.

Novelty detection can provide useful information to robots in order to achieve
autonomy. In general, novelty detection consists of adding unobserved data to enrich
the knowledge of the robot about the environment, i.e., the robot performs selective
learning of the environment. In robotics, novelty can detect obstacle never before
seen by the robot, or as stimuli to adapt its behavior in newly discovered environment
conditions.

The novelty detectors are often machine learning algorithms with hyperparame-
ters that alter their performance. Therefore, the need arises for techniques to select
their hyperparameters appropriately. The use of automatic design tools helps the
robot to keep its autonomy in this configuration process.

University of Guanajuato 2



CHAPTER 1. INTRODUCTION

1.1.2 Novelty detection

Novelty can be defined as stimuli that differ from the usual stimuli. This ability is
especially useful for animals because they can use novelty as a tool for survival, e.g.,
novelty can represent some potential predators or preys [1].

From the computational point of view, novelty detection consists of finding data
that are different in some aspects to the known data [2]. It is a challenging problem
because datasets may have many examples of the normal class, an insufficient number
of examples of the novel class or no novel samples whatsoever. The area of novelty
detection has gained much interest, especially in areas such as fraud detection [3],
fault detection [4], medical diagnosis [5, 6], video surveillance [7], and robotics [8, 9].

In robotics, researchers have incorporated modules of novelty detection into
robots to increase their degree of autonomy through providing stimulus for future ac-
tions or adding new information in selective learning of the environment. From this
approach, the novelty detection implies that the robot is trained to ignore perceptions
that are similar to the observed perceptions in training, such that only perceptions
that are different are highlighted (potential problems, obstacles, or something new
to learn). In the literature, we can find novelty detection applications in robotics
in a wide variety of domains, for example classification [1], segmentation of three-
dimensional maps [10], exploration and sensory fusion [8], the design of architectures
based on novelty detection [11], safe human-robot interaction [12], obstacle detection
in vision systems [9], among others.

1.2 Research objectives
The general objective of this thesis is to incorporate automatic configuration tech-
niques into existing machine learning algorithms applied to novelty detection prob-
lems and related areas. The particular objectives of this study are shown as follow:

• To perform tuning of machine learning algorithms for visual novelty detection
in robotics.

• To summarize the machine learning algorithms applied for novelty detection
in robotics.

• To test and to evaluate the performance of the selected novelty detection algo-
rithms.

• To contrast the effect of traditional visual features used by novelty detectors.
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CHAPTER 1. INTRODUCTION

• To propose a new visual feature in novelty detection to increase the performance
of novelty detectors.

• To develop a new methodology based on automatic design techniques to select
and combine different saliency localization algorithms.

• To explore existing algorithms for saliency localization and to identify their
weakness.

• To propose an automatic design technique to generate combination models that
outperform existing saliency detection algorithms.

• To compare different ways to generate combination models automatically.

• To compute the effect of changing the input algorithms and fitness function
into the automatic design technique.

• To provide an overview of the performance of the generated models compared
with other techniques in images of the same and different domains.

1.3 Contributions
The main contributions of this study are:

• A review of automatic algorithm configuration techniques for machine learn-
ing algorithms. Among these techniques, we propose to use the artificial bee
colony [13] and genetic programming [14] to explore promising regions of well-
performing configurations.

• A review of existing novelty detectors for robotic applications. We adopted
two novelty detectors for continuous learning, the grow-when-required neural
network [15] and the simple evolving connectionist systems [16].

• We applied the artificial bee colony to tune the grow-when-required neural
network and the simple evolving connectionist systems for visual exploration
and inspection tasks.

• As far as we know, this is the first time that evolving connectionist systems
or grow-when-required networks are applied in unmanned aerial vehicles for
detecting novelties in outdoor environments
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CHAPTER 1. INTRODUCTION

• A comparison between traditional visual features against the pre-trained Mo-
bileNetV2 [17] is performed in visual novelty detection.

• According to our knowledge, we used genetic programming for the first time to
automatically generate combination models for salient object detection. Our
genetic programming framework evolves combination models by using fuzzy
logic operations and image processing filters embedded into it.

• We performed a study with different input algorithms and two fitness functions
into genetic programming to compute their effect in the generated combination
models. The first input set includes the Minimum Directional Contrast [18],
the Minimum Barrier Salient Object Detection [19], the Frequency-tuned ap-
proach [20], and the Histogram-based Contrast [21]. In contrast, the second set
includes four machine learning algorithms, the Deep Hierarchical Saliency Net-
work [22], the Discriminative Regional Feature Integration Approach [23], the
Dense and Sparse Labeling [24], and the Local Estimation and Global Search
[25].

• We compared the automated generated models against existing saliency de-
tection models with images of the same domain and different domains. The
proposed models prevailed over preceding approaches in several performance
estimation tests.

1.4 Development
In the thesis development, we focus on the automatic design of machine learning
algorithms applied to novelty detection and related areas. Figure 1.1 shows the
general methodology of this work. Given the target algorithm(s) with their con-
figuration spaces, a dataset, and features extracted from the dataset, the objective
is to determine the best hyperparameters of the target algorithm (hyperparameter
optimization) and to find the best combination of algorithms (automatic selection
and combination). A task called combined algorithm selection, and hyperparameter
optimization (CASH) can be derived from this methodology, but this task was not
addressed in this thesis. It is worth mentioning that the domain knowledge and the
parameter values of the automatic configuration technique can improve the search
process.

We applied this methodology in two study cases. The first case uses the artificial
bee colony algorithm to tune the hyperparameters of the grow-when-required neural
network, and the simple evolving connectionist systems to detect visual novelties in
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CHAPTER 1. INTRODUCTION

an outdoor environment. The second case applied genetic programming to select
and combine saliency detection algorithms automatically. As follow, we describe in
more detail both study cases.

Target algorithm(s)

Feature selection

Dataset

Automatic algorithm configuration

Hyperparameter 
optimization

Configuration 
space

Selection/ 
Combination

Objective function

Designed algorithm

Candidate design

Performance of the 
candidate design

Parameters/ Domain 
knowledge

Figure 1.1: General methodology used for the automatic design of machine learning algorithms in this work.

1.4.1 Tuning online novelty detectors for specific visual ex-

ploration and inspection tasks

We propose a visual novelty detection framework based on the artificial bee colony
algorithm to tune the grow-when-required neural network and the simple evolving
connectionist systems. The tuned systems are used for specific exploration and in-
spection tasks in an outdoor environment, where the images were captured by an
unmanned aerial vehicle. This study explores traditional visual features such as RGB
color histograms, angular color indexing, and the GIST descriptor in the visual ex-
ploration and inspection task. We compared those traditional descriptors against
the emerging area of pre-trained convolutional networks as a feature extraction tech-
niques, specifically the MobileNetV2. The results of this work are reported in the
journal article [26] and discussed in detail in Chapter 3.
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CHAPTER 1. INTRODUCTION

1.4.2 Automatic design of combination models for salient ob-

ject detection

The contribution of this work is oriented towards the automatic combination and
selection of saliency detection algorithms by using genetic programming. Our ap-
proach uses a set of candidate saliency detection algorithms and a set of combination
operators. The input saliency detection methods include algorithms from the state-
of-the-art: machine and non-machine learning algorithms. As a domain knowledge,
we include a set of combination operators typically used for the task, such as fuzzy
logic combination rules, morphological operations, and image processing filters. An
advantage of the proposed approach is that the output models explain and give in-
sight into which standalone methods are essential to improve the response to the
saliency detection problem. The results of this work were reported in the journal
article [27] and discussed in detail in Chapter 4.

1.5 Summary
Novelty detection is a fundamental problem in a wide variety of research areas. The
problem consists in recognizing data that are different in some aspect to the already
known data. This ability can be useful for tasks where data only describes normal
behavior, and it is not very easy to obtain novelty data for training. Some novelty
detection applications can be found in medicine, fraud and fault detection, video
surveillance, and robotics.

For robotics, novelty detection is particularly useful in autonomous robots be-
cause novelty can be used as stimuli to perform future action, to develop selective
learning, and to identify obstacles, potential problems, or something new to learn.

As novelty detection approaches commonly use machine learning algorithms,
some problems arise with their use. One of them is the proper selection of its
hyperparameters. In this thesis study, we proposed using automatic design concepts
into novelty detection and related areas.

We applied a bio-inspired optimization technique, called the artificial bee colony
algorithm, to tune online novelty detectors for visual novelty detection in the first
study case. In the second study, we proposed a genetic programming framework
to automatically combine saliency detection algorithms (which include machine and
non-machine learning approaches). Saliency detection is strongly related to novelty
localization in images.
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CHAPTER 1. INTRODUCTION

1.6 Thesis organization
Chapter 2 presents the related work and background in the problem of automatic
design and novelty detection.

Chapter 3 describes our methodology and the results of the system for visual
novelty detection. The system uses captured images by an unmanned aerial vehicle
in an outdoor environment. Besides, the chapter describes the two selected online
novelty detectors and the metaheuristic used to tune the behavior of the machine
learning techniques.

Chapter 4 shows our framework to design combination models of saliency detec-
tion algorithms automatically. This framework uses genetic programming to select
and combine saliency algorithms. Saliency detection has been used previously as a
way to localize novelty regions in images.

Chapter 5 shares our main observations and conclusions. We additionally present
the perspectives in this research. Finally, this chapter presents our scientific products
generated during the development of this research project.

University of Guanajuato 8



CHAPTER 2

Background

This chapter describes the problem of automatic algorithm configuration and the
available tools to tune existing algorithms. It also presents the novelty detection
problem, related areas, and existing methods. Finally, some works that have linked
both areas are described.

2.1 Automatic algorithm configuration
Traditionally, the design and development of algorithms have been addressed man-
ually, guided by personal experience and intuition, rule of thumb, and brute force
[28, 29]. This task is undoubtedly time-consuming, fatiguing, and hard to solve when
the user does not have in-depth knowledge about the algorithms.

Automatic algorithm configuration moves the design and development of algo-
rithms from human jobs to automatic tasks that explode the current capabilities of
computers. This area aims to explore complex configuration spaces by identifying
the best settings of an algorithm for a given problem. Automatic algorithm con-
figuration has recently been successfully applied for metaheuristic [28] and machine
learning algorithm design [30, 31].
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CHAPTER 2. BACKGROUND

2.1.1 Algorithm parameters

The performance of algorithms is strongly related to their parameter values (called
hyperparameters in the machine learning context); we can rarely find a parameter-
free algorithm. From the automatic perspective, the design and development of an
algorithm involve selecting parameters of different types [28]. The components of
the algorithms can be modeled by categorical parameters, e.g., the type of kernel in
the support vector data description. The parameters can be ordinals when there is a
notion of order but not a notion of distance, e.g., {cold, warm, hot}. The parameters
also model numeric variables, which include real and integer values. Besides, some
numeric parameters can emerge in depends on the value of other parameters; these
parameters are called conditional, e.g., in support vector machines with a polynomial
kernel, it emerges the parameter to define the degree. Once we identified the pa-
rameters, it is convenient to establish some regions where the automatic tool should
explore. In categorical and ordinal parameters, the alternatives should include the
whole set, while numeric parameters should have a range with a minimum and max-
imum values.

2.1.2 Automatic algorithm configuration problem

The automatic algorithm configuration problem can be formulated following [28].
Let � = (�1, . . . ,�Np) 2 ⇤ be a vector of parameters that describe an algorithm,
where ⇤ denotes the configuration space. Each parameter �i has an associated type
ti and a domain ri. Let FI(�) : ⇤ ! R be the objective function to measure the
performance of � in a set of instances obtained from the instance distribution I. The
automatic configuration problem is then defined as,

�
⇤ = argmin

�2⇤
FI(�) (2.1)

FI can be stochastic because the algorithm can incorporate stochastic decisions,
or the sampling of instances can also be stochastic. Estimating FI is computationally
expensive, particularly in large datasets, because it requires training a model by using
the parameters and then testing the performance on a validation set [30]. Also, in
some cases, to avoid overfitting, the above function includes cross-validation [32].

Figure 2.1 shows a graphical description of the problem and how the automatic
configuration tool communicates with the algorithm to be tuned.
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Figure 2.1: Generic description of the automatic algorithm configuration problem, adaptation from [28].

2.1.3 Automatic configuration tools

A wide variety of automatic configuration tools have been proposed in the literature
[28, 32]. The classical grid search is an exhaustive way to explore the configuration
space of an algorithm. It creates a grid of configurations and then evaluates all
of them. The main drawback of this approach is that the number of evaluations
of the objective function grows exponentially with the number of parameters. A
straightforward way to reduce the number of configuration evaluations is the use of
random search. Random search approaches explore configurations by selecting at
random each parameter independently. Although these approaches converge faster
than grid-based approaches, they explore many configurations because they do not
take advantage of the knowledge about well-performing configuration regions [31].
Gradient descent can be used for some particular configuration problems, where the
objective function is differentiable. However, when there is no analytic way to find
the derivative of the function, the derivative can be estimated by finite differences,
but this could be problematic because, in the context of automatic design, it is
computationally expensive to evaluate even a single configuration [30].

An alternative to avoid the explicit computation of derivatives and to take ad-
vantage of promising regions of well-performing configurations are the derivative-free
optimization algorithms, e.g., surrogate approaches, bio-inspired algorithms, and rac-
ing approaches. In the surrogate approach, the objective function is complemented
with a surrogate model. This model is used to predict the performance of a configura-
tion without evaluating the computationally expensive objective function. Examples
of this approach include Bayesian optimization techniques [29]. Bio-inspired algo-
rithms are applicable for various optimization problems because they do not assume
any property about the objective function. They have been successfully applied for
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automatic algorithm configuration problem [33]. These techniques use the simula-
tion of the evolution in nature or the collective behavior of some social species as
ants, bees, birds, and others. In automatic design, each technique uses a particular
mechanism to generate a population set of candidate configurations. During the
search, the mechanism for each technique tries to improve the quality of candidate
configurations until they reach a termination criterion. Bio-inspired techniques in-
clude (i) evolutionary computation techniques, e.g., genetic algorithms, evolutionary
programming, evolution strategies, and genetic programming; and (ii) swarm intel-
ligence, e.g., particle swarm optimization, ant colony optimization, firefly algorithm,
cuckoo search, artificial bee colony, among others. Some other approaches use rac-
ing to find the best configuration of an algorithm. The irace package implements
several iterative racing methods [34]. In iterative racing methods, the configura-
tions are sampled from a probabilistic model, then the configurations are discarded
based on statistical tests, and finally, the probabilistic model is updated based on
the well-performing configurations.

2.1.4 Related areas

Different communities have addressed the algorithm configuration problem. For ex-
ample, in the machine learning community, automated machine learning aims to
design and develop complete machine learning pipelines automatically [32]. In meta-
heuristics, the automatic algorithm configuration has been used for fine-tuning and
to construct new metaheuristics [28]. Another field in optimization related to au-
tomatic design is hyper-heuristics [35]. A hyper-heuristic is a search method or
learning mechanism used to select or generate heuristics to solve challenging compu-
tational search problems. It explores heuristics in the search space instead of directly
searching in the solution space.

2.2 Novelty detection problem
Novelty detection is the ability to identify test data that differ in some aspects to the
usual data [2]. The novelty detection problem is posed as a one-class classification
problem, where the objective is to differentiate the positive (normal) class from the
negative (novel) class [36]. Let X = {xi|xi 2 RD

, i = 1, . . . , N} be the normal
training set, the goal is to construct a model h(x|X, �) to represent the normal data,
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h(x|X, �) = I(f(x|X, �) < ✓)

=

⇢
1, if x is classified as normal
0, if x is classified as novel

(2.2)

where x 2 RD is a test point, I is an indicator function, f is a dissimilarity function,
✓ is the novelty threshold, and � is the complexity of the method, e.g., the number
of neighbors in the k-nearest neighbor algorithm, or the number of clusters in the
k-means algorithm.

In this representation, f estimates the dissimilarity between the test point x and
the target data X. When f represents the value of similarity, the sign should be
opposite (>). The user can specify the value of the novelty threshold ✓ or select a
fraction of rejected target points ✏. If ✏ is specified and f estimates dissimilarity, the
optimal threshold can be found by solving

min ✓

s.t.
1

N

NX

i=1

I(f(x|X, �) � ✓) = ✏
(2.3)

2.2.1 Novelty, outlier, and anomaly detection

Novelty detection is also referred to as outlier detection and anomaly detection in
some contexts. These terms appear to have the same meaning, and the methods for
these problems are often shared. Novelty, anomaly, and outlier detection share the
definition of finding patterns different from normal patterns [37]. However, on some
occasions, the terms do not necessarily reflect the same concept.

Both anomalies and outliers often refer to undesired patterns, irregularities, noise
events, artifacts, malicious activity, instrumentation error, change in the environ-
ment, and human errors [38, 39]. Gogoi et al. [40] also define outliers as aberrant
data, which may affect the system in such a way that it produces incorrect results. In
the above context, the novelty seems to be different. Novelty patterns are typically
incorporated into the model after their detection, while the model discards outliers.
Markou and Singh [41] defined outliers as a small fraction of normal data far away
from the normal data in feature space, i.e., training data contains outliers. The out-
lier detection methods aim to discard the outliers and focus in more concentrated
regions of normal data. From this perspective, it is clear that novelty is entirely
different because novelty represents unobserved data during training.
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In this thesis study, we consider novelty as identifying data that do not fit to
the target data distribution, taking into account that the training set does not con-
tain outliers. Besides, in our study, novelty represents new unobserved data during
training, and it can be incorporated into the model to perform continuous learning.

2.2.2 Methods for novelty detection

Novelty detection can be solved by using semi-supervised and unsupervised methods.
Semi-supervised methods assume that novel points are available during training to
convert the novelty detection problem into the classical two-class classification prob-
lem. Then, any standard multi-class classifier can be applied to solve the problem.
The first approach of semi-supervised methods consists of labeling each point in the
training set and applying a two-class classifier on the labeling dataset [42]. The
second approach generates artificial outliers according to a prior distribution. The
outliers are positioned in regions where normal data are absent, isolated, or close to
the boundaries [43, 44]. The success of artificial outlier generators depends on the
quality of the outliers, and it is hard to generate outliers close to the boundaries
without overlapping, particularly in high-dimensional problems [45]. Therefore, this
study focuses on unsupervised approaches, which only require normal data during
training.

Unsupervised novelty detection techniques are classified into five categories [2]:
probabilistic, distance-based, reconstruction-based, domain-based, and information-
theoretic techniques. As follow, we describe the five approaches; however, the readers
are referred to review [2] for a more detailed description.

Probabilistic approaches

Probabilistic approaches estimate a model of the normal class density, and regions
with higher density indicate a high probability of containing normal objects. This
model is then used with a novelty threshold to decide if a test point is normal or novel.
There are two families of probabilistic approaches for novelty detection: parametric
and non-parametric methods.

Parametric methods use probability density functions to construct the underlying
normal distribution model, such as Gaussian and mixture of Gaussians [46]. In the
mixture of Gaussians, the target class is modeled by using k different Gaussians,

fmg(x) =
kX

i=1

pi g(x|µi,⌃i) (2.4)
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where pi are the mixture weights, and g(x|µi,⌃i) are the component Gaussian den-
sities.

The classification of the test point x is defined as,

hmg(x) =

⇢
normal, if fmg(x) � ✓

novel, if fmg(x) < ✓
(2.5)

Standard optimization algorithms, such as Expectation-Maximization, can op-
timize the mixture of Gaussians (pi, µi, and ⌃i). Figure 2.2 shows a mixture of
Gaussians with k = 4 for modeling synthetic data. The gray points represent the
center of the Gaussians, and the solid black lines represent the decision boundary by
using a rejection rate of the target class ✏ = 0.01.

Figure 2.2: Mixture of Gaussians for novelty detection with four components (k = 4) on a subset of the banana
dataset. Black points, gray points, and solid black lines represent the training data, the centers of the Gaussians,
and the boundary (✏ = 0.01), respectively.

Non-parametric approaches use kernel density estimators, and they often refer to
Parzen windows [9]. Parzen window is a more flexible density estimator because the
probability density function uses a kernel function around each point in the dataset,

fparzen(x) =
1

N�

NX

i=1

K
�x� xi

�

�
(2.6)

where K(x) is the kernel function, e.g., Gaussian kernel, and � is the window width,
also known as bandwidth.

Parzen window detects novel points using a classification function in the same
form as the mixture of Gaussians. Figure 2.3 shows an example of novelty detection
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based on Parzen window. To build the boundary (represented by solid black lines),
we selected a bandwidth � = 0.25, and a rejection rate of the target class ✏ = 0.01.
The plot also shows the size of the region centered at each training point represented
by the dotted gray circles.

Figure 2.3: Parzen window for novelty detection with bandwidth � = 0.25 on a subset of the banana dataset. Black
points represent the target data, solid black lines represent the boundary generated by the model with ✏ = 0.01, and
dotted gray circles represent the size of the region center at each training point.

The main drawback of probabilistic approaches resides in finding the right model
to correctly describe the distribution of target data and estimate the novelty thresh-
old correctly. In general, probabilistic approaches exhibit a limited performance
when the training set is small. They also cope with difficulties in high-dimensional
problems, mainly when normal data are sparse in large spaces.

Distance-based approaches

Distance-based approaches use well-established distance metrics to determine if a
point is normal or novel without any assumption about the target class distribu-
tion. We can identify two distance-based approaches: nearest neighbor (NN)-based
approaches and clustering-based approaches.

NN-based approaches assume that normal points have nearest neighbors in the
training set, while novel points are located far away. Tax and Duin [47] proposed
one of the first methods for novelty detection based on NN, named one-class clas-
sification method NN-d (or NN-d rule). The rule defines the novelty indication as
the quotient between the distance from a test point x to its nearest neighbor NN(x)
in the training set, and the distance from the nearest neighbor NN(x) to its nearest
neighbor NN (NN (x)) in the training set,
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fNNd(x) =
||x� NN(x)||

||NN(x)� NN(NN(x))|| (2.7)

In the NN-d rule, L2-norm was used for distance calculation and the test point x
is novel if fNNd(x) is larger than ✓ = 1.0. Figure 2.4 shows the boundaries generated
by the NN-d rule with artificial data represented by black points. In the plot, the
solid black lines represent the boundary, and the dotted gray circles represent the
target region for each point.

Figure 2.4: One class nearest neighbor method for novelty detection on a subset of the banana dataset. Solid lines
and dotted lines represent the boundary and the aceptation region for each points, respectively.

An extension of the NN-d rule called k-NN, computes the average distance be-
tween the test point and its k nearest neighbors in the training set. If the average
distance is larger than a predefined threshold, then the test point is novel. Recent
advances in NN-based approaches include the Nearest Neighbor Domain description
rule (NNDD) [48], which establishes that a test point is normal if the nearest neighbor
distance lies within a threshold. Let r be a Minkowski metric, r 2 {1, 2, ...,1}. The
NNDD rule computes the distance d from the test point x to its k-nearest neigh-
bors in the training set �k(x) = (d(x,NN1(x)), . . . , d(x,NNk(x))), where NNk(x)
represents the k-nearest neighbor of x. The novelty indication is defined as,

fNNDD(x) = sign(✓ � ||�k(x)||r) (2.8)

The classical implementation of nearest neighbor approaches requires storing all
the training dataset and computing the distance from the test point to the whole
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dataset. It is computationally expensive, particularly in high-dimensional datasets.
Therefore, these methods commonly lack scalability. In order to reduce the above
requirements, some methods reduce the size of storing. These methods include
training-set consistency, which aims to select a training subset to classify the data
correctly using the NN-d rule [49] and prototype-based nearest neighbor approaches
that use prototypes to represent the training set [50]. Other exciting approaches use
tree representation of the training data and apply the distance from the point to the
closest edges of the tree as a novelty indication [36].

The clustering approaches also use the concept of prototypes to characterize the
training dataset, and they often apply k-means or hybridization-based on k-means
to find the set of prototypes [51, 52]. The k-means algorithm determines the position
of k cluster centers which minimize the sum of squared distances between each point
in a dataset and its nearest cluster center. Let C = {cj|cj 2 RD

, j = 1, . . . , k} be
the set of centers, the objective in k-means is

min
C

1

N

NX

i=1

kX

j=1

Ii,j||xi � cj||2

Ii,j =

(
1, if ||xi � cj|| = min

j
||xi � cj||

0, otherwise

(2.9)

In the detection phase, clustering approaches compute the distance from the test
point x to its closest prototype and use this distance as a novelty indication,

fkmeans(x) = min
j

||x� cj||2 (2.10)

If fkmeans is larger than a threshold, then the test point is novel. Figure 2.5
illustrates the boundary of the k-means algorithm for novelty detection with four
prototypes (represented by the gray points). We found the optimal novelty threshold
by setting a rejection rate of ✏ = 0.01.

Reconstruction-based approaches

Reconstruction-based approaches aim to learn a compact representation of the train-
ing data by minimizing the error between the inputs and the outputs of the system.
Let x̂ be the reconstructed version of an input x, the reconstruction function com-
monly adopt the form frec(x) = ||x� x̂||. if frec is larger than the threshold ✓, then
the input is novel.
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Figure 2.5: k-means algorithm for novelty detection on a subset of the banana dataset. Decision boundary with four
prototypes (represented by the gray points) and a rejection rate of the target class ✏ = 0.01.

Reconstruction-based approaches are classified into subspace-based methods and
neural network-based methods. Subspace-based methods transform data into a lower
dimension subspace, where target data can differentiate more easily from novel data.
Examples of these methods include Principal Components Analysis (PCA) and vari-
ants [53, 54]. In the standard PCA, the input data are normalized and projected
in a space where its orthogonal axes maximize the input data variance. For nov-
elty detection using PCA, the k eigenvectors are used to reconstruct the input data.
Let U(k) be the set of k eigenvectors, so the test point x can be reconstructed by
x̂ = U(k)U

T
(k)x and the reconstruction error is defined as,

fpca(x) = |||x�U(k)U(k)
Tx||2 (2.11)

An improvement in the standard PCA, called kernel PCA [55], incorporates a
function � to map data points from input space to a high-dimensional feature space.
Standard PCA can be computed such that input vectors only appear in the form
of scalar products x · y. In kernel PCA the scalar products appears in the form
(�(x) · �(y)). Kernel PCA omits the explicit transformation of a point to feature
space; instead, it uses kernel functions K(x,y). It is worth mentioning that the
standard PCA can be obtained as special case of kernel PCA with kernel function
K(x,y) = (x · y). Figure 2.6 shows the standard PCA for novelty detection. We
selected the first component of the PCA to reconstruct the input data and a rejection
rate of ✏ = 0.01. In the plot, solid black lines represent the boundary.

Network-based approaches include feed forward networks [56], Hopfield network
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Figure 2.6: Boundary generated by the standard principal component analysis with one principal component on a
subset of the banana dataset. To build the boundary, we fixed the rejection rate to ✏ = 0.01.

[57], self-organizing network [58], and autoencoders [59]. These networks have re-
strictions in their operation because they keep a fixed network structure during the
whole training. Alternatives able to address this problem are growing networks,
which can add or remove nodes in the network during training, for example, grow-
when-required (GWR) neural networks [15], growing neural gas [60], and evolving
connectionist systems (ECoS) [61, 62].

Figure 2.7 shows an example of growing neural networks for novelty detection.
This figure presents the reconstructed points by the GWR network (gray points)
and its topological connections (solid gray lines) in a subset of the banana dataset.
Each node of the network has habituation based on the number of times the node
fires during training. In the detection phase, for the test point x the network finds
the best matching node s and uses the habituation of this node (called hs) and the
reconstruction error (a(x) = exp(�||x � s||2)) as a novelty indication. The rule to
detect a novel point is defined as hs < hT and a(x) < aT , where hT and aT are the
habituation, and activation thresholds, respectively.

The reconstruction-based approaches are more flexible than probabilistic ap-
proaches because they do not assume any target data properties. In general, the
models are compact because they require less storage capability, and therefore they
generate fast inferences. Notably, the growing networks are suitable for continu-
ous novelty detection, particularly useful for robotic applications. However, these
kinds of networks are hard to train in high-dimensional problems, and they are also
sensitive to their parameter values.
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Figure 2.7: Data points reconstructed by GWR and its topological connections on a subset of the banana dataset.
The gray points represent the reconstructed points; the solid gray lines represent the topological connections, and
the solid black lines represent the decision boundary. GWR used three epochs, an activation threshold of 0.9, and a
habituation threshold of 0.3. The network consists of 69 nodes and 148 edges.

Domain-based approaches

Domain-based approaches enclose the target data with decision boundaries maxi-
mizing the margin between classes in feature space. Variants of the support vector
machine (SVM) are the most popular domain-based methods for novelty detection.

In one-class SVM [63], the objective is to find a hyperplane w, which best sepa-
rates the data xi from the origin in feature space. To this end, the following quadratic
problem is solved,

min
w, ⇠, ⇢

1

2
||w||2 + 1

vN

X

i

⇠i � ⇢

s.t. w ·�(xi) � ⇢� ⇠i, ⇠i � 0

(2.12)

where ⇠i are slack variables, ⇢ is the offset of the hyperplane, v 2 (0, 1] is a parameter
to control the fraction of data separated by the hyperplane, and �(·) is a function
which maps a data from input space to feature space.

The inequality constraint can be incorporated into the function by using Lagrange
multipliers, and by fixing the partial derivatives to zero, we obtain the following dual
problem,
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min
↵

1

2

X

i,j

↵i↵jK(xi,xj)

s.t. 0  ↵i 
1

vN
,

X

i

↵i = 1
(2.13)

where K(x,y) is a kernel function, for instance the Gaussian kernel, and ↵i are the
Lagrange multipliers. Data points with corresponding ↵i > 0 are called support
vectors.

The support vectors are used to compute the offset of the plane and the decision
function,

⇢ = (w ·�(xi)) =
X

j

↵jK(xj,xi) (2.14)

fOCSVM (x) = sign
�X

i

↵iK(xi,x)� ⇢
�

(2.15)

where sign(z) is a sign function which returns 1 when z � 0 (normal points) and -1
otherwise.

Another approach called support vector data description (SVDD) [64], uses a
hypersphere instead of hyperplanes to surround all or most of the normal data, also
by setting the decision boundary with only support vectors [65]. The hypersphere is
characterized by a center a and a radius R > 0. The objective is to minimize the
volume of the hypersphere,

min
R,a, ⇠

R
2 +

1

vN

X

i

⇠i

s.t. ||�(xi)� a||2  R
2 + ⇠i, ⇠i � 0

(2.16)

where v is a parameter to control the trade-off between the volume of the hypersphere
and the number of rejected points; and ⇠i are slack variables to relax the distance
from �(xi) to a.

By introducing Lagrange multipliers in the above function and by fixing the
partial derivatives to zero, we obtain the following dual problem,

min
↵

X

i,j

↵i↵jK(xi,xj)�
X

i

↵iK(xi,xi)

s.t. 0  ↵i 
1

vN
,

X

i

↵i = 1
(2.17)
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where ↵i are the Lagrange multipliers.
In the SVDD, the center of the hypersphere is computed as the linear combination

of the support vectors,

a =
X

i

↵i�(xi) (2.18)

The test point x is considered novel, if the distance from �(x) to the center of
the hypersphere is higher than the radius R,

fSVDD(x) = sign
⇣
R

2 �
X

i,j

↵i↵jK(xi,xj) + 2
X

i

↵iK(x,xi)�K(x,x)
⌘

(2.19)

and,
R

2 = K(xl,xl)� 2
X

i

↵iK(xi,xl) +
X

i,j

↵i↵jK(xi,xj) (2.20)

where xl are the support vectors with their corresponding Lagrange multiplier 0 <

↵l < 1/(vN).
Figure 2.8 shows the SVDD for novelty detection. The classifier used a rejection

rate of ✏ = 0.01 and generated eight support vectors in a dataset of 356 points. In
the plot, gray points represent the support vectors, and solid black lines represent
the decision boundary. It is worth mentioning that the OCSVM, under the same
parameters, produces visible results similar to the SVDD in this particular dataset.

Figure 2.8: Novelty detection based on SVDD on a subset of the banana dataset. Boundary generated are marked
by solid lines with a rejected rate of ✏ = 0.01. Gray points represent the support vectors.
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Domain-based approaches construct the decision boundary by using only points
close to it in features space. The rest of the data is not considered for setting the
decision boundary. These methods have drawbacks related to the complexity associ-
ated with the computation of the kernel functions, the selection of an appropriated
kernel, and its parameters to control the boundaries.

Information-theoretic approaches

Information-theoretic approaches compute information measures, e.g., entropy or
divergence, to obtain information about the data. These methods assume that novel
data significantly contributes to the value of the information measure, and they work
well when there are many novel points. However, these methods are computationally
expensive and sensitive to the selection of the measure. Besides, it is not easy
to compute a novelty score for a single test point. There are several examples of
information-theoretic approaches for novelty detection, see [66, 67].

Other approaches

Another exciting direction for novelty detection is the use of rule-based methods.
These approaches generate rules based on the behavior of the target data, and they
assume that a point not explained by any rule is novel [68, 69].

Recently, deep learning algorithms have shown a new open area into novelty de-
tection. We identify two approaches: deep networks as feature extraction techniques
and deep end-to-end learning. The first approach combines the ability of deep net-
works to extract features with the ability of one-class classifiers to model the target
class. In this category, some approaches learn the features and the classifier [7, 70]
simultaneously, and other approaches use pre-trained networks for feature extraction
and then apply traditional novelty detectors to learn the model of target class [71].
The second approach, deep end-to-end learning, uses deep learning for the whole
process of novelty/anomaly detection, e.g., convolutional autoencoder (AE), adver-
sarial convolutional autoencoder (AdvAET), variational autoencoder (VAEs), and
generative adversarial networks (GANs) [72, 73]. These techniques are also part of
the reconstruction-based approaches.

2.3 Automatic configuration of novelty detectors
The success of novelty detectors strongly depends on selecting their hyperparameter
values [74, 75, 76]. Several attempts which use automatic design techniques have been
proposed to face this task. Automatic design techniques require a selection criterion
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to optimize the hyperparameters. However, the selection criterion is hard to obtain
because novelty detection is an imbalanced problem wherein most of the cases, there
are not novelty data available, or they are few compared to the normal data. Existing
methods to select proper hyperparameters are based on three different approaches:
(i) selection based on the target class only, (ii) selection based on synthetic data,
and (iii) supervised selection.

In selection based only on the target class, some measures extracted from the
normal data estimate the quality of a candidate novelty detector. Tax and Müller
[74] proposed a consistency measure that uses the error in the target class to tune a
single hyperparameter. The hyperparameter determines the complexity of the clas-
sifier. Higher complexity represents a better adaptation to the target set, but with
the risk of overfitting. In their algorithm, they increase the value of the hyperparam-
eter until the classifier becomes inconsistent, i.e., when the classifier rejects a certain
number of target elements. Some other works also consider the consistency measure
to select and combine different novelty detectors. Krawczyk [77] proposed a firefly
algorithm for ensemble pruning and weighting of one-class classifiers. They used an
objective function based on the consistency measures to select the best combina-
tion model. Parhizkar and Abadi [78] implemented an automatic design technique
based on a binary artificial bee colony algorithm for the construction of one-class
classifier ensembles. They differ from the previous work in the selection mechanism.
They proposed an objective function which weights the consistency measure and a
non-pairwise diversity measure. Xiao et al. [79] proposed a Kullback-Leibler (KL)
divergence measure to perform the selection. They first split the target data into edge
and interior samples; then, they apply a grid search to maximize the KL-divergence
between both sample sets.

In methods based on synthetic data, the methods first generate artificial outliers
and then apply an optimization technique to find the best hyperparameter values.
They commonly adopt a selection criterion based on the misclassification rate of
both classes. Xie [80] generated artificial outliers based on a uniform hyperspherical
distribution generation method. Then they applied a constrained particle swarm
optimization technique to select the best hyperparameters. Wang et al. [75] proposed
a mechanism to generate artificial outliers and target data efficiently. They then
applied a grid search to minimize the classification error with these synthetic data.
The success of this methodology depends on how well the outliers are placed in
the space. Poor placement can produce a poor performance of the tuned novelty
detectors [76].

What constitutes novelty is inherently application dependent [56]. Contrary to
the previous approaches, supervised techniques consider specific scenarios to select
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the best hyperparameters. The advantage of using novelty detectors in this fashion
is to face the imbalanced nature of the problem, where the supervised selection of
novelty detectors has proved to obtain much better results than multi-class clas-
sification [81]. In this approach, the novelty detectors are executed several times
with different hyperparameters values using only normal training data. Then, the
performance of novelty detectors is estimated by using a validation set with labeled
normal and novelty samples. Zhuang and Dai [82] used a grid search to select the
hyperparameters of a novelty detector with an objective function that maximizes
the accuracy in both normal and novel data. Haggett and Chu [56] designed novelty
detectors automatically based on neural networks by using the neuroevolution of
augmenting topologies. They compensated the imbalance of data using an objective
function with higher weighing to the correct novel data.

2.4 Summary
Novelty detection has been posed as a one-class classification problem, where the
objective is to differentiate the positive class from the negative class. Commonly, this
problem has been addressed by machine learning techniques, where their performance
strongly depends on their hyperparameter values.

Automatic configuration design tools provide an alternative for automatically
tuning the hyperparameter values using a selection criterion and an optimization
technique. However, the selection criterion is hard to obtain because novelty detec-
tion is an imbalanced problem, where there are few or none novelty data and a large
number of normal data. Existing methods to select proper hyperparameter values are
based on three different approaches. The first approach uses only information about
the positive class by establishing error measures in the training data to find more
flexible boundaries, avoiding overfitting. The second approach generates artificial
data to estimate the performance of the novelty detectors. This approach depends
on the artificial data position, where poor placement generates poor performance in
the tuned detectors. Finally, the third approach, called supervised hyperparameter
tuning, faces the imbalanced novelty problem by exploiting the few novelty samples
available to generate the proper hyperparameters for specific-application scenarios.
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CHAPTER 3

Tuning novelty detectors for specific

robotic exploration and inspection

tasks

In this chapter, we present an automatic design tool based on bio-inspired opti-
mization techniques, specifically the artificial bee colony algorithm, for tuning online
machine learning approaches in the problem of visual novelty detection. The novelty
detectors are tuned to solve specific exploration and inspection tasks in an outdoor
environment, where an unmanned aerial vehicle executes a path while it captures
images from the environment. The novelty detectors are trained with only normal
images to construct a model of the environment, and then this model is used to
detect novel objects added to the environment.

3.1 Introduction
Inspired by the ability of animals to detect novelties and to respond to changes
in their environment [58], researchers have tried to incorporate novelty detection
methods into robots to improve their adaptation capability to dynamic environments
often present in real-world robotic tasks. Nowadays, it is possible to capture useful
information to perform this process using sensors incorporated into robots such as
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sonars, laser, cameras, GPS, and others. Among them, visual sensors are one of the
most popular devices to extract information for novelty detection [83, 84, 8].

In robotics, a novelty detection module is beneficial for several applications, e.g.,
exploration, inspection, and surveillance. Specifically, in exploration and inspection
tasks [8], the robot should explore its environment, building a normality model using
the information sensed. After the model construction, the robot patrols (inspection
phase) the same route of the exploration phase to detect novelties.

For the above problem, the robot needs online novelty detectors to cope with dy-
namic environments and approaches with fast learning capabilities to detect novelties
in scenarios with a reduced amount of information. Most of the traditional one-class
classifiers operate offline, which means that it is difficult to adapt these methods
to dynamic environments. Meanwhile, deep learning approaches need large-scale
datasets and a huge computation load to train the models. Alternatively, online ap-
proaches based on evolving connectionist systems [8] and grow-when-required neural
networks [1] meet the above conditions. These methods not only build a model of
normality incrementally, but they also adapt the model to dynamic changes of the
input data, i.e., they can insert new information and forget old information. How-
ever, we still see challenges in applying online novelty detectors into exploration
and inspection tasks based on visual information. First, current robotic applications
have used low-level visual features sensitive to illumination changes, occlusion, or
geometric transformations. Some visual features used in robotic applications are
RGB histograms [8], color angular indexing [85], GIST descriptor [84], and others.
Second, in different exploration and inspection tasks, the robots use the same pa-
rameters in the novelty detection module, without considering that the performance
of the detector depends on the specific task to solve. These reasons have restricted
the applications of the above online novelty detectors to indoor environments, where
many conditions have been controlled.

Motivated by the previous issues, in this work, we propose to apply novelty de-
tectors based on evolutionary connectionist systems and grow-when-required neural
networks with visual descriptions drawn from deep convolutional networks for explo-
ration and visual inspection tasks. In contrast with existing deep learning approaches
for novelty detection, we propose using previously trained networks to extract visual
features, instead of learning new visual features to reduce the computational load
in the feature extraction phase. We prefer deep descriptions over traditional visual
descriptors due to its reliability in generating robust features for classification tasks.
Additionally, we propose a framework to automatically design novelty detectors via
selecting the best parameters, depending on the specific robotic exploration and in-
spection task. This framework uses a global optimization technique as the main
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component to find the most appropriate parameters for the task. We verify the util-
ity of the proposed visual novelty detection system in outdoor applications, where an
Unmanned Aerial Vehicle (UAV) captures images in challenging environments, i.e.,
environments with illumination changes, geometric transformations in the objects of
the environment, and occlusions.

The rest of this chapter is structured as follows. Section 3.2 presents the related
work in novelty detection. Section 3.3 presents our visual-based novelty detection
approach. Section 3.4 describes the experimental setup and compares our experi-
mental results against traditional visual novelty detectors. In Section 3.5, we discuss
the results and limitations of the work.

3.2 Related work
In robotics, several applications use novelty detection algorithms, which are partic-
ularly suitable methods for continuous learning of the environment. Marsland et al.
[1] proposed a novelty detection system for mobile robots based on a GWR neural
network. Neto et al. [86] applied the GWR network with visual information as
input. They proposed a framework that combines a visual attention model and a
visual description of the more salient points in the image based on color angular
indexing and the standard deviation of the intensity. This type of description is
invariant to illumination changes; however, it is infeasible to detect new objects out-
side the attention regions. Neto and Nehmzow [85] used the novelty detectors based
on GWR and incremental PCA with two interest point detectors: the detection
based on saliency and the Harris detector. They compared two ways to represent
the patches in the visual input (raw pixels of the image). The first method keeps a
fixed size of the patch, while the second one automatically finds the patch size. The
results often showed that the fixed-size approach presents the best results. Inspired
by Evolving Connectionist Systems (ECoS) and the habituation model proposed in
the GWR networks, Özbielge [8] proposed a recurrent neural network for novelty
detection for exploration and inspection tasks. This method predicts the next in-
put and computes a novelty threshold value during its operation. This information
is used and compared to the observed input to decide if it is novel. The system
uses laser readings, motor outputs, and RGB color histograms as input informa-
tion. Also, Özbielge [62] proposed a dynamic neural network for static and dynamic
environments. The method computes the novelty in a similar way to the previous
approach, it computes the error between the input observation and the prediction of
the network, and if the error is higher than the evolved threshold, then the object
is considered a novelty. Pitonakova and Bullock [87] used the GWR networks in a
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simulation environment with visual inputs. They compared several GWR architec-
tures and found a trade-off between robustness in the performance of the networks
based on their parameter values and the fidelity of the learned models. Besides, they
proposed some improvements to balance this trade-off, e.g., variable length of input
connections.

Kato et al. [84] implemented a system based on reconstruction that takes ad-
vantage of the position where the robot captured the images. The novelty detector
used the GIST descriptor and a reconstruction-based approach to generate a system
invariant to illumination changes. A principal limitation of their system is the ab-
sence of a threshold value to detect novelties. Gonzalez-Pacheco et al. [88] developed
a novelty filter to detect new human poses. The system uses visual information of
the Kinect sensor and four one-class classifiers: Gaussian Mixture Model, K-means,
One-Class Support Vector Machines, and Least Squares Anomaly Detection. For
this task, the Gaussian Mixture Model performs better than the other novelty detec-
tors. However, the performance of the method depends on the number of specified
Gaussians (the user defines this value in the experiment). Recently, Gatsoulis and
McGinnity [11] proposed an online expandable neural network similar to the GWR
network. The method uses Speeded-Up Robust Features (SURF) and an ownership
vector for feature description.

All the above novelty detectors have been applied for indoor environments, and
few works have been proposed for outdoor environments. For instance, Wang et
al. [89] implemented an approximation to the nearest neighbor via search trees to
detect novelties in indoor and outdoor environments (for the case of the outdoor
environment, they used a static camera). The inputs are visual features extracted
from patches, such as color histograms in the HSV space (Hue, Saturation, Value)
and texture information (Gabor filters). They compared the performance of their
system against the GWR network. The results showed that the proposed approach
is better than the GWR network in their particular experiments. Ross et al. [9]
presented a vision system for obstacle detection based on novelty for field robotics.
The motivation in the use of novelty is that it is infeasible to train a system with all
types of obstacles in agricultural applications. The inputs of the detector are color,
texture, and position of the patches in stereo images. The system detects novelty by
using the probability density estimated by a weighted version of Parzen windows.

Previous works have explored low-level visual features for image description such
as color angular indexing, GIST descriptor, RGB raw values, RGB color histograms,
HSV histograms, and Gabor filters. Few efforts take advantage of emerging deep
convolutional neural networks for feature description in visual novelty detection. One
of them is the robotic system proposed by Ritcher and Roy [59]. The objective of their
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work was to develop a robot with a safe navigation module. An autoencoder network
composes the novelty detection module with three hidden layers that automatically
find compressed representations of small input images. The goal of the network is
to reconstruct the input image, and if the error between the input and the output is
higher than an error tolerance, then the system will detect the novelty and use it to
maintain the safety of the robot.

3.3 Materials and methods
In this section, we describe the proposed system for visual exploration and inspection
tasks. In this work, we use images captured by an UAV that operates in outdoor en-
vironments. Figure 3.1 illustrates the proposed system. In the exploration phase, the
UAV follows a fixed trajectory and captures images of the environment. The system
represents the captured images via deep features by using a pre-trained convolutional
neural network, called MobileNetV2 [17]. The novelty detector processes the feature
vector and constructs a model of the environment. The user can select between two
detectors: Simple Evolving Connectionist Systems (SECoS) or GWR network. Fi-
nally, in the inspection phase, the UAV again executes its path and searches for novel
objects. The UAV uses the above model to identify novelties. Then, we describe in
more detail the components of the proposed visual novelty detection system.

Exploration phase

Image (640x480)

t1

tn-1
…

tn

Deep Feature
Extraction

MobileNet 
V2
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GWR

Novelty Filter

Feature vector

…
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Inspection phase

Normal data

Novelty Indication
…

…

t1

tm-1 tm
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Figure 3.1: Graphical description of the proposed system for visual exploration and inspection tasks.
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3.3.1 Visual feature extraction

One way to represent the images is via visual feature vectors. Among the visual
features, traditional features as RGB color histograms [8], color angular indexing
[83], and the GIST descriptor [84] have been applied for visual novelty detection
in robotics. However, traditional visual features are highly sensitive to illumination
changes, noise, occlusion, or geometric transformations. Recently, convolutional neu-
ral networks have been applied successfully as powerful tools to extract features from
images [90], having robust performances in a wide variety of classification tasks.

Motivated by the success of convolutional neural networks as feature extraction
methods, we propose to apply a convolutional neural network to extract features from
images for the task of visual novelty detection in robotics. In this work, we selected
MobileNetV2 [17] because it is the network with the lowest number of parameters
in the Keras API and the TensorFlow engine. In our implementation, we used the
pre-trained network with the weights trained on the ImageNet dataset. In order to
extract the visual features, we resize the input image to the default size in the Keras
API of 224⇥ 224 pixels. We also deactivate the classification layer and activate the
average pooling mode for feature extraction. We obtain visual feature vectors of
1280 elements.

3.3.2 Novelty detectors

We have selected two online novelty detection methods that are used as the base to
develop exploration and inspection tasks with real robots [8, 83, 1]. Both techniques
are constructive and can evolve the structures of the models and their parameters
during their operation. We selected the SECoS and the GWR network.

Simple evolving connectionist systems

The ECoS, proposed by Kasabov [91], are a type of neural network that can evolve
their parameters and their structure over time. Below, we show the characteristics
of the ECoS that make them attractive to address the problem of visual novelty
detection in robotics [61]:

• Fast learning capabilities (one-pass learning).

• Online learning and incremental adaptation to new data.

• The model is evolved to adapt to the input information, and the examples are
added to the model when they are different in some aspects to the current
model of the data.
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The SECoS conserve these characteristics [16], but they present two advantages
concerning the other ECoS implementations. The SECoS are easy to implement be-
cause they have a low number of layers to learn the input data, and they work directly
on the input space. Figure 3.2 shows a graphical description of the SECoS network.
Three layers compose the network: the input layer which transfers the inputs to the
nodes of the next layer; the hidden layer (evolving layer) which incorporates new
nodes to represent novel data; and the output layer which uses saturation linear
activation functions to compute the output. We can observe that in SECoS network,
there exist two connection layers: the connections between the nodes of the input
layer and the nodes of the evolving layer (incoming connections), and the connections
between the nodes of the evolving layer and the nodes of the output layer (outcoming
connections).

Evolving 
layer

Input 
layer

Output 
layer

Incoming 
weight vector

new 
node

Outcoming 
weight vector

Figure 3.2: Graphical description of the SECoS network. Adaptation of the general ECoS representation from Watts
[61].

In this work, we use the SECoS learning algorithm proposed by Watts and
Kasabov [16]. The algorithm receives as input the weights of the connections in
the network, the input features, and the desired output. The proposed approach
uses a SECoS implementation with the same number of nodes in the input layer
and the output layer. The objective of the approach is to generate a system able to
reconstruct the input vector. When the model generated by the SECoS implementa-
tion is not able to represent an input, it should add a new node in the evolving layer
with the incoming weight values equal to the input vector and the outcoming weight
values equal to the desired output. Also, it should add a new node to the model
when the reconstructed output is significantly different from the desired output, i.e.,
the Euclidean distance between the desired output and the current output of the
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network is greater than the threshold Ethr. When the model can represent a given
input successfully, the SECoS implementation only updates the model (updating
of the connection weights) to represent better the input data. The parameters of
this learning model include the learning coefficients (⌘1, ⌘2), the sensitivity threshold
(Sthr), and the error threshold (Ethr). For more details about this learning algorithm,
the readers can refer to the work by Watts and Kasabov [16].

Grow-when-required neural network

GWR is an online self-organized neural network proposed to solve the novelty detec-
tion problem [15]. Figure 3.3 shows a graphical representation of the GWR neural
network. A clustering layer of nodes and a single output node compose the network.
The nodes in the clustering layer use weight vectors to represent the centers of the
clusters. The GWR network can add and remove nodes to its structure, specifi-
cally in the clustering layer, to adapt to the changes of the inputs. The connection
synapses to the clustering layer in the network are subject to a habituation model,
which is a reduction in response to similar inputs.

new 
node

Output node

Clustering layer

Input features

Habituable synapses

Figure 3.3: Graphical representation of the GWR neural network. Adaptation of the network architecture presented
by Neto et al. [86].

In the proposed framework, we use the algorithm of the GWR network for novelty
detection described by Neto [83]. The network starts with two dishabituated nodes
with weight vectors initialized to the positions of the first two input vectors. At the
beginning, there are no topological connections between both nodes. From the third
input vector, the best matching node s and the second best matching node t of the
clustering layer are found, i.e., the nearest nodes to the input vector. If there exists
a topological connection between both nodes, its age is set to zero; otherwise, the
connection between both nodes is created with age zero. The GWR network uses
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the activation and habituation level of the node s to decide if the input is novel or
not. If the input vector is novel, a new node in the clustering layer is created with
its weight vector initialized to the average position between the input vector and the
best matching node. Also, the topological connections of the nodes in the clustering
layer are updated by removing the connection between the best matching nodes and
inserting new connections between the best matching nodes and the created node.
Then, the best matching node and its topological neighbors update their positions
in the direction of the input vector and also update their habituation levels. Finally,
all the connections increase their ages and all connections with ages higher than the
maximum age are removed. When a node has no topological connections is also
removed (ability to forget).

The parameters that impact the behavior of the network are the parameters of
the habituation model, the activation threshold (aT ), the habituation threshold (hT ),
the proportionality factor (⌘), and the learning rate (✏). A detailed description of
the learning algorithm of the GWR neural network can be found in [83].

3.3.3 Automatic configuration of novelty detectors

One of the main problems in the application of novelty detectors is the proper selec-
tion of their parameters in order to obtain the best results regarding the accuracy in
the detection. With this in mind, we propose a framework to tune the novelty de-
tectors automatically for a specific task, see Figure 3.4. Our optimization approach
not only searches for parameters of the novelty detectors but also finds the best size
of the visual feature vector.

In this work, we propose the use of Artificial Bee Colony algorithm (ABC) [13] as
the optimization tool. It is worth noting that although in this work we show the use
of the ABC algorithm, in the proposed framework we can incorporate different algo-
rithms to find the more appropriate parameters of the filters to solve specific tasks.
The ABC algorithm offers a population-based approach for numeric optimization. In
the ABC algorithm, artificial bees update their position during the time to find the
best food sources. This algorithm has shown to be better than or competitive with
other bio-inspired optimization techniques. Besides, we can find applications of the
ABC algorithm for a wide variety of engineering problem such as image processing,
data mining, control, mobile robotics [13]. The implementation details of the algo-
rithm can be found in Mernik et al. [92]. In the proposed methodology, we use an
implementation with termination condition based on the number of iterations, also
known as ABCimp1 .

In our implementation of the ABC algorithm, each food position represents a set
of parameter values of the novelty detector. Table 3.1 shows the parameters that
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should be adjusted by using the ABC algorithm. The search range of all the decision
variables is in [0, 1]. In the case of the GWR novelty filter, we set the parameters
of the habituation model to the default values, and also we keep as constant the
maximum age value. The details about the ABC algorithms are as follow. We use a
population of 20 food positions and a total number of 100 iterations.
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Figure 3.4: Flowchart of the visual novelty detection for specific tasks. In the training phase, the novelty filter
learns to detect a specific object. In the inspection phase, the evolved model is used to detect the object(s) in the
environment.

3.4 Experimental preparation
We validate the performance of the proposed methods by using images captured by
a real robot in outdoor environments. We construct the datasets using these images
to train and to test the novelty detection systems. We designed an experiment
to compare the deep visual feature extraction technique against largely used visual
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Table 3.1: Parameters to be tuned for each novelty detector.

Novelty detector Parameter Description

SECoS

⌘1 Learning rate 1
⌘2 Learning rate 2
Sthr Sensitivity threshold
Ethr Error threshold

GWR

aT Activation threshold
hT Habituation threshold
⌘ Proportionality factor
✏ Learning rate

features for the problem of visual exploration and inspection. In summary, in this
section, we describe the datasets, the methods for comparison, the experimental
setup and the evaluation metrics.

3.4.1 Datasets

In this work, we construct the dataset with images captured by the visual sensor of an
UAV. For this purpose, we use a Parrot Bebop 2 Drone with a 14 Mpx flight camera.
The captured images have a dimension of 1920⇥1080 pixels, but we constrained the
search in the center region of the images with a reduced field-of-view of 640⇥480
pixels. Figure 3.5 shows the UAV used for data acquisition. It is worth noting that
the novelty detector systems receive images of the environment every 250 ms.

Visual sensor system

Parrot Bebop 2 Drone

Figure 3.5: Parrot Bebop 2 Drone with a 14 Mpx flight camera. In the bottom-left corner, we show its visual sensor
system.

Figure 3.6 illustrates the outdoor environment used in this experiment. The
UAV executes its default execution control module to flight over the environment in
a rectangular shape. In order to generate the datasets, the UAV should execute the
same path several times with different environment setups.

In the first set of experiments, the UAV flew at 2 m above ground with morning
light conditions (around 11:00 and 12:00). The original environment contains an
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Figure 3.6: Experimental setup: the outdoor environment, and some sample captured images.

orange trash can (we called O-1 to this environment). First, the UAV explored the
O-1 environment, executing two times its path. The UAV captured a total of 896
images, 448 for each execution. Then, it executed the inspection phase and captured
another 896 images. In this inspection phase, a person appeared in the environment
(we denote this new environment as O-2). The sequence contains 60 frames with
the person. In the second experiment, we added a tire to the O-1 environment (we
denote this environment as O-3). The UAV captured a total of 896 images. The tire
is present in 58 frames. Finally, the UAV executed its path in the environment with
the person and the tire at the same time. The UAV captured another 896 images in
its two path executions. In total, the person is present in 37 frames, and the tire is
present in 64 frames. We identify this environment as O-4.

We developed a second set of experiments to test the robustness of the proposed
method, considering different scales, types of occlusions, novel objects, and light
conditions. In this new set, the UAV flew at 4 m above ground with afternoon
light conditions (around 16:00 and 17:00). The methodology to capture the image
sequences was similar to the first set of experiments, but with some differences in
the settings of the environments. We introduced environment O-5, where the orange
trash can was removed. We designed another environment with a person in a different
position, and named it O-6. To test the robustness of the proposed method, we added
inconspicuous novel objects to the environment O-5 (brown boxes). We denote this
environment as O-7. Finally, we set a new environment O-8, where the UAV could
visualize how the person occludes the boxes in the environment.

Figure 3.7 shows some sample images of the above environments. Table 3.2
summarizes the environments used for novelty detection, and Table 3.3 reports the
data partition of the environments to perform the training and test phases.

In all the experiments, the novelty detectors use the images of the training en-
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(a) Sample images of the environment O-1 (at morning).

(b) Sample images of the environment O-2 (at morning).

(c) Sample images of the environment O-3 (at morning).

(d) Sample images of the environment O-4 (at morning).

(e) Sample images of the environment O-5 (at afternoon).

(f) Sample images of the environment O-6 (at afternoon).

(g) Sample images of the environment O-7 (at afternoon).

(h) Sample images of the environment O-8 (at afternoon).

Figure 3.7: Sample images captured by the UAV in the environments: (a) original at morning (O-1), (b) the person
at morning (O-2), (c) the tire at morning (O-3), (d) the person and the tire at morning (O-4), (e) empty environment
at afternoon (O-5), (f) the person at afternoon (O-6), (g) the boxes at afternoon (O-7), and (h) the person and the
boxes at afternoon (O-8).
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Table 3.2: Summary of the environments used in the experiments for novelty detection.

Environment Description #Normal #Novel
O-1 Original setup of the environment (at morning). 896 0
O-2 A person in the O-1 environment (at morning). 836 60
O-3 Inclusion of a tire to the O-1 environment (at morning). 838 58
O-4 A person and tire in the O-1 environment (at morning). 795 101
O-5 Empty environment (at afternoon). 896 0
O-6 A person in the O-5 environment (at afternoon). 822 74
O-7 Inclusion of brown boxes to the O-5 environment (at afternoon). 835 61
O-8 A person and boxes in the O-5 environment (at afternoon). 825 71

Table 3.3: Data partition for novelty detection.

Dataset Exploration Inspection Test case (novelty)
D-1 O-1 O-2 A dynamic object (person).
D-2 O-1 O-3 A small conspicuous object (black tire).
D-3 O-2 O-4 A conspicuous object in a dynamic environment (black tire).
D-4 O-3 O-4 A dynamic object in an environment with a static object (person).
D-5 O-1 O-4 Multiple novel objects (person and tire).
D-6 O-5 O-7 Inconspicuous objects (brown boxes).
D-7 O-6 O-8 Occlusion of inconspicuous objects (brown boxes).

vironment of both loops for exploration while only using one loop of the test envi-
ronment for inspection. The other loop of the test environment is used to evolve the
novelty detectors.

3.4.2 Evaluation metrics

To measure the performance of the novelty detectors, we use the confusion matrix
shown in Table 3.4. TP represents the number of true positives (normal data labeled
as normal), TN represents the number of true negatives (novel data labeled as novel),
FP represents the number of false positives (novel data labeled as normal), and FN
represents the number of false negatives (normal data labeled as novel).

Table 3.4: Confusion matrix to evaluate the performance of the novelty detectors.

Class / Prediction Normal Novel
Normal TP FN

Novel FP TN

Different metrics have been proposed to reflect in a single quantity the perfor-
mance reached by the novelty detectors. Three of the most commonly adopted are F1

score, accuracy (ACC ), and Matthews Correlation Coefficient (MCC ). As Özbielge
[8], we use these three metrics to evaluate the performance of the novelty detectors.
These metrics are defined as,
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F1 =
2 · TP

2 · TP + FP + FN
(3.1)

ACC =
TP + TN

TP + TN + FP + FN
(3.2)

MCC =
TP ⇥ TN � FP ⇥ FNp

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
(3.3)

We also incorporate two additional metrics the True Negative Rate (TNR) and
the True Positive Rate (TPR).

3.4.3 Experimental setup

All the algorithms for novelty detection under study can operate online. However, to
compare the detectors, we use the same data partition shown in Table 3.3. We imple-
ment the SECoS, GWR, and ABC algorithms in the C++ Programming Language.
The developed ABC library uses the Mersenne Twister pseudo-random generator of
32-bit numbers. In the case of the deep feature extraction technique, we use the pre-
trained MobileNetV2 available in the Keras API and the TensorFlow engine. The
experiments were developed in a computer with an Intel Core i5 processor, running
at 2.9 GHz and with 16 GB of RAM.

To verify the performance of the detectors, we use three traditional visual feature
extraction techniques: the RGB color histograms used by Özbilge [8], the color angu-
lar indexing used by Neto [83], and the GIST descriptor used by Kato et al.[84]. We
compare the performance of the detectors with these feature extraction techniques
against the features extracted by the MobileNetV2 network. In this experiment, the
system for automatic design uses the two image sequences in the exploration phase
as training and one sequence of the inspection phase as a validation. The goal of the
optimization process is to maximize the performance of the detector concerning the
F1 score, the ACC , and the MCC . Therefore, we use the fitness function

f = 1� 1

3

⇣
F1 + ACC +

1 +MCC

2

⌘
(3.4)

with f 2 [0, 1], f = 1 represents the worst case with no data classified correctly and
f = 0 indicates that the novelty detector under study classifies all the data from the
validation correctly. In this experiment, we execute 30 simulations for each novelty
detector, and we report the average results to perform the comparison.
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3.5 Results and discussion
This section shows and discusses the results of the experiments. We design the
specific novelty detectors for each visual feature independently. We find the most
suitable size of the feature vector and the parameters of the novelty detection meth-
ods for the particular visual exploration and inspection task. In the first part of this
section, we compare the results of the proposed feature extraction technique against
the well-established feature extraction techniques in the problem of visual novelty
detection. Then, we present an analysis of the optimization process of the novelty
detectors that use the MobileNetV2 feature extractor. We also show some sam-
ple novelty detectors generated by the proposed framework and their visual results.
Finally, we discuss some limitations of the proposed methodology.

3.5.1 Deep and traditional features in novelty detection

We use as reference the RGB color histograms used by Özbilge [8], the color angular
indexing applied by Neto [83], and the GIST descriptor implemented by Kato et
al. [84]. Table 3.5 reports the average performance of the novelty detectors in the
inspection phase for each dataset, where CAI represents the color angular indexing
technique, hRGB represents the RGB color histograms, and MNF represents the
feature extraction method based on MobileNetV2. In the table, we also report the
average vector size of the features (VSize), and the average size of the learned models
of the environment (MSize), i.e., the average number of nodes in the models. Note
that the CAI descriptor produces feature vectors of four elements. In the rest of the
descriptors, the optimization process can produce feature vectors of different sizes.
In the table, we mark the best performing method for each metric, according to the
specific detector and the particular dataset.

On D-1 dataset, the objective is to learn a model of the original environment
O-1, and to detect a dynamic object represented by a person. In this dataset,
the feature extraction technique MNF shows the best performance compared to all
other visual extraction techniques. The detectors that use the MNF descriptor can
generate compact models of the environment and keep higher performance. They
show accuracies upper 98%, and MCC near to 0.9. On the second dataset (D-2),
the novelty detectors should learn a model of the environment O-1, and identify the
black tire as the new object. The proposed method achieved the best performance
over all others in this dataset, see the ranking on D-2 dataset in Table 3.5. The
average ACC by using both detectors with the MNF technique is around 98%, and
the MCC is 0.87. D-3 dataset presents a more challenging situation because the
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detector should learn a model of the environment with the person and detect the
black tire. The environment in the inspection phase includes both the person and the
black tire. Under this situation, the novelty detectors that use the MNF also achieve
the best performance with ACC values around of 96% (for both detectors), and MCC
values of 0.79, and 0.76, for the SECoS and GWR detectors, respectively. On D-4
dataset, the objective is to learn a model of the environment with the tire. In the
inspection phase, the person represents the novel object and the black tire represents
a normal object. The results show that the MNF technique is the second best (the
first is the GIST descriptor) with 96% ACC, and 0.6 MCC for both detectors. On D-5
dataset, the novelty detectors should learn a model of the O-1 environment and detect
multiple novel objects (both the tire and the person). The MNF description achieved
the best performance with ACC values around 97% for both novelty detectors and
MCC values of 0.89 and 0.88 for the detectors SECoS and GWR, respectively.

On the above datasets, the novelty detectors were tested with novel objects that
are highly different from the environment. This could facilitate their detection. In
the following, we test the detectors in more challenging situations. To this end, we use
the D-6 and D-7 datasets generated by the UAV at a different height (4 m) and with
a different light condition (images captured at afternoon). In the inspection phase
on dataset D-6, we use inconspicuous brown boxes to represent the novel objects.
In this dataset, the detectors with MNF feature extraction are the best methods to
detect novelties with a ranking of 1.2. Finally, we show the results of the detectors
on D-7 dataset. The objective in this dataset is to learn a model of an environment
with a person and tire and to detect the brown boxes that can be occluded in some
frames by the person. The results show the superiority of the MNF descriptor for
novelty detection with MCC values above of 0.9 and ACC values around of 98%, for
both detectors.

We then compare the average CPU time to generate the visual features per image
on all the datasets. The average time excludes the reading of the image and the post-
processing of the visual features. The post-processing only consists in reducing the
vector size to the size found by the optimization process. The reduction is through the
average of sectors of equal elements. Figure 3.8 shows the average time to generate
visual features in all the datasets. hRGB is the fastest method mainly because it
only needs to count the number of pixels that belong to a given intensity value.
The CAI method is the second fastest method because its computation consists
of simple image operations as average, standard deviation, inverse cosine, and dot
product. Meanwhile, the GIST descriptor involves more advanced operations. It
includes convolution between the image and Gabor filters at different scales and
orientations. The MNF is the slower feature extraction technique because it includes
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Table 3.5: Average results in the inspection phase over the 30 runs.

Dataset Detector Descriptor VSize MSize TPR TNR F1 ACC MCC

D-1

SECoS

CAI 4.0 17.5 0.9692 0.2750 0.9607 0.9258 0.2865
hRGB 305.0 12.4 0.9738 0.4571 0.9689 0.9415 0.4673
GIST 350.5 47.5 0.9867 0.8571 0.9886 0.9786 0.8312
MNF 169.1 7.1 0.9922 0.9000 0.9928 0.9865 0.8859

GWR
CAI 4.0 29.1 0.9520 0.3238 0.9532 0.9127 0.2530

hRGB 357.3 20.5 0.9757 0.2393 0.9628 0.9297 0.2317
GIST 398.1 46.7 0.9900 0.8452 0.9898 0.9810 0.8418
MNF 153.3 13.8 0.9899 0.8869 0.9912 0.9835 0.8646

D-2

SECoS

CAI 4.0 13.6 0.9879 0.0155 0.9620 0.9271 0.0076
hRGB 337.0 25.3 0.9734 0.0857 0.9567 0.9179 0.0655
GIST 384.9 37.7 0.8444 0.8333 0.9084 0.8438 0.4295
MNF 143.3 16.6 0.9806 0.9976 0.9901 0.9817 0.8729

GWR
CAI 4.0 2.4 0.9943 0.0000 0.9649 0.9321 -0.0104

hRGB 365.4 2.0 1.0000 0.0000 0.9677 0.9375 0.0000
GIST 334.3 79.8 0.8300 0.7821 0.8976 0.8270 0.3758
MNF 180.8 23.7 0.9852 0.9548 0.9910 0.9833 0.8729

D-3

SECoS

CAI 4.0 11.8 0.9426 0.6086 0.9561 0.9195 0.4765
hRGB 427.2 29.3 0.9642 0.1452 0.9507 0.9075 0.0914
GIST 269.0 50.2 0.9019 0.6022 0.9323 0.8812 0.3742
MNF 184.1 27.8 0.9788 0.8484 0.9836 0.9698 0.7881

GWR
CAI 4.0 6.5 0.9905 0.1118 0.9632 0.9297 0.1111

hRGB 445.0 6.1 0.9922 0.0118 0.9602 0.9244 0.0024
GIST 353.4 152.2 0.9117 0.4645 0.9317 0.8807 0.2852
MNF 216.0 34.2 0.9723 0.8710 0.9812 0.9653 0.7653

D-4

SECoS

CAI 4.0 16.9 0.9790 0.0157 0.9703 0.9424 -0.0072
hRGB 303.2 29.5 0.9745 0.3000 0.9733 0.9489 0.3008
GIST 315.0 2.2 0.9912 0.8706 0.9930 0.9866 0.8259
MNF 147.2 15.8 0.9729 0.8098 0.9825 0.9667 0.6585

GWR
CAI 4.0 6.1 0.9947 0.0000 0.9780 0.9570 -0.0105

hRGB 289.0 51.9 0.9552 0.3176 0.9633 0.9310 0.2046
GIST 334.0 15.3 0.9690 0.9039 0.9821 0.9665 0.7279
MNF 173.8 15.4 0.9770 0.7784 0.9840 0.9695 0.6578

D-5

SECoS

CAI 4.0 7.5 0.9765 0.0778 0.9356 0.8802 0.0945
hRGB 276.5 40.4 0.9823 0.1299 0.9414 0.8910 0.1976
GIST 306.7 24.6 0.9536 0.5764 0.9512 0.9132 0.5516
MNF 180.0 26.9 0.9813 0.9472 0.9874 0.9776 0.8916

GWR
CAI 4.0 7.8 0.9749 0.1049 0.9361 0.8817 0.1565

hRGB 331.4 36.6 0.9833 0.0660 0.8978 0.8850 0.0795
GIST 385.9 46.7 0.9305 0.6403 0.9420 0.8994 0.5475
MNF 221.8 26.9 0.9917 0.8681 0.9880 0.9784 0.8847

D-6

SECoS

CAI 4.0 7.9 0.9560 0.0344 0.9439 0.8943 -0.0206
hRGB 213.2 6.0 0.9270 0.8900 0.9580 0.9246 0.6233
GIST 245.4 9.5 0.8352 0.9167 0.9059 0.8407 0.4707
MNF 150.2 20.4 0.9750 0.8911 0.9834 0.9693 0.7950

GWR
CAI 4.0 11.6 0.9761 0.0200 0.9535 0.9121 -0.0045

hRGB 304.3 61.3 0.8946 0.8622 0.9388 0.8924 0.5277
GIST 289.0 11.5 0.7977 0.9111 0.8825 0.8053 0.4194
MNF 210.5 16.0 0.9796 0.8878 0.9857 0.9734 0.8107

D-7

SECoS

CAI 4.0 8.5 0.9730 0.0192 0.9487 0.9028 �0.0085
hRGB 276.6 6.3 0.9482 0.9939 0.9731 0.9516 0.7605
GIST 444.9 9.9 0.9867 0.9364 0.9907 0.9829 0.8831
MNF 165.2 17.6 0.9855 0.9848 0.9921 0.9855 0.9065

GWR
CAI 4.0 2.8 0.9982 0.0000 0.9609 0.9247 �0.0021

hRGB 255.7 12.2 0.9369 0.8424 0.9607 0.9300 0.6307
GIST 370.7 14.4 0.9654 0.9030 0.9783 0.9608 0.7757
MNF 175.7 8.1 0.9862 0.9960 0.9929 0.9869 0.9162
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more complex operations in the image, i.e., it is a deep structure with different
convolutional layers. However, all the feature extraction techniques in this work can
generate visual features in less than 200 ms, time that is susceptible to the proposed
visual exploration and inspection tasks.
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Figure 3.8: Average time (s) to generate the visual features using different descriptors on all the datasets.

Overall, MNF has balanced results in contrast with the baseline methods. The
models found by the MNF descriptor and the novelty detectors are compact, with
no more than 35 nodes. In most cases, it works better in detecting novelties than
the traditional visual descriptors. Besides, we found that traditional visual features
need a low number of nodes to represent the environment. However, their low per-
formance concerning the ACC and the MCC indicates that the extracted features
are insufficient to differentiate the image in the sequences.

3.5.2 Analysis of the configuration process

Figure 3.9 presents the average fitness value of the best-evolved novelty detectors
per iteration in the 30 runs on D-2 dataset. We show the optimization processes
of both novelty detectors that use the MNF feature extraction technique. In this
figure, we also present the standard deviation of the fitness values through bars.
At the begin, the best detectors in the different runs have more variations among
them, and this variation is reduced according to the increment in the number of
iterations. Analyzing the curve, we can observe that detectors evolve easily on the
dataset because they reach fitness values near to the perfect score (zero values),
i.e., the optimization process found the appropriate parameter values of the detector
for the specific novelty detection task. For the GWR, from the initial to the final
iteration, it had a decrement of 0.2591 in the average fitness. The more notable
change occurred in the first 20 iterations with a change of 0.2532. For the SECoS
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detector, the optimization process showed a decrease of 0.3386 in the average fitness
from the initial to the final iteration. The more significant change occurred in the
first 14 iterations with a change in the average fitness of 0.3341. For the rest of the
datasets, the results showed similar behaviors in the optimization process.
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Figure 3.9: Average fitness value of the best-evolved detectors by using the ABC algorithm in the 30 independent
runs on the D-2 dataset. The detectors used the MNF feature extraction technique, (a) GWR detector, and (b)
SECoS detector.

3.5.3 Automatically designed novelty detectors

We use a SECoS detector with deep features on D-3 dataset to illustrate the effects
of task-specific novelty detectors. The designed detector has the following charac-
teristics: ⌘1 = 0.0183574, ⌘2 = 0.4830270, Athr = 0.4651190, Ethr = 0.7776980,
and VSize = 256. The proposed tuning technique obtained these parameters. In
D-3 dataset, the training of the detector consists of generating a model of the O-2
environment (an environment with a person) and the objective is to detect a black
tire in an environment with the tire and the person (this new environment is called
O-4).

Figure 3.10 presents the exploration and inspection phases by using the evolved
SECoS novelty detector. In the exploration phase, the detector constructs the model
of the environment finding the most relevant information as the football goal, the
orange trash can, the basketball court, and the person. It is commonly adopted
for novelty detectors that the first input will be part of the learned model. The
image to the left of the football goal in Loop 1 represents the first input image. We
use two loops of the same normal environment (O-2) to train the detector. The
evolved detector found a model of 18 nodes to represent the O-2 environment. In

University of Guanajuato 46



CHAPTER 3. TUNING NOVELTY DETECTORS FOR SPECIFIC ROBOTIC
EXPLORATION AND INSPECTION TASKS

the inspection phase, the detector uses this model on the environment O-4 to detect
novelties. In this new environment, the detector found in almost all the cases the
tire as the novel object with a single false novelty detection. The performance of this
particular detector was TPR = 0.9976, TNR = 0.9677, F1 = 0.9976, ACC= 0.9955,
and MCC = 0.9653.
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Figure 3.10: Illustration of the visual exploration and inspection task on dataset D-3 to detect the black tire as the
novel object. In the exploration phase, the SECoS detector constructs a model of the environment with the person.
In the inspection phase, the detector uses this model to detect the black tire.

Table 3.6 presents a set of sample novelty detectors generated by the proposed
framework for each dataset. We show the parameter values of ⌘1, ⌘2, Sthr, and Ethr

for the SECoS detectors, and the parameter values of aT , hT , ⌘, and ✏ for the GWR
detectors. The table also reports the found vector size of the deep features for each
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detector.

Table 3.6: Set of sample evolved detectors generated by the proposed global optimization framework on all the
datasets.

Detector Dataset ⌘1 ⌘2 Athr Ethr VSize

SECoS

D-1 0.2002440 0.2428720 0.0545579 0.4578700 170
D-2 0.2045570 0.2697980 0.5078360 0.2089900 74
D-3 0.0183574 0.4830270 0.4651190 0.7776980 256
D-4 0.1456960 0.3827950 0.1083890 0.2627370 75
D-5 0.0000000 0.0109682 0.2810780 0.5950580 242
D-6 0.0000000 0.0000000 0.6285940 0.5863690 144
D-7 0.6577200 0.2922090 0.1750940 0.4164290 96

aT hT ⌘ ✏ VSize

GWR

D-1 0.6827340 0.6826510 0.0706664 0.0490785 152
D-2 0.7888710 0.2963600 0.3931710 0.0000000 101
D-3 0.5653500 0.3496060 0.4179080 0.0631437 249
D-4 0.5521850 0.4037900 0.2024040 0.0000000 216
D-5 0.5756130 0.8404430 0.0000000 0.0000000 256
D-6 0.7806360 0.7388830 0.2143130 0.0000000 67
D-7 0.5295850 0.6676220 0.0790152 0.7237070 135

In Table 3.7, we report the performance of the above-evolved detectors. We can
observe that the SECoS detectors have similar behavior than the GWR detectors
concerning the novelty detection (see the TNR values), except on dataset D-5, where
the SECOS detector outperforms the GWR. Besides, on datasets D-1, D-3, D-4, D-6
and D-7, the SECoS detectors exceed the GWR concerning the TPR values.

Table 3.7: Results in the inspection phase (unseen data) of the sample evolved detectors. Bold values indicate the
best result for each metric.

Dataset Detector MSize TPR TNR F1 ACC MCC

D-1 SECoS 6 0.9976 0.9643 0.9976 0.9955 0.9619
GWR 9 0.9952 0.9643 0.9964 0.9933 0.9440

D-2 SECoS 12 0.9929 1.0000 0.9964 0.9933 0.9470
GWR 27 0.9929 1.0000 0.9964 0.9933 0.9470

D-3 SECoS 18 0.9976 0.9677 0.9976 0.9955 0.9653
GWR 21 0.9856 0.9677 0.9915 0.9843 0.8900

D-4 SECoS 11 0.9930 0.7647 0.9919 0.9844 0.7802
GWR 19 0.9861 0.7647 0.9884 0.9777 0.7118

D-5 SECoS 23 0.9975 0.9792 0.9975 0.9955 0.9767
GWR 32 0.9975 0.9375 0.9950 0.9911 0.9527

D-6 SECoS 17 0.9952 0.9000 0.9940 0.9888 0.9094
GWR 14 0.9904 0.9000 0.9916 0.9844 0.8770

D-7 SECoS 9 0.9952 1.0000 0.9976 0.9955 0.9687
GWR 4 0.9928 1.0000 0.9964 0.9933 0.9540

Now, we introduce some visual results of the evolved detectors in the environ-
ments at morning. In Figure 3.11, the novelty detectors learned a model of the
original environment O-1, and detected the person as the novel object. The figure
shows the novelty indication of both methods, an image frame in the exploration
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phase (picture in the upper left corner), and a picture at the same time step in the
inspection phase. In a yellow ellipse, we mark the novel object. This figure also
presents some successful novelty detections on its right. From these samples, we can
observe the advantage of the evolved detectors, which is that they can detect the
person at different scales, perspectives, and occlusion levels.
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Figure 3.11: Visual results in novelty detection on dataset D-1 (the person as the novel object).

Figure 3.12 shows other example of visual exploration and inspection task. The
task consists in learning a model of the original environment O-1 and to detect the
black tire in the inspection phase on environment O-3. The detectors found the tire
as the novel object in all cases, even the methods can detect novelties with occlusion,
see the last detection sample (t = 334) where the tire is almost incomplete.

A more challenging example is presented in Figure 3.13. In this figure, the de-
tectors should indicate that the black tire is the novel object and the person is the
normal object. In almost all the cases, the methods can detect the novel object.
However, some false novelty detections appear with the person. The SECoS showed
to be less sensitive to this phenomenon than the GWR. Another challenging problem
is to detect the person as the novel object and the tire as the normal object. Figure
3.14 illustrates the performance of both detectors in this situation. Like the above
example, the methods can detect the person in almost all the cases and discover false
novelties in the tire.

We then present the visual results in detecting both the tire and the person as
the novel objects multiple novel object detection). In this case, both methods can
identify the tire and the person with only one false novelty detection, see Figure 3.15.

While the previous cases showed results on novel objects that are different from
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Figure 3.12: Visual results in novelty detection on dataset D-2 (the tire as the novel object).
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Figure 3.13: Visual results in novelty detection on dataset D-3 (the tire as the novel object, and the person as the
normal object).

the environment, the next cases show visual exploration and inspection tasks with
inconspicuous novel objects, brown boxes in this experiment. To capture the image
frames, the UAV flew at 4 m of height with afternoon light conditions. In Figure
3.16, the problem is to detect the images with the brown boxes through a learned
model of the empty environment at afternoon (called O-5 environment). We can
observe that the evolved detector in almost of the cases detect the brown boxes with
only two false novelty indications.
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Figure 3.14: Visual results in novelty detection on dataset D-4 (the person as the novel object and the tire as the
normal object).
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Figure 3.15: Visual results in novelty detection on dataset D-5 (the person and the tire as the novel objects).

Finally, we show the results of the evolved detectors when a person occluded the
brown boxes. Figure 3.17 presents this situation. The results show that the evolved
detectors learned a model of the environment with the person and detect the images
with the brown boxes, even if the person occludes them.

In summary, the visual results show that the evolved detectors can identify in
almost all the cases the novelty. The detectors present some false novelty detections.
However, it is more critical in this type of problems to detect the novelties than to
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Figure 3.16: Visual results in novelty detection on dataset D-6 (the brown boxes as the novel objects).
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Figure 3.17: Visual results in novelty detection on dataset D-7 (the brown boxes as the novel objects).

miss the novelties and detect all the normal data. Furthermore, the proposed detec-
tors have excellent capabilities in challenging scenarios with illumination changes,
scales, and occlusions.

3.5.4 Limitations

The proposed framework addresses the visual novelty detection in exploration and in-
spection tasks. Although our proposal shows results robust to illumination changes,
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scale, and occlusion, the evolved detectors present some issues with abrupt perspec-
tive changes in images, induced by the flight control of the UAV.

Figure 3.18 shows some failure samples of novelty detections. In the first row, we
present some sample images for the training of the evolved novelty detector (GWR
in this case). In the second row, we show some sample images in the inspection
phase with a change in the perspective induced by the flight control of the UAV. In
the exploration phase, the GWR system builds a model of normality of the environ-
ment with the tire (Environment O-3). In the inspection phase, the system should
detect the person as the novelty in the environment with the tire and the person
(Environment O-4). Due to the change in perspectives in the image frames in the
inspection phase induced by the flight control module of the UAV, these frames are
encoded by information that is not currently represented in the learned model of
normality. Therefore, the system detects them as novelty. A possible solution to the
problem is to evolve the novelty detectors online to adapt to dynamic changes in
the environment. Another possible solution is to learn ad-hoc visual features for the
problem. Also, we can explore the incorporation of information from several sensors
of the UAV to complement the visual information. With this new information, we
can detect new ways of novelties, as novelty based on the position of the objects. All
these issues will be subject of future studies.

(a)

(b)

t=328 t=330 t=328 t=328

t=328 t=330 t=332 t=337

t=328 t=330 t=332 t=337

Figure 3.18: Failure cases in the evolved GWR detector on D-4 dataset, (a) sample image frames in the exploration
phase, and (b) false novelty indications in the inspection phase. In the exploration phase, the UAV explores the
environment O-3. Then, it should detect the person as the novelty in the environment O-4. In the inspection phase,
due to changes in perspective in the frames induced by the UAV flight, some false novelty detections are presented
because the information of the frame encoding is too different to the learned model.
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CHAPTER 4

Automatic design of combination

models for salient object detection

This chapter presents an automatic design tool based on genetic programming to se-
lect and combine saliency detection algorithms, including machine and non-machine
algorithms. Saliency detection is strongly related to novelty localization in images
[85, 93, 71].

4.1 Introduction

As different saliency detection algorithms perform well on different sets of images [94],
a straightforward strategy leads to a search for a combination model that could im-
prove their responses. Frequently, combination models for saliency detection follow a
fixed structure [95, 96]. They combine the input maps through a weight feature inte-
gration approach: first, it normalizes the input maps and then uses a pre-established
weighted function as a combination operation. In this type of methodology, all of the
input maps are commonly used to compute the final saliency map, although some
maps have redundant information. That is one of the main reasons why combination
models are computationally expensive.

To exclude redundant information, it would be useful to have a combination
mechanism that simultaneously finds the algorithms and generates the combination
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model without being restricted to the well-known combination structures. Motivated
by the problem above, we propose to use Genetic Programming (GP) as a tool ca-
pable of exploiting both aspects, given that it can be simultaneously used to select
the input maps and to generate suitable combination models. In our methodology,
GP uses the input maps generated by SOD algorithms and generates new combina-
tion operators via fuzzy logic operations and image processing filters. To measure the
quality of the candidate models into GP, we propose two fitness functions to represent
the goals of useful saliency detection algorithms. After GP finishes its evolutionary
process, it generates the best combination model, which is composed of the selected
input maps and the more appropriate combination operator. Finally, we validate the
performance of the evolved models against state-of-art saliency detection algorithms
and other combination strategies. The results show that the proposed methodology
can generate competitive combination models that outperform the state-of-the-art
algorithms in four well-established benchmark datasets.

The rest of this chapter is structured as follows. Section 4.2 describes our re-
lated work. Section 4.3 introduces the proposed methodology to design combination
models for saliency detection. Section 4.4 describes the experimental setup. Section
4.5 shows the results of the designed models compared with other state-of-the-art
models.

4.2 Related work

Salient object detection (SOD) consists of identifying the object(s) in an image that
grabs the attention of humans. Figure 4.1 shows input images of the MSRA-B
dataset [97, 23] with their corresponding bounding box in the salient object (first
row), and the reference map (second row), typically selected by humans.

In the past few years, researchers have proposed a wide variety of saliency detec-
tion models [98]. The most frequently used feature to detect salient objects is the
color contrast because they are considered some of the fastest methods in the state-
of-the-art [20, 21, 18]. Contrast-based saliency models can be classified into local
and global approaches. In the local analysis, a small part of neighborhoods is used
to measure the difference between regions. In contrast, in global analysis, the com-
plete image is used to compute the saliency values. In general, global contrast-based
methods perform better than local approaches [18]. Contrast-based methods work
well in images with a simple background, but they tend to fail with more complex
input images, where there are textured regions or changes in light intensity.

An approach to cope with these problems is to apply prior knowledge about
the salient objects, e.g., center prior [99, 100], background, and boundary priors
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Figure 4.1: Input image with a bounding box in the salient object (first row), and image annotations of the salient
object (second row).

[101, 19], high-level priors [102], among others. In the center prior, the methods
work with the hypothesis that salient objects lie at the center of the image [99, 100].
In the background and boundary priors; typically, it is considered that the image
boundary is part of the background [23]. These methods may fail when a salient
object touches even slightly the image boundary. Zhu et al. [101] proposed the
boundary connectivity measure to address the above problem. In this approach, the
region is assigned as background only if it is densely connected to the image boundary.
Other high-level priors have been used to implement SOD models [102], e.g., faces,
colors, etc. In high-level priors, the assumption is that people pay more attention to
faces or some particular colors. In all the approaches above, the knowledge prior is
linked to an assumption about the contents of the image. Therefore the prior is only
valid for images satisfying the specific hypothesis.

Another approach to enhance the quality of saliency maps is to perform segmenta-
tion processes either in a pre-processing phase [100, 99] or in a post-processing phase
[20, 18]. Some widely used segmentation methods are: superpixels [100, 103], graph-
based segmentation [23], watershed-like methods [99, 18], GraphCut [21], mean shift
algorithm [20], among others. These segmentation methods considerably improve
the saliency estimation, but they also increase the computation cost.

Machine learning has gained particular interest for the community, and methods
such as the random forest regressor [23], the bootstrap learning algorithm [104], the
extreme learning machine [105], and convolutional neural networks [106] are examples
of the utility of machine learning in solving the SOD problem. Deep learning is
considered a new wave in SOD modeling [107]. The deep learning-based models can
generate multi-level and multi-scale features without prior knowledge to find salient
regions. Borji et al. [107] classify the deep learning approaches into two categories.
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The first type of model works with image patches processed by a Convolutional
Neural Network to extract high-level features. After that, the features are used by a
multi-layer perceptron (MLP) to detect saliency. However, this type of model can not
preserve spatial information. The second type of model, called Fully Convolutional
Network (FCN), operates at pixel-level. This model overcomes the problem of spatial
information preservation, and it finds the boundaries of salient objects accurately
[108]. Despite their success, FCN models still fail in images with low contrast between
foreground and background, and images with complex background.

4.2.1 Combination of saliency detection algorithms

During this time, the computer vision community has developed new algorithms to
detect salient objects. However, the performance of the algorithms varies with the
type of image. Borji et al. [98] stated that no individual SOD algorithm works well for
every image in the benchmark datasets. This phenomenon motivated a less explored
area into the problem, the combination of saliency algorithms. The main objectives
of this area are to generate a consistent performance model regardless of the type
of image and exploit the different perspectives captured by existing algorithms to
improve the detection [95].

In Fig. 4.2, we can observe the response of two state-of-the-art models for saliency
detection, the Minimum Directional Contrast (MDC) [18], and the Minimum Barrier
Salient Object Detection (MBS) [19]. Concerning the Mean Absolute Error (MAE ),
we can see that the best response is obtained using the MDC algorithm for the input
image in the first row. On the other hand, for the input image in the second row,
the best algorithm is the MBS. The responses of a combination model are shown in
the last column to demonstrate qualitatively that a combination helps to improve
the performance.

Now, let us introduce some notation into the problem of combining saliency
maps. Let {M1,M2, . . . ,Mm} be a set of m saliency detection algorithms and let
{S1, S2, . . . , Sm} be the corresponding saliency maps resulting from applying the
model to an input image I. The saliency map Si resulting from the algorithm Mi

is an image where the element Si(x) represents the saliency value for pixel x. The
saliency values are normalized, i.e., Si(x) 2 [0, 1], i 2 {1, 2, . . . ,m}, to make their
aggregation into an overall saliency map S feasible. In the following, we present
some works that combine different saliency maps.

Borji et al. [94] proposed one of the first works related to the combination of
saliency detection algorithms. In their approach, they define P (sx = 1) as the
probability that a pixel x belongs to the salient object, and P (sx = 1|Si) as the
estimation of P (sx = 1) using only the evidence provided by the saliency map Si.
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(c) MDC (d) MBS(b) Reference(a) Original (e) Combination

MAE = 0.1502

MAE = 0.0366

MAE = 0.2245 MAE = 0.0495

MAE = 0.2173 MAE = 0.1240

Figure 4.2: Motivation of the combination models for saliency detection. (a) input image, (b) ground truth, (c)-(d)
responses of the two state-of-the-art algorithms: MDC [18], MBS [19], respectively, and (e) response a combination
model.

They assumed independence between the individual algorithms, and then combined
the different saliency maps through:

S(x) = P (sx = 1|fx) /
1

Z

mX

i=1

⇣(Si(x)) (4.1)

where fx = (S1(x), S2(x), . . . , Sm(x)) is the vector composed of the saliency values
for pixel x, and ⇣(·) is a real valued function which can take the following form:

⇣1(z) = z; ⇣2(z) = exp(z); ⇣3(z) = � 1

log(z)

Inspired by Borji et al. [94], Mai et al. [95] proposed a logistic regression-based
aggregation model, as follows:

P (sx = 1|fx; �) = �

 
mX

i=1

�iSi(x) + �m+1

!
(4.2)

with � = {�i|i 2 {1, 2, . . . ,m + 1}} being the set of model parameters and �(z) =
1/(1 + exp(�z)).

Furthermore, Naqvi et al. [96] have extended the models above into a general
form that considers the importance of normalization, weighting, and integration
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steps for the aggregation process. They propose a weighted feature combination
model template described by:

S = �wi⇣(Si) (4.3)
where � is the integration function, wi is the weight associated to the saliency map
Si, and ⇣(·) is a normalization function.

The objective of the integration function is to combine the individual maps to
generate the overall saliency map S. Naqvi et al. [96] suggest several functions
including:

mX

i=1

wi⇣(Si),
mY

i=1

wi⇣(Si),

 
1

m

mX

i=1

1

wi⇣(Si)

!�1

The normalization function serves to apply some conditioning in the response
of the individual methods. To this purpose, the authors use the following set of
functions:

⇣(z) 2
⇢
z, exp(z),� 1

log(z)
,

1

1 + exp(�z)
, z · (Zmax � z̄)2, z + z ⇤DoG

�

where Zmax is the global maximum of z, z̄ is the average of local maxima in Z and
DoG is a difference of Gaussians.

All of the approaches discussed above share the potential problem of ignoring
the interaction between neighbor pixels. To address this, Mai et al. [95] have also
proposed a system based on Conditional Random Fields (CRF) to capture the rela-
tionships among neighbor pixels. The parameters of this model are optimized using
a training step, and the saliency value for each pixel is the a posteriori probability
resulting from the trained CRF.

More recently, researchers have proposed new techniques to combine different
saliency detection algorithms. Chen et al. [109] tested different combination strate-
gies applied to saliency detection: linear aggregation, non-linear aggregation (e.g.,
combination based on the median), and naive Bayes classification. Wei et al. [110]
proposed the use of Dempster-Shafer Theory for fusing saliency maps. Alternatively,
Wang et al. [111] proposed transformation-based fusion techniques to combine dif-
ferent saliency maps. The transformation consists of two steps: 1) the normalization
of the input maps and 2) the application of fusion rules. In the normalization, they
generate input saliency maps with zero mean and unit standard deviation. In ap-
plying fusion rules, they proposed three fusion rules based on their performances:
the sum rule, the min rule, and the max rule. Apart from the models above, there
exist techniques that generate combination operators according to the image type
[112, 90].
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4.3 Materials and methods
Previous approaches use a specific structure to combine different saliency algorithms.
These approaches commonly require to compute all of the input maps to obtain the
final saliency map. Instead, this work proposes to construct combination models
without defining a priori the combination model or specifying the saliency algorithms
to be combined. In our methodology, the GP evolves models that simultaneously
select the input algorithms and generate an appropriate combination structure by
using simple operators embedded into the GP.

GP has been successfully applied to solve image processing and computer vision
applications, e.g., the design of interest point detectors [113], the design of edge de-
tectors [114], the combination of change detection algorithms [115], the automatic
generation of image descriptors for image classification [116], and others. Applica-
tions based on GP more related to the proposed work include the design of visual
attention models to detect particular objects in images [117], and object detectors
[118].

Previous models differ from our approach in one key aspect. Whereas the previous
models search for a model to segment a specific object from the background, the
proposed method searches for a model that segments all foreground regions from
the background. It is worth mentioning that foreground regions can include several
types of objects.

4.3.1 Overall system

Figure 4.3 shows a graphical overview of the proposed combination framework (GP-
framework in short). GP-framework uses a dataset to evolve the combination models.
The system splits the dataset into training, validation and testing subsets that in-
clude 50%, 10%, and 40% of the total number of the images in the dataset. The
dataset needs to provide the binary ground truth of the salient objects in the images.
For the training phase, the GP-framework randomly selects a few instances of the
training set. Then, the system computes the response of the saliency algorithms
for each image in the training subset. Both the resultant saliency maps and the
ground truth are fed to a GP process. The evolutionary process finds the best-fitted
individual for each run. This individual represents the program of a combination
model. The GP runs r times to obtain r combination models. The selection criteria
to chose the overall best combination model can be based either on the tests on the
validation subset or on specific criteria from the performance results on the training
subset.
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Figure 4.3: Graphical description of the proposed GP-framework to combine responses of different SOD models.

4.3.2 Evolutionary process based on genetic programming

In our proposal, we use a conventional tree-based GP implementation. Each individ-
ual in the population encodes a combination model for SOD. When the evolution-
ary process starts, the initial population is generated using a ramped half-and-half
initialization method with a set of terminals T and a set of functions F . The ter-
minal nodes are the saliency maps of the input saliency detection algorithms, and
the function nodes include well-known image processing operations and combination
operations typically used for multiple criteria decision making.

At each GP generation, the population of combination models is evaluated by
applying all of the training instances as input and by measuring the similarity of
the responses of the model to the corresponding ground truth. A fitness function
is used to assign a score to each combination model. The next step is to select a
subset of combination models from the population and to apply to them evolutionary
operators (reproduction, crossover, and mutation). The GP selects the combination
models using roulette-wheel selection and applies the genetic operators following
the original scheme proposed by Koza [14]. The GP evolves the models during a
maximum number of generations. Finally, we extract the best-evolved model.

Next, we describe more details about the set of terminals and functions and the
fitness functions used by our proposed GP-framework.

4.3.3 Terminal set T
A large number of SOD algorithms exist in current literature. Nevertheless, we have
chosen to use some of the fastest methods available in the state-of-the-art for comput-
ing the input saliency maps. The main reason is to avoid an excessive computational
cost to obtain the output of the individual SOD algorithms. Despite this, we do not
restrict to our GP-framework from using other input saliency algorithms.
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We have chosen the Frequency-Tuned approach (FT) [20], the Histogram-based
Contrast (HC) [21], the MDC [18], and the MBS [19] to construct the terminal set.
In Figure 4.4, we have an example of the output of these SOD algorithms for an
input image. The first three methods are color contrast approaches, and the last one
is a method that exploits background and boundary priors. It is worth mentioning
that we only combine the raw saliency maps generated by executing the program
versions provided by the authors.

Terminal set

Input image

SOD Models

FT HC MDC MBS

Figure 4.4: Responses from different SOD models used to construct the terminal set.

4.3.4 Function set F
The function set is an essential component for the GP to be able to generate combina-
tion models for saliency detection. The proposed function set includes 11 operations:
6 using a single argument, 4 using two arguments and one using three arguments.
The function set is composed of: 1) well known image processing operators, for ex-
ample, low-pass filters and morphological operations; and 2) combination operators
used in multiple criteria decision analysis, for example, fuzzy logic operations in-
cluding the triangular norm (a generalization of the logical conjunction) and, the
triangular co-norm (a generalization of the logical disjunction).

All the functions operate with single-channel images to guarantee the closure
property, particularly the type consistency. That is, the input to each operation is
one or more single-channel images, as required by the operation, and the output is
also a single channel image having the same size as the input images. Regarding
evaluation safety, all of the proposed functions satisfy this property.
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Inspired by the functions proposed by Bianco et al. [115] for the combination of
change detection algorithms, we propose the function set shown in Table 4.1. The
main difference in using these functions is that the proposed method combines the
saliency responses of SOD models with values in [0, 1], instead of combining change
detection algorithms with binary images.

Table 4.1: Function set F used in the GP evolutionary process.

Name Arity Description Type
PTN 2 Product t-norm: I1 · I2 Fuzzy logic conjunction
PTC 2 Product t-conorm: I1 + I2 � I1 · I2 Fuzzy logic disjunction
LTN 2 Lukasiewicz t-norm: max(I1 + I2 � 1, 0) Fuzzy logic conjunction
LTC 2 Lukasiewicz t-conorm: min(I1 + I2, 1) Fuzzy logic disjunction
AMT 3 Average of the majority, th = 0.5 Decision rule
NOT 1 Not operation: 1� I1 Fuzzy logic negation
MB 1 Median blur: 5⇥ 5 kernel Low-pass filter
BL 1 Blur (average filter): 5⇥ 5 kernel Low-pass filter
GB 1 Gaussian blur: 5⇥ 5 kernel Low-pass filter

ERO 1 Erosion operation: 3⇥ 3 kernel Morphological operation
DIL 1 Dilation operation: 3⇥ 3 kernel Morphological operation

Pixel-wise operations include implementations of the fuzzy logic operations, both
for the product and Lukasiewicz approaches. The interest of using this kind of
operations instead of using the binary logic operations is because they can handle
continuous values in [0, 1] that result from the normalization of the saliency maps.

The average of the majority operation (AMT) tries to emulate a binary majority
voting decision rule for continuous values in [0, 1]. Let us take I1, I2, I3 as the input
images and let us define a threshold value th. For each pixel x, we define three sets:
A(x) = {I1(x), I2(x), I3(x)}; B(x) = {a 2 A(x) | a � th}; and C(x) = A(x) \ B(x).

If we denote O as the output image, then the rule to obtain O(x) is given by:

O(x) =

8
>>>><

>>>>:

1

n(B(x))

n(B(x))X

i=1

Bi(x) if n(B(x)) � n(C(x))

1

n(C(x))

n(C(x))X

i=1

Ci(x) Otherwise

(4.4)

where n(·) is the set cardinality operator, Bi(x) is the i-th element of B(x) and Ci(x)
is the i-th element of C(x).

Region-based operations are included to take into account the interactions of each
pixel with its neighborhood. For this end, the set of functions include two types
of image processing operations: blurring operations and morphological operations.
The blurring operations are implemented using a 5 ⇥ 5 pixels kernel. These three
operations act as low pass filters that spread the intensity of the center pixel into
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their neighbors. Morphological operations like erosion and dilation are useful to
reduce and grow, respectively the contour of a region in the image according to a
structuring element. In this work, we applied 3⇥3 rectangular structuring elements.

Figure 4.5 shows an example of the use of the function set to represent a pos-
sible evolved combination model. Figure 4.5(a) describes the operators and their
relationships, needed to compute the final saliency map. Figure 4.5(b) shows the
step-by-step execution of the corresponding evolved structure.

PTC

MDC MBS

DIL

LTN

MDC

BL

Expression: BL( LTN( PTC( MDC, MBS ), DIL ( MDC ) ) )

Expanded expression: BL( max( MDC + MBS – MDC・MBS + DIL( MDC ) - 1, 0 ) )

(a) (b)

Figure 4.5: Illustration of a combination model using the proposed approach: (a) structure, and (b) step-by-step
execution.

4.3.5 Fitness functions

In order to evaluate the GP individuals, we need to consider that the output of each
candidate combination model is a continuous-valued saliency map. Then a natural
fitness measure is to evaluate the fitness score of the evolved model by using an
image similarity metric between the output of the model (the GP individual) and its
corresponding ground truth image. One of the most used metrics in works using GP
is the F -measure. Nevertheless, this metric is commonly adopted in classification
tasks where the images to be compared are binary images. In the proposed approach,
we have a different case: output images are composed of values in [0, 1], and ground
truth images are composed of binary pixels {0, 1}.

This work proposes two alternatives for fitness evaluation:
1) A fitness function based on the Squared Euclidean Distance (SED) of the two

images. Let S be the output obtained from the execution of the candidate model
and G be the ground truth available for the image under test. The fitness function
f1 is then defined as follows:
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f1 = 1� ||G� S||2

s
(4.5)

where s is the number of pixels in S (or G, given that both images are the same
size).

For the function f1, a value of 0 represents the worst case, while a value of 1
indicates that both images are identical. The main drawback of this fitness function
is the indistinguishability of the cases where the same value is generated either by a
small error spread over a large number of pixels; or by a significant error on a small
region in the image. The former situation is difficult to handle because it labels
non-salient regions that are kept as salient during the evolutionary process.

2) The second option for the fitness evaluation is to use a thresholding step
to convert the output image from a candidate combination model into a binary
image, and a further step for applying a similarity metric for binary images. For
the thresholding step, we use a well-accepted method in saliency detection, known
as image-dependent adaptive thresholding [20]. This methods defines the threshold
t↵ as two times the average value of the saliency map: t↵ = 2⇥mean(S).

In SOD problems, the foreground region is typically smaller than the background
non-salient region. That can cause problems during the GP process because of
this cardinality unbalance. A metric particularly useful in unbalanced classification
problem is the MCC. The MCC takes values ranging form �1 to 1, where �1 is the
anti-correlation case and 1 is the perfect correlation case. Using this, the second
fitness function f2 is defined as:

f2 =
1 +MCC

2
(4.6)

f2 can take values in [0, 1], with 0 indicating the matching of no pixels in both images,
and 1 indicating the perfect matching of both images.

Worth noting is that for each candidate combination model, the GP process
computes the fitness score as the average of the fitness function over the training set.
For all the two fitness functions described above, we have performed independent
tests in order to determine which one is best suited for the SOD problem.

4.4 Experimental setup
In this section, we present the public datasets used to evaluate the performance of
the evolved combination models. We also discuss the evaluation metrics, the baseline
models, the description of the experiments and the parameter settings.
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4.4.1 Benchmark datasets

We chose four public benchmark datasets to evaluate the performance of the com-
bination models generated by the proposed GP-framework, including: MSRA-B
[97, 23], ECSSD [119], iCoSeg [120], and SED2 [121]. We take into account two
different aspects to select the datasets: 1) datasets widely used in SOD modeling
and 2) datasets that cover a wide variety of images for SOD.

MSRA-B is a dataset typically used to compare different SOD models. It con-
tains 5,000 images, extending the 1,000 images provided by [20]. The images of this
dataset commonly contain a single salient object and simple background. ECSSD
dataset incorporates more complex background structures compared with the pre-
vious one. In total, it includes 1,000 images recovered from the Internet. We also
evaluate the capability of the models to detect multiple salient objects in the same
image. To this end, we select SED2 and iCoSeg datasets. SED2 dataset con-
tains 100 images with two salient objects for each image. iCoSeg dataset includes
some images with more than two salient objects. In this dataset, users segmented
foreground and background regions through automatic recommendations. In total,
it contains 643 images. All the aforementioned public benchmark datasets provide
pixel-wise binary annotations. Figure 4.6 shows some representative images and their
corresponding ground truth for each dataset.

(a) MSRA-B

(c) SED2

(b) ECSSD

(d) iCoSeg

Figure 4.6: Representative images extracted from the four benchmark datasets: (a) MSRA-B, (b) ECSSD, (c)
SED2 and (d) iCoSeg.
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4.4.2 Evaluation measures

We use three standard measures for evaluating SOD models. The first two evaluation
metrics use the intersection regions between an estimated saliency map (its binary
version) and the ground truth annotations. The evaluations include the Precision-
Recall curve and the F -measure curve. As our third evaluation metric, we use the
MAE to bring a more direct comparison between an estimated saliency map and the
ground truth.

Precision-Recall curve

Given a saliency map S, we can convert it into a binary mask S
⇤ by using a fixed

threshold and compute the Precision and Recall values by comparing the mask S
⇤

with the binary ground truth G:

Precision =
|S⇤ \G|
|S⇤| , Recall =

|S⇤ \G|
|G| (4.7)

where | · | operator counts the number of non-zero elements, Precision 2 [0, 1], and
Recall 2 [0, 1].

We can draw the Precision-Recall curve by computing n pairs of average precision
and recall values with a set of thresholds that vary from 0 to 255. Each image
generates a pair of precision and recall values per threshold. The final curve is the
average of the pairs of precision and recall values for all images in a dataset. Note
that the recall value increases when the threshold value decreases.

F-measure curve

For a more comprehensive evaluation, we use the F -measure that combines the
precision and the recall values. F -measure is defined as the weighted harmonic
mean of precision and recall:

F� =
(1 + �

2) · Precision · Recall
�2 · Precision + Recall

(4.8)

where �
2 = 0.3 is used to increase the importance of precision more than recall [20],

and F� 2 [0, 1].
The reason behind �

2 = 0.3 is that precision is more important than recall in
SOD modeling because it is easy to obtain a Recall = 1 assigning the whole image
as foreground region [98]. We can draw the F -measure curve in a similar way to
the Precision-Recall curve. For this curve, we have to consider that a point consists
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of a threshold (that varies from 0 to 255) and an average F -measure value. In our
experiments, we apply a step of 1 in the threshold to draw both curves.

Mean absolute error

Neither Precision-Recall curve nor F -measure curve consider the true negative val-
ues, i.e., these metrics favor the methods that correctly mark salient regions as
salient, but they do not favor the methods that mark non-salient regions as non-
salient. To consider all the cases, we develop a direct comparison between the saliency
estimation and the ground truth with the MAE . The MAE is defined as,

MAE =
1

s

sX

x=1

|S(x)�G(x)| (4.9)

where s is the number of image pixels, S(x) 2 [0, 1] is the saliency value at the pixel
x, and G(x) 2 {0, 1} is the value of the pixel x in the ground truth.

4.4.3 Baseline methods

Typically, the combination models for saliency detection are evaluated by comparing
their final responses against the responses of the input algorithms [110, 90]. In this
paper, we use two sets of baseline methods. The first one includes saliency detection
methods that are fast to produce their outputs. We use the FT [20], HC [21],
MDC [18], and MBS [19] models as reference. The second set includes four machine
learning-based saliency detection algorithms with higher performance, DHSNet [22],
DRFI [23], DSL [24], and LEGS [25]. The response of each input algorithm is
compared to the combination model obtained from the proposed approach.

We also include in the tests four classic combination models applied to the set
of input algorithms, and three EC-based combination techniques. For the classic
combination models [111] , we use: the sum rule (AVG), the min rule (MIN), the
max rule (MAX) and the top 2 fusion method (TOP2) [122]. To combine the maps
of the input algorithms with these fusion strategies, the maps are first normalized
[111]:

N (Si) =
Si � µ

�
(4.10)

where Si is the saliency map of the input algorithm Mi, µ is the mean saliency value
of Si, and � is the standard deviation of the saliency values in Si.
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TOP2 model is defined as the average between the outputs of the two best input
algorithms, in the first group of input algorithms, the MDC-MBS, and in the second
group the DSHNet-DSL algorithms.

For the case of EC-based combination techniques, we use the GA-based approach
for feature combination [96], the Constrained Particle Swarm Optimization (CPSO)
[123], and the Particle Swarm Optimization (PSO) [124]. These techniques use the
same input algorithms to compare their performances.

4.4.4 Description of the experiments

The proposed method aims to find a combination model that outperforms the input
algorithms and the other combination strategies. For this purpose, we develop two
experiments described as follows.

In the first experiment, we use the first set of input algorithms: FT, HC, MDC,
and MBS. For all the EC-based methods, we select a subset of instances from the
training set proposed by Jiang et al. [23] to learn the combination models. Jiang et
al. [23] split MSRA-B into training, validation, and test sets. We select at random
the training instances and use the same instances for all the EC-based methods. We
train the methods using a limited number of training instances to demonstrate that
it is possible to evolve good combination models under this consideration. In our
experiment, we use 140 training instances. The objective of the experiment is to
investigate two aspects: 1) the effectiveness of the evolved models using test images
from the same domain, and 2) the generalization capabilities of the resultant models
using images from a different domain. In the first case, we evaluate the performance
of the evolved models in the test subset of MSRA-B. In the second case, we test
the evolved models in all the images provided by the datasets: ECSSD, SED2, and
iCoSeg.

In the second experiment, we replace the input algorithms with the second set
of baseline methods. These new algorithms are machine learning-based models with
the highest performance in the state-of-the-art: DHSNet, DRFI, DSL, and LEGS.
The goal of this experiment is to verify if the proposed methodology is capable of
improving the best algorithms in the state-of-the-art. We develop the training and
test in the ECSSD dataset, due to most of the authors provide the precomputed
saliency maps in this dataset. We use the same number of training instances than
the above experiment and evaluate the performance of all the models in the rest of
the images.

In both experiments, we resize the input saliency maps and the ground truth
to 200 ⇥ 200 pixels to reduce the computational cost in the training phase. We
adopt this technique based on the works [96, 124]. However, in the test phase,
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all the evaluations are performed considering the original size of the input images.
We run the experiments 31 times due to the stochastic nature of the EC-based
techniques. All the experiments were developed in an Intel Core i5 computer, with a
processor running at 2.7 GHz and 8 GB of RAM. We implement the GP-framework
and the other EC-based methods using the C++ Language. We take into account
the information provided by the authors to reproduce, as faithfully as possible, the
combination strategies used in these baseline EC methods.

4.4.5 Parameter settings

For the experiments, we use the baseline SOD models with their default parameter
values. Concerning the classic combination models, these methods have no parame-
ters to be tuned. All the EC-based techniques employ the same population size and
stopping criterion to develop a fair comparison between them. We select a population
size of 100 individual and a maximum number of 50 generations [124]. The specific
parameters for each technique were adjusted based on the information provided by
the original works.

For the GP-framework, we generate an initial population by using the ramped
half-and-half method. We implement crossover, mutation, and reproduction with
probabilities of 0.90, 0.05, 0.05, respectively. The selection method is roulette wheel
selection. A maximum initial depth restricts the initial population to 3 levels. The
population should never exceed a maximum of 10 levels during the evolution. We
adopt elitism of the best individual to keep the best solution found in the evolutionary
process. It is worth mentioning that these GP settings are similar to the typical
values used in the literature [115, 113].

4.5 Results
This section discusses the results of the previously described experiments. First, we
analyze the evolved combination models generated by the proposed GP-framework.
After that, we present the experiments to compare the performance of the evolved
models against the baseline methods. We compare the methods based on the quality
in detecting saliency.

4.5.1 Analysis of the evolved combination models

We present some typically used statistics to describe the evolution in the GP process.
These statistics include the evolution of the best individuals according to the fitness
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function, the depth of the trees, and the size of the models. To construct these graphs,
we use the data of the 31 models generated during training. Figure 4.7 shows the
average curves of these evolved models. This figure presents the two proposed types
of models, the one generated by the SED-based fitness function and the MCC-based
fitness function. Figure 4.7(a) illustrates how the fitness of the best individuals
increases smoothly with the generations. Analyzing the curves, we can observe that
the training instances are complex because both types of evolved models cannot
find their corresponding perfect fitness scores. We present two additional graphs,
shown in Figure 4.7(b) and Figure 4.7(c), to analyze the evolution in the structural
complexity of the best individuals. For the case of the SED-based evolved models,
from the initial generation to the end of the evolutionary process, there is an average
increment of 3.84 in the depth of the trees, and an average increment of 10.87 in
the number of nodes. For the MCC-based evolved models, the depth has an average
increase of 3.7 and an average increase of 7 nodes.

Fitness based on SED

0 10 20 30 40 50
Generation

0.915

0.92

0.925

0.93

0.935

Fi
tn
es
s

0 10 20 30 40 50
Generation

1

2

3

4

5

6

7

8

9

D
ep
th

0 10 20 30 40 50
Generation

0

5

10

15

20

25

30

Si
ze

0 10 20 30 40 50
Generation

0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

Fi
tn
es
s

0 10 20 30 40 50
Generation

1

2

3

4

5

6

7

8

9

D
ep
th

0 10 20 30 40 50
Generation

0

5

10

15

20

Si
ze

Fitness based on MCC

(a) (b) (c)

Figure 4.7: Convergence of the best-evolved models in the training phase, across the runs. Average and standard
deviation curves for (a) the fitness score, (b) the depth of the tree, and (c) the size of the tree. From top to bottom,
the evolution of the SED-based models, and the evolution of the MCC-based models.

Now we present a structural analysis of the best-evolved models. To this end, we
registered the components that are common between the 31 models, considering each
type of evolved model independently. Figure 4.8 shows the appearance frequency of
the terminal and the function nodes. We can note that the evolved models for both
types of fitness functions have the MDC and MBS models as essential terminals.
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These contribute with 87.21% of the SED-based models, and 98.50% of the MCC-
based models, as shown in Figure 4.8(a). In the case of the operators, we can
observe similar normalized histograms in both types of model. The combination
operators based on Fuzzy-logic are the most used for the best-evolved models, these
contribute with 54.94% of the operations in the SED-based models, and 63.02% in
the MCC-based models. The less used operators are the Gaussian filters and the two
morphological operations. All of these operations contribute with 4.35% and 1.51%
for the SED-based models, and MCC-based models, respectively.

MDC MBS HC FT
0

5

10

15

20

25

30

35

40

45

50

Fr
eq

ue
nc

y 
(%

)

MBS MDC HC FT
0

10

20

30

40

50

60

Fr
eq

ue
nc

y 
(%

)

PTN LTN PTC LTC NOT AMT MB BL GB ERO DIL
0

5

10

15

20

25

Fr
eq

ue
nc

y 
(%

)

PTN LTN PTC LTC NOT AMT MB BL GB ERO DIL
0

2

4

6

8

10

12

14

16

18

Fr
eq

ue
nc

y 
(%

)

Fitness based on SED

Fitness based on MCC

(a) (b)

Figure 4.8: Appearance frequency of the common components of the 31 best-evolved models: (a) terminal nodes,
and (b) function nodes. From top to bottom, the SED-based models, and the MCC-based models.

The previous description gives us a general overview of the evolved models. Now,
we present two examples of evolved models. We apply the selection scheme based on
the median to select the models [124]. Figure 4.9 shows the two selected models, one
for fitness function, the SED-based model (GPSED for short) and the MCC-based
model (GPMCC for short). GPSED is composed of only ten nodes, which include
three combination operators, specifically: Lukasiewicz t-norm, and the Lukasiewicz
t-conorm. Two morphological operations are used to dilate and to erode the salient
regions, from the MBS response and the MDC response, respectively. A box filter is
used to smooth the MBS response. The last nodes include the terminal nodes from
the two different models (MDC and MBS). GPMCC model presents a simpler struc-
ture. It consists of 7 nodes: two nodes are the combination operations Lukasiewicz

University of Guanajuato 72



CHAPTER 4. AUTOMATIC DESIGN OF COMBINATION MODELS FOR
SALIENT OBJECT DETECTION

t-norm, and Product t-conorm; two nodes are low pass filters to smooth the MDC
response, and the last three nodes are its input responses.
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Figure 4.9: Evolved models generated by the proposed method: (a) GPSED, and (b) GPMCC.

4.5.2 Ranking the performance of the saliency models

In this section, we rank the performance of all the models under comparison by using
the average ranking to compare through a single value all the models across different
metrics and different datasets [115]. A ranking close to one represents a better model.
Let us consider a set of models to be compared, denoted as M = {M1,M2,Mm+d},
where m is the number of input algorithms, and d is the number of combination
models; a set of test images denoted as TI , and a set of P performance measures.
We can compute the average ranking of a saliency model Mi as,

Ri =
1

P

PX

j=1

rank
⇣
Mi;measurej(Mk(TI)), 8k 6= i

⌘
(4.11)

where rank(Mi; ·) computes the rank of the saliency model Mi considering the results
of the rest of the models in the measure measurej. To obtain a single number to
represent the quality of the model, we perform the average ranking across all the
test datasets.

Table 4.2 reports the average ranking of the models in the 31 runs. In this ta-
ble, GP1 represents the results of the evolved models based on SED, and GP2 the
evolved models based on MCC. We can observe that all evolutionary-based tech-
niques are best positioned compared to all the input algorithms, it confirms that
the combination is useful to improve the performance of the input algorithms. Also,
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the evolutionary-based techniques have a better performance compared to the AVG,
MIN, and MAX rules, it proves that a learning-based algorithm is more appropri-
ate to combine than the fusion rules. Note that among the evolutionary based-
techniques, the proposed approaches outperform the rest of the models for a wide
margin. For example, the GP1 models outperform the models generated by the best
evolutionary technique (GA) by a difference of 2.43 points in the average ranking.
In the case of classic combination models, the GP1 outperforms by 3.89 points the
TOP2 model, and for the input algorithms, the GP1 is better than the best input
algorithm by 5.39 points.

Table 4.2: Average ranking in the 31 runs across test datasets.

Saliency models Average ranking
GP1 2.05
GP2 2.40
GA 4.48
PSO 4.72
TOP2 5.94
CPSO 6.71
MBS 7.44
AVG 7.82
MIN 8.04
MDC 8.15
HC 9.73
MAX 11.25
FT 12.28

To verify if the evolved models are statistically different, we apply the Wilcoxon
rank-sum test on the results from Table 4.2 at a significance level ↵ = 0.01, and with
critical values computed by using the Bonferroni correction. The results showed that
all the models are significantly different from the other models except the pairs of
models: GP1-GP2, and GA-PSO. Additionally, we run a t-test at a significance level
↵ = 0.001 without assuming that the data comes from the same variance. These
results matched with the results obtained in the Wilcoxon rank-sum test. Both
statistical tests confirm that the proposed models are significantly different from the
rest of the models. Therefore, we conclude that the proposed models are the best
among the models under comparison.

4.5.3 Precision-recall analysis

We show in detail the results of the proposed models concerning the Precision-Recall
curve. For this purpose, we use the median solution for the 31 runs. The median
solution is selected instead of the mean solution because it is more robust to outliers
[124]. In the case of the GA-based approach, we select the solution closest to the
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mean solution in the parameter space as proposed in the original work. Figure 4.10
presents the Precision-Recall curves of all the models under comparison. We denoted
MRSA-BTest to the test set from the MSRA-B dataset. In the figure, we rank
the models based on the maximum F -measure, denoted as Fmax .
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Figure 4.10: Quantitative comparison between the proposed models and the rest of the models, according to the
Precision-Recall curve. For a better interpretation of the curves, the reader is referred to the web version of this
article.

When we compared the proposed models in images from the same dataset (MSRA-
BTest), it is clear that they outperform the input algorithms (FT, HC, MDC, and
MBS). The same behavior appeared when we tested the proposed models in im-
ages from a different domain. For example, in MSRA-BTest, the GPMCC model
is around 3% better than the best input algorithm in terms of the Fmax , and in
iCoSeg the GPMCC is 1.17% better than the MDC. Additionally, we can compare
the results of the proposed models against classic combination models. From this
analysis, we can observe that the performance of the proposed models, in test images
from the same dataset, is better than the classic combination models. The GPMCC
is 1.43% better than the TOP2 regarding the Fmax . In one dataset (iCoSeg) the
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TOP2 outperforms the GPMCC. However, both models are very close in perfor-
mance (0.1% of difference). Finally, we analyze the results of the proposed models
compared to the rest of evolutionary-based techniques. We can observe that the
GPMCC model is the best in datasets with a single salient object (MSRA-BTest
and ECSSD). In the case where the datasets contain multiple salient objects (SED2
and iCoSeg) is more difficult to the proposed models outperform to the GA-based
model and PSO-based model. However, the results are still competitive in images
with multiple salient objects with a maximum difference of 1%.

4.5.4 F -measure analysis

Figure 4.11 shows the F -measure curves of all the models under comparison. In this
figure, we rank the models according to their Area Under the Curve (AUC ), denoted
as AUC F . More area represents that the model is less sensitive to the threshold value
in detecting salient objects. In this figure, we can observe that the proposed model
GPSED is the best-ranked model.

An in-depth analysis can be done to show the advantages of the proposed models.
The GPSED model is better in terms of the AUC F than the best input algorithm
by 20.48%, 20.28%, 4.85% and 13.36% in the datasets MSRA-BTest, ECSSD,
SED2, and iCoSeg, respectively. With respect to the best classic combination
model, the GPSED obtains a maximum difference of 21.71% in the MSRA-BTest
and a minimum diference of 12.32% in the iCoSeg. Also, among the EC-based
techniques, the GPSED is the best. The GPSED outperforms the best EC-based
model (considering only the baseline models) with a maximum difference of 21.38%
and a minimum difference of 15.45%. The GPSED is less sensitive to the threshold
value compared to the GPMCC model; however, the last model is competitive, it
ranks second in the datasets with a single salient object, fifth in the SED2 dataset,
and third in the iCoSeg dataset.

To further examine the behavior of the proposed models, we also report the
average F↵ values using the image-dependent adaptive threshold [20]. Table 4.3
presents the F↵ values of all the models. In this table, we mark the three best
performing models with a triangle, a diamond, and a star, respectively. The proposed
evolved models show higher F↵ values compared to the input algorithms, the classic
combination models and the EC-based models. The GPMCC and GPSED are the
best two models according to the F↵ values.
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Figure 4.11: Quantitative comparison between the proposed models and the rest of the models, according to the
F -measure curve. For a better interpretation of the curves, the reader is referred to the web version of this article.

Table 4.3: Comparison of the models regarding the F↵ values using the image-dependent adaptive threshold. We
mark the best three models with a triangle, a diamond, and a star, respectively.

Dataset FT HC MDC MBS MIN MAX AVG
MSRA-BTest 0.5319 0.5663 0.7241 0.7116 0.6762 0.6105 0.6751
ECSSD 0.3775 0.3894 0.6127 0.5570 0.5177 0.4344 0.4994
SED2 0.6250 0.6079 0.6074 0.6654 0.6833 0.6106 0.6971H

iCoSeg 0.5545 0.5471 0.6348 0.6253 0.6210 0.5587 0.6105
Dataset TOP2 CPSO GA PSO GPMCC GPSED

MSRA-BTest 0.7423 0.7137 0.7579H 0.7455 0.7711s 0.7662u

ECSSD 0.5979 0.5588 0.6200H 0.5988 0.6592s 0.6592u

SED2 0.6658 0.6653 0.6914 0.6701 0.7148u 0.7340s

iCoSeg 0.6556 0.6235 0.6678H 0.6557 0.6865u 0.7157s

4.5.5 Mean absolute error analysis

Regarding the MAE , the proposed models exhibit better values compared to the
input algorithms, classic combination models, and EC-based models, see Table 4.4.
We can observe that the best model is the GPSED and the second best model is the
GPMCC.
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First, let us analyze the results of the proposed models compared against the
input algorithms. The GPSED is around 8% better than the MBS in the same
domain images. In case of the evaluation with images from a different domain, the
GPSED is around 8%, 4%, and 5% better than the best input algorithm for ECSSD,
SED2, and iCoSeg, respectively.

Considering the comparison of the proposed models versus the classic combination
models, we can observe the GPSED is around 9% better than the TOP2 in the
evaluation using the same domain images. In case of the evaluation with images
from a different domain, the GPSED is around 8%, 5%, and 6% better than the best
classic combination model for ECSSD, SED2, and iCoSeg, respectively.

Finally, we compare all the evolutionary-based approaches. The GPSED is
around 8% better than the GA-based model in the evaluation using the same domain
images. In case of the evaluation with images from a different domain, the GPSED is
around 7%, 4%, and 5% better than the best EC-based model for ECSSD, SED2,
and iCoSeg, respectively.

Table 4.4: Comparison of the MAE with the four input saliency algorithms, and the nine combination models. We
mark the best three models with a triangle, a diamond, and a star, respectively.

Dataset FT HC MDC MBS MIN MAX AVG
MSRA-BTest 0.2407 0.2397 0.2064 0.1983 0.2215 0.2336 0.2202
ECSSD 0.2893 0.3299 0.2520 0.2572 0.2758 0.2885 0.2824
SED2 0.2047 0.1966 0.2124 0.1898 0.2069 0.2065 0.1971
iCoSeg 0.2293 0.2292 0.2107 0.2021H 0.2228 0.2257 0.2153
Dataset TOP2 CPSO GA PSO GPMCC GPSED
MSRA-BTest 0.2033 0.1985 0.1953H 0.2022 0.1552u 0.1112s

ECSSD 0.2569 0.2578 0.2486H 0.2576 0.2085u 0.1709s

SED2 0.2003 0.1892H 0.2016 0.1983 0.1713u 0.1440s

iCoSeg 0.2063 0.2023 0.2047 0.2050 0.1751u 0.1460s

4.5.6 Visual comparison

In Figure 4.12, there are depicted visual comparisons between the baseline models
(input algorithms, classic combination models and EC-based combination models)
and the proposed models. In the figure, the last row represents the ground truth
(GT). In all the images, the first and second columns present images with a simple
background and a single salient object. The third and fourth columns provide images
with a cluttered background. The fifth and sixth columns present images that contain
two salient objects. Finally, the last two columns show input images with multiple
salient objects (more than two). We select these images to show the qualitative
results of all the models with different image types. In the figure, for images with a
simple background and a single salient object, the proposed models easily distinguish
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Figure 4.12: Visual comparison between the baseline models and the evolved combination models. GT represents
the ground truth.

between salient regions and background. Even if the image presents a cluttered
background, our models uniformly highlight salient objects while the baseline models
tend to fail. Also, the proposed models can detect multiple salient objects in the
same image in contrast to some baseline models that highlight more to some salient
objects than others. Analyzing the visual results, we can note that the GPSED and
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GPMCC models can reduce the noise in the background regions. Conversely, the
rest of the models present more noise in these regions.

4.5.7 Run-time analysis

We analyze the computational cost of all the models to compute their corresponding
saliency maps. Table 4.5 reports the time in the operation phase of the four input
algorithms, and the nine combination models. We can observe in Table 4.5, that the
MDC is the fastest input algorithm, and the MBS is the second one. The MDC model
is approximately three times faster than the proposed GPSED model. However, the
GPSED model keeps a low operation time (20 ms). In return to the increase in
computation time to generate the final saliency map, the GPSED model improves
the MDC response concerning the MAE around 9% in MSRA-BTest. Also, it
improves the F↵ value 4.21% in the same dataset. The proposed models exhibit a
very similar figure than the fastest combination model (TOP2). There is a difference
of 1 ms between the TOP2 model and GPSED model. However, the GPSED and
GPMCC is 9.21%, and 4.81% better than the TOP2 model for the MAE values,
respectively. The operation time of the other classic combination models is higher
than the proposed models because these include all the input saliency responses to
combine. Finally, we can note that the proposed models outperform all the EC-based
approaches. The proposed combination models selected the best input algorithms
(MDC and MBS models) from the available terminal set, this is the reason why the
methods are faster. Let us give an example of the superiority of the proposed models.
The GPSED and GPMCC models can generate a final response eight times faster
than the PSO model in the SED2 dataset.

Table 4.5: Average operation time [ms] of the SOD models. We mark the best three combination models with a
triangle, a diamond, and a star, respectively.

Dataset FT HC MDC MBS MIN MAX AVG
MSRA-BTest 24.61 248.65 6.76 11.52 290.28 292.63 290.72
ECSSD 25.20 247.74 6.60 11.95 290.86 288.96 292.74
SED2 20.51 124.01 6.68 10.61 161.47 160.85 161.02
iCoSeg 31.30 370.81 6.51 11.34 417.41 417.67 417.72
Dataset TOP2 CPSO GA PSO GPMCC GPSED
MSRA-BTest 18.88s 290.60 299.84 287.73 20.22H 19.53u

ECSSD 18.11s 338.29 289.72 314.59 20.12H 19.60u

SED2 16.11s 177.74 160.76 140.99 17.43u 17.70H

iCoSeg 18.23s 492.78 418.86 387.21 21.03H 19.18u
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4.5.8 Failure cases

Figure 4.13 shows some failure cases of the evolved combination models. We can
observe that in all cases the input algorithms fail in detecting salient regions. Due to
our combination models work with these responses as inputs, the resultant saliency
maps fail to highlight salient regions. These limitations in the input algorithms
undoubtedly affect the performance of the proposed combination models.

Image FT HC MDC MBS GPMCC GPSED GT

Figure 4.13: Failure cases of the input algorithms and the proposed combination models.

4.5.9 Further analysis

We further investigate the proposed methodology by using a new group of input
algorithms. We select four machine-learning based saliency detection algorithms
with the highest performance, DHSNet [22], DRFI [23], DSL [24], and LEGS [25].
To evaluate the performance of the combination models, we perform the experiments
over the ECSSD dataset. Under these input algorithms, the new TOP2 model
should combine the DHSNet and DSL algorithms. The GP-framework and the rest
of the EC-based approaches use the same number of training instances of the previous
experiment with the same input algorithms. Finally, we evaluate the performance of
the saliency models with the rest of the images in the dataset.

Table 4.6 reports the average ranking of the models considering the results of the
31 runs in all the metrics. We executed the Wilcoxon rank-sum test on the results
in the table at a significance level ↵ = 0.01 and critical values computed by the
Bonferroni correction to verify if the evolved models are statistically different, from
the other models. The results show that there are only two pairs of models that are
the same in the statistical analysis: CPSO-GA and GP1-TOP2. Additionally, we
execute a t-test at ↵ = 0.01 without assuming that the data come from the same
variance. These results matched with the previous statistical test. Both statistical
tests conclude that the GP2 model is significantly different from the rest of the
models, and therefore that the proposed GP2 is the best-ranked model. Table 4.6
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shows that the GP2 models outperform the best input algorithm, the best classic
combination model, and the best EC-based approach by 1.66, 2.38, and 3.54 points,
respectively; while the rest of the combination models fail to improve the performance
of the best input algorithm. In the rest of the section, we will observe why this second
experiment is more challenging for the combination strategies compared to the first
experiment.

Table 4.6: Average ranking of the input algorithms, classic combination models, and EC-based approaches.

Saliency models Average ranking
GP2 1.69
DHSNet 3.35
CPSO 4.07
GA 4.08
TOP2 5.23
GP1 5.35
PSO 5.75
MIN 8.00
DSL 8.40
AVG 9.07
LEGS 11.25
MAX 11.75
DRFI 13.00

Figure 4.14 presents two sample programs evolved by the GP-framework. The
programs are the median solutions from the 31 runs. Both programs contain the best
input algorithm (DSHNet), and the GPSED also contains the second best input
algorithm (DSL). Figure 4.15 illustrates the performance of these evolved models
and all the baseline models according to the Precision-Recall , and the F -measure
curves. Figure 4.15(a) shows that the proposed GPSED model ranks second and
the GPMCC ranks fifth concerning the Fmax , and for the AUC F the GPMCC model
ranks first while the GPSED ranks fourth, see Figure 4.15(b). We also compared the
models according to the F↵ and the MAE metrics, see Table 4.7. The results show
that the proposed GPMCC model is the best model in both metrics. In the F↵, the
GA-based combination ranks second, and the DHSNet ranks third. For the MAE ,
the DHSNet ranks second, and the CPSO ranks third.

Now, let us analyze the results of the input algorithms. From the results above,
the best input algorithm (DHSNet) outperforms the rest of the input algorithms
by a large margin. This difference in performance converts the combination prob-
lem in a more challenging task, due to there being the risk that the worst input
algorithms degenerate the results of the best one. For this reason, the combination
models tend to fail. However, the proposed GPMCC is the only combination model
capable of improving the best input algorithm and being the best-ranked model in
the experiments.
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Figure 4.14: Evolved models, (a) GPSED, and (b) GPMCC for the second group of input algorithms.
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Figure 4.15: Comparison of the models on the ECSSD dataset according to the (a) Precision-Recall curve, and (b)
F -measure curve for the second group of input algorithms. For a better interpretation of the curves, the reader is
referred to the web version of this article.

Table 4.7: Comparison of the F↵ and the MAE measures with the four input saliency algorithms, and the nine
combination models. We mark the best three models with a triangle, a diamond, and a star, respectively.

Dataset Metric Saliency detection models

ECSSD

F↵

DHSNet DRFI DSL LEGS MIN MAX AVG
0.8675H 0.7253 0.8302 0.7851 0.8620 0.7562 0.8451
TOP2 CPSO GA PSO GPMCC GPSED
0.8529 0.8658 0.8779u 0.8590 0.8854s 0.8469

MAE

DHSNet DRFI DSL LEGS MIN MAX AVG
0.0586u 0.1770 0.0814 0.1178 0.1084 0.1513 0.1106
TOP2 CPSO GA PSO GPMCC GPSED
0.0704 0.0597H 0.0702 0.0899 0.0569s 0.0630
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Figure 4.16: Visual comparison between the best seven models on ECSSD dataset. (a) input images; saliency maps
generated by the models (b) DHSNet, (c) TOP2, (d) CPSO, (e) GA, (f) PSO, (g) GPMCC, and (h) GPSED; (i)
GT.

Finally, we present a visual comparison between the seven best-ranked models
according to the results of Table 4.6. Figure 4.16 shows the outputs of the best-
ranked models in four test images from the ECSSD dataset. We can observe that
almost all the models are capable of distinguishing between the salient object and
the non-salient regions. However, the GPMCC is the model that produces the most
similar images to the ground truth. On the other hand, the worst model is the PSO,
followed by the GPSED, and TOP2 models. The visual responses of above models
match with the position in the average ranking table.
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Conclusions and perspectives

In this thesis, we proposed using automatic design configuration tools for novelty
detection problems and related areas. We performed the automatic configuration
in two directions. In the first case, we used a bio-inspired optimization technique
for tuning two machine learning algorithms used for novelty detection in robotics.
We selected novelty detectors for continuous learning, such as grow-when-required
networks and evolving connectionist systems. We tested the novelty detectors by
using visual information on an outdoor environment with images captured by an un-
manned aerial vehicle. We considered different novelties to verify the performance of
the proposed methodology that included conspicuous or inconspicuous novel objects,
static or dynamic novel objects, and multiple novel objects. We also considered two
different light conditions in the outdoor environment (morning and afternoon), and
two different flight heights of 2 m and 4 m. We observed the effects of using tradi-
tional visual features such as color histograms, the GIST descriptor, the color angular
indexing. Besides, we proposed to used deep features extracted by a pre-trained neu-
ral convolutional network to enhance the performance of the novelty detectors. The
results showed that the pre-trained network is competitive or even better than these
traditional features. We observed that the designed detectors are robust to illumina-
tion changes, scale changes, and occlusion levels based on the results. Although they
presented some problems with perspective changes produced by the flight control
module of the unmanned aerial vehicle, the proposed evolved methods can detect in
almost all the cases the novelties, which is a desirable characteristic of the novelty
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detection methods.
In the second study case, we use automatic algorithm configuration concepts to

select and combine different saliency detection algorithms, including machine and
non-machine algorithms. Saliency detection has shown in the literature a strong
relation to novelty localization in images. We observed the weaknesses of existing
saliency detection algorithms, and proposed a methodology based on genetic pro-
gramming to automatically design combination models for salient object detection
to obtain more consistent results. The central contribution of this work is that
the methodology can select the input saliency algorithms and simultaneously gener-
ate the proper combination model for salient object detection. Another significant
contribution of the work is that we embedded simple combination operators at a
pixel-wise level (based on fuzzy logic) into the genetic programming, and operators
that consider the relationship between neighboring pixels (image processing func-
tions and morphological operators). We have also explored two fitness functions to
guide the evolutionary process, to find the most suited for salient object detection.
As a characteristic of our methodology, the resulting combination models are easy to
interpret. The tree nodes help us identify the selected input algorithms for the com-
bination, and the operations explain how to compute the final saliency map. This
representation enables us to implement the evolved combination models quickly. We
developed a comparison between our evolved models against the fastest algorithms
in the state-of-the-art and other combination models considering datasets from the
same and a different domain. The results showed that the evolved models are the
best-ranked models concerning all the performance measures under study and all the
test datasets. We verified the results using statistical tests, which confirmed that
the proposed models are significantly different from the models generated by the rest
of the approaches. We then replaced the input algorithms by four machine learning
techniques with higher performance in the state-of-the-art. We found that the pro-
posed methodology based on the Matthews Correlation Coefficient is the best-ranked
technique. We validated the results through two statistical tests. It is essential to
mention that our approach remained the best-ranked, although the considerable dif-
ference in performance between the best input algorithm and the rest of the input
algorithms made the combination a more challenging problem.

5.1 Perspectives
The automatic design configuration problem is challenging because of the wide range
of design selections and the lack of orientation to obtain good selections. In the
context of novelty detection, the problem becomes even more challenging due to
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the imbalanced nature of the problem, where only a few or no novelty samples are
available. We observed three different paths of this thesis that we enlist with their
corresponding subtopics.

• Automatic design configuration of novelty detectors. We intend to explore an
automatic design configuration for novelty detectors based on normal data only.
We want to observe the effect of consistency measures and other metrics to tune
novelty detectors. Besides, in supervised approaches, we are currently working
on racing approaches for tuning novelty detectors. As the above approaches
are global optimization techniques, we consider it essential to generate online
control strategies to adjust the hyperparameter values of novelty detectors
while they are working.

• Novelty detection tasks. We are exploring and developing an end-to-end learn-
ing approach to reduce human intervention in selecting and designing visual
features. For example, the application of generative adversarial networks has
shown excellent results in novelty/anomaly detection. Also, a pending task
is sensor fusion to detect novelties when it is difficult to do so with visual
information only.

• Automatic design of combination models for salient object detection. More re-
search is needed to determine a strategy to select the number of training images
and the characteristics we need to select them. Another direction of the work
is to model the saliency detection as a multi-objective problem. This last idea
implies to evolve combination models with several goals, e.g., optimizing all
the metrics used in the literature to evaluate salient object detectors. Finally,
we want to integrate the studied saliency object detection algorithms and nov-
elty detectors to perform novelty localization. We developed some preliminary
studies, and we have observed some promising results in this area, see Figure
5.1.

5.2 Final thoughts
In this section, I want to share some personal thoughts about the development of
this thesis study. The first aspect is related to the topic addressed in this thesis.
We observed that automatic design can automatically create and tune algorithms,
reducing human intervention, and avoiding personal experience bias. I consider that
more advances will emerge in this area thanks to the current capabilities of the
computers. This will help to explore the configuration space of algorithms faster
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(b)

(a)

(c)

Figure 5.1: Novelty localization based on saliency detection. (a) Reference novelty indication, (b) Saliency detection
with the Minimum Directional Contrast algorithm, and (c) Patches detected as novel objects by the grow-when-
required network (green bounding boxes).

and be beneficial for the research community to achieve fair comparisons between
algorithms.

Another aspect is the importance of research. I believe that research is crucial
to reach the technological development in the country. With the development of
this thesis, I acquired research experience by publishing both journal and conference
papers. In my opinion, the publication and interaction with other researchers are
essential to transmit the knowledge and contribute to the area.

Finally, I want to close my thoughts with my motivation letter of my admission
process. At that moment, I wrote that “my future vision always has been to be a
professor with deep knowledge in my area. I see myself involved in projects that
help society. I want to develop technological tools that help to spread scientific
and technical expertise among youth people. Because in that way, I believe we can
contribute to the development of the country.” With the development of this thesis
and my participation in projects during this period, I kept this vision, and now, I
feel a little further advance in this direction.

5.3 Derived publications
This section shows the publications generated during the development of this thesis
study.
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