

DIVISIÓN DE CIENCIAS NATURALES Y EXACTAS

DEPARTAMENTO DE QUÍMICA

ESTUDIO DE REACTIVIDAD DE CARBENOS TIPO FISCHER EN REACCIONES DE CICLOADICIÓN

TESIS PARA OBTENER EL TÍTULO DE MAESTRO EN CIENCIAS QUÍMICAS

PRESENTA

QFB. LUIS ALFREDO SOLANO CAUDILLO

DIRECTOR DE TESIS

DR. MIGUEL ÁNGEL VÁZQUEZ GUEVARA

CODIRECTOR DE TESIS

DR. EDUARDO PEÑA CABRERA

Guanajuato, Guanajuato, 22 de enero de 2020

El presente trabajo se realizó en el Departamento de Síntesis Orgánica de la División de Ciencias Naturales y Exactas de la Universidad de Guanajuato bajo la dirección del Dr. Miguel Ángel Vázquez Guevara y el Dr. Eduardo Peña Cabrera con el apoyo de.

Dr. Miguel Ángel Vázquez Guevara

DIRECTOR DE TESIS

Departamento de Química

División de Ciencias Naturales y Exactas

Universidad de Guanajuato

Dr. Eduardo Peña Cabrera

CODIRECTOR DE TESIS

Departamento de Química

División de Ciencias Naturales y Exactas

Universidad de Guanajuato

DECLARATORIA

Por medio de la presente hago constar que soy responsable de la autenticidad y originalidad del presente trabajo que lleva por título:

"ESTUDIO DE REACTIVIDAD DE CARBENOS TIPO FISCHER EN REACCIONES DE CICLOADICIÓN"

Dr. Miguel Ángel Vázquez Guevara

Director de tesis

MIEMBROS DEL JURADO

Dra. Oracio Serrano Torres

PRESIDENTE

Departamento de Química

División de Ciencias Naturales y Exactas

Universidad de Guanajuato

Dr. Francisco Delgado Reyes

SECRETARIO

Departamento de Química Orgánica

Escuela Nacional de Ciencias Biológicas

Instituto Politécnico Nacional

Dr. David Cruz Cruz

VOCAL

Departamento de Química

División de Ciencias Naturales y Exactas

Universidad de Guanajuato

Dr. Alberto Feliciano Carmona

SINODAL SUPLENTE

Departamento de química

División de Ciencias Naturales y Exactas

Universidad de Guanajuato

ÍNDICE GENERAL

ABR	EVIATURAS Y ACRÓNIMOS	1
COM	IPUESTOS SINTETIZADOS	4
RES	UMEN	8
I.	ANTECEDENTES	10
1.1 Iı	mportancia biológica de los pirazoles	12
1.2	Síntesis de pirazoles	13
1.2.1	Diazoalcanos	13
1.2.2	Nitriliminas	14
1.2.3	Sidnonas	15
2. Ca	rbenos	17
2.1 C	Complejos metal-carbeno	18
2.1.1	Clasificación de los complejos metal-carbeno	18
2.2 C	arbenos de Fischer	19
2.2.1	Reactividad de Carbenos de Fischer en reacciones de cicloadición	19
2.3 C	cicloadición 1,3-dipolar entre carbenos de Fischer y sidnonas	21
2.4 Reactividad de nitriliminas frente a Carbenos de Fischer		22
II.	JUSTIFICACIÓN	24
III.	HIPÓTESIS	28
IV.	OBJETIVOS	32
V.	RESULTADOS Y DISCUSIÓN	36
3. Sic	Inonas	38
3.1. 8	Síntesis de sidnonas	38
3.1.1	Síntesis y caracterización de fenilazidas (42a-e)	38
3.1.2 Síntesis y caracterización de iminas (45a-c)		39
3.1.3	Síntesis y caracterización de 46a	42
3.2 S	íntesis alterna de sidnonas	44

3.2.1 Síntesis y caracterización de derivados de glicina (48a-h)	44
3.2.2 Síntesis y caracterización estructural de sidnonas (16a-h)	46
3.2.3 Síntesis y caracterización de sidnonas sustituidas en C4	47
4. Carbenos de Fischer	50
4.1 Preparación de Carbenos de Fischer	50
4.2 Elucidación estructural de alquilcarbenos de Fischer	51
5. Reactividad de sidnonas en reacciones de cicloadición	53
5.1. Cicloadición de sidnonas con alquinos orgánicos	53
5.2. Cicloadición de sidnonas y carbenos de Fischer	54
5.2.1 Elucidación estructural de pentacarbonil[(etoxi)(pirazolil)carbenos]	de 57
5.3. Influencia del metal en la reacción de cicloadición	58
5.4. Influencia de la posición 4 de las sidnonas en la reacción de cicloadición	60
6. Funcionalización del enlace C-H de sidnonas con carbenos de Fischer	61
6.1 Elucidación estructural de 61a por Resonancia Magnética Nuclear	64
6.2 Optimización de condiciones de reacción en la síntesis de 2 <i>H</i> -piran-2-onas	68
6.3 Propuesta mecanística para la formación de 2 <i>H</i> -piran-2-ona	70
7. Nitriliminas	71
7.1 Síntesis y caracterización estructural de cloruros de hidrazonilo	71
7.2 Reacción de cicloadición entre nitriliminas y alquinilcarbenos de Fischer	72
7.3 Optimización de la reacción entre nitriliminas-carbenos de Fischer	72
7.4 Caracterización estructural de 65a por Resonancia Magnética Nuclear	74
7.5 Elucidación estructural de 65a´ por Resonancia Magnética Nuclea	r y
Espectrometría de Masas	75
7.5. Caracterización estructural de 65b	77
7.6 Reacción de benzanillación de pirazoles con isonitrilos	78
VI. CONCLUSIONES	81
VII. PERSPECTIVAS	85

VIII. ANEXOS	89
8. DESARROLLO EXPERIMENTAL	
8.1 Síntesis de fenilazidas (42a-e)	91
8.2. Síntesis de iminofosforanos (43a-d)	92
8.3 Síntesis de iminas (45a-c)	
8.4 Síntesis de 46a	94
8.5 Síntesis de aminas (48a-h)	
8.6 Síntesis de sidnonas (16a-h)	
9. Síntesis de sidnonas funcionalizadas en la posición 4	101
9.1 Síntesis de 49	101
9.2 Síntesis de 50	101
9.3 Síntesis de 51	102
9.4 Síntesis de 18	102
9.5 Síntesis de 53	103
10. Síntesis de tetrafluoroborato de trietiloxonio	104
11. Síntesis de alquinil(alcoxi) carbenos de Fischer (23-24)	104
12. Síntesis de pirazoles con DMAC (55a-b)	107
13. Síntesis pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno (56a	a-j, 57a) 108
14. Preparación de 61a	113
14.1 Datos cristalográficos de 61a	114
15. Preparación de cloruros de hidrazonoilo (37a-c)	120
IX. ESPECTROS	124

ÍNDICE DE ESQUEMAS

Esquema 1. Síntesis regioselectiva de pirazoles.	13
Esquema 2. Síntesis de pirazoles a partir de diazocompuestos	14
Esquema 3. Síntesis de 3-trifluorometilpirazoles	15
Esquema 4. Cicloadición 1,3-dipolar entre sidnonas y alquinos orgánicos 1	15
Esquema 5. Síntesis de 2H-indazoles	16
Esquema 6. Síntesis de 5-trifluorometilpirazoles	16
Esquema 7. Síntesis regioselectiva de pirazoles 1,3 y 1,4-disustituidos con sales de cobre 1	17
Esquema 8. Reacciones típicas de carbenos	17
Esquema 9. Reacciones de cicloadición de carbenos	20
Esquema 10. Síntesis de 1H-piroles a partir de oxazolonas	21
Esquema 11. Reactividad de carbenos de Fischer-sidnonas	21
Esquema 12 . Síntesis de Δ^2 -pirazolinas a partir de carbenos y nitriliminas	22
Esquema 13. Síntesis de 4-trifluorometilsidnonas.	38
Esquema 14. Síntesis alterna de sidnonas	14
Esquema 15 Arilación de sidnonas catalizada por paladio	
Lisqueina ie. Timación de sidnonas edualizada por paradio.	19
Esquema 16. Síntesis de 4-trifluorometilsidnonas	49 50
Esquema 16. Síntesis de 4-trifluorometilsidnonas5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC.	49 50 53
Esquema 16. Síntesis de 4-trifluorometilsidnonas	49 50 53 54
Esquema 16. Síntesis de 4-trifluorometilsidnonas	49 50 53 54 59
Esquema 16. Síntesis de 4-trifluorometilsidnonas	49 50 53 54 59 51
Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC. 5 Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenos-sidnonas. 5 Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno. 5 Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4. 6 Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos. 6	49 50 53 54 59 51 52
Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC. 5 Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenos-sidnonas. 5 Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno. 5 Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4. 6 Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos. 6 Esquema 22. Síntesis de cloruros de hidrazonilo. 7	 49 50 53 54 59 51 52 71
Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC. 5 Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenos-sidnonas. 5 Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno. 5 Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4. 6 Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos. 6 Esquema 22. Síntesis de cloruros de hidrazonilo. 7 Esquema 23. Síntesis de pirazoles altamente sustituidos. 7	 49 50 53 54 59 51 52 71 72
Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC. 5 Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenos-sidnonas. 5 Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno. 5 Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4. 6 Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos. 6 Esquema 22. Síntesis de cloruros de hidrazonilo. 7 Esquema 23. Síntesis de pirazoles altamente sustituidos. 7 Esquema 24. Síntesis de 65b. 7	 49 50 53 54 59 51 52 71 72 74
Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 16. Síntesis de 4-trifluorometilsidnonas. 5 Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC. 5 Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenos-sidnonas. 5 Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno. 5 Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4. 6 Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos. 6 Esquema 22. Síntesis de cloruros de hidrazonilo. 7 Esquema 23. Síntesis de pirazoles altamente sustituidos. 7 Esquema 24. Síntesis de formada	 49 50 53 54 59 51 52 71 72 74 78

ÍNDICE DE TABLAS

Tabla 1. Fenilazidas sintétizadas. 38
Tabla 2. Iminofosforanos sintétizados. 39
Tabla 3. Iminas sintétizadas
Tabla 4. Condiciones de reacción para la reducción de iminas.; Error! Marcador no
definido.
Tabla 5. Derivados de glicina obtenidos. ^a 45
Tabla 6. Sidnonas obtenidas. 46
Tabla 7 . Sidnonas halogenadas obtenidas. 47
Tabla 8. Alquinil carbenos de Fischer obtenidos. 51
Tabla 9. Optimización de la reacción de cicloadición 1,3-dipolar entre 24a y 16a.ª 55
Tabla 10. Derivados de pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno
sintetizados. ^a
Tabla 11. Influencia de la sustitución de C4 de las sidnonas en la reacción de cicloadición.
Tabla 12. Efecto del disolvente en la síntesis 61a. ^a 68
Tabla 13. Optimización de la reacción para la síntesis de 61a.ª 69
Tabla 14. Condiciones de reacción para la síntesis de 65a.ª 73

ÍNDICE DE FIGURAS

Figura 1. Pirazoles bioactivos.	12
Figura 2. Dipolos empleados en reacciones de cicloadición para la síntesis de pirazoles	13
Figura 3. Representación gráfica de un complejo metal-carbeno.	18
Figura 4. Estructura general de los Carbenos de Fischer.	19
Figura 5. Espectro de RMN de ¹ H en DMSO-d ₆ a 500 MHz de 42	39
Figura 6. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 43a	40
Figura 7. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 45a	41
Figura 8. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 45a.	42
Figura 9. Espectro de RMN de ¹⁹ F en CDCl ₃ a 471 MHz de 46a	43
Figura 10. Espectro de RMN de ¹ H en DMSO-d ₆ a 400 MHz de 48f	45
Figura 11. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 16c	47
Figura 12. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 50.	48
Figura 13. Espectro de RMN de de ¹ H en CDCl ₃ a 500 MHz de 53	49
Figura 14. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 18.	50
Figura 15. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 24a	52
Figura 16. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 24a.	52
Figura 17. Espectro de RMN de ¹ H en CDCl ₃ a 400 MHz de 55a	54
Figura 18. Espectro de RMN de ¹ H en CDCl ₃ a 600 MHz de 56a	57
Figura 19. Espectro de RMN de ¹³ C en CDCl ₃ a 150 MHz de 56a	58
Figura 20. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 57a	59
Figura 21. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 57a	60
Figura 22. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 58	60
Figura 23. Espectros de RMN de ¹ H a 500 MHz en CDCl ₃ de 16a y 60a	62
Figura 24. Espectro de ESI (+) para 16a y 60a.	63
Figura 25. Estructura molecular de 61a con elipsoides térmicos, probabilidad del 50%	64
Figura 26. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 61a	64
Figura 27. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 61a.	65
Figura 28. Espectro 2D: HSQC de 61a.	66
Figura 29. Espectro 2D: HMBC de 61a	66
Figura 30. Experimento DEPT-135 de 61a	67
Figura 31. Propuesta de mecanismo de reacción para la formación de 61a	70
Figura 32. Espectro de RMN de ¹ H de 600 MHz en CDCl ₃ de 37a	72
Figura 33. Estructura molecular de 65a'con elipsoides térmicos, probabilidad del 50%	73
Figura 34. Espectro de RMN de 1H en CDCl ₃ a 500 MHz de 65a	75
Figura 35. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 65a.	75
Figura 36. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 65a'	76
Figura 37. Espectro ESI (+) de 65a´	77
Figura 38. Espectro de RMN de ¹ H en CDCl ₃ a 500 MHz de 65b.	77
Figura 39. Espectro de RMN de ¹³ C en CDCl ₃ a 125 MHz de 65b.	78
Figura 40. Espectros de RMN de ¹ H en CDCl ₃ a 500 MHz de 65a' (verde) y producto de	
benzanulación (rojo) (M=W).	79

ABREVIATURAS Y ACRÓNIMOS

APTS	Ácido p-toluensulfónico
Bn	Bencilo
ccf	Cromatografía en capa fina (Thin Layer Chromatography)
CDCl ₃	Cloroformo deuterado
Cu(OTf) ₂	Triflato de cobre (II)
Cu(OAc)2·H2O	Acetato de cobre (II) monohidratado
CuSAC	Cicloadición sidnona-alquino catalizada por cobre
DCM	Diclorometano
DMAc	Dimetilacetamida
DCE	Dicloroetano
DMAC	Dimetil acetilendicarboxilato
DME	Dimetoxietano
DMF	N, N-dimetilformamida
$DMSO-d_6$	Dimetilsulfóxido deuterado
ESI	Electrospray Ionization (Ionización por electrospray)
FDA	Food and Drug Administration (Administración de
	Medicamentos y Alimentos)
HRMS	High Resolution Mass Spectrometry (Espectrometría de masas
	de alta resolución)
ICl	Monocloruro de yodo
IAN	Isoamilnitrito
J	Constante de acoplamiento
LiHMDS	Bis (trimetilsilil)amida de litio (Lithium bis
	(trimethylsilyl)amide
LDA	Diisopropilamiduro de Litio
LiI	Yoduro de litio
MeCN	Acetonitrilo
MFSDA	Metil fluorosulfonildifluoroacetato
NBS	N-bromosuccinimida
NCS	N-clorosuccinimida

ORTEP	Gráfico de elipsoides térmicos del laboratorio Oak Ridge (Oak
	Ridge termal ellipsoid plot)
PNO	<i>N</i> -óxido de piridina
Pyr	Piridina
$S_N 2$	Sustitución Nucleofílica Bimolecular
TBAF	Fluoruro de tetrabutilamonio
TEA	Trietilamina
THF	Tetrahidrofurano
TFAA	Anhídrido Trifluoroacético

COMPUESTOS SINTETIZADOS

RESUMEN

En el presente trabajo se realizó la síntesis regioselectiva de pirazoles 1,3,4-sustituidos (**56a-j**) bajo una metodología de cicloadición 1,3-dipolar empleando como equivalentes sintéticos los alquinilcarbenos de Fischer (**23a-f, 24a-b**) y las sidnonas (**16a-g**) en rendimientos del 27 al 64% donde, se conserva el fragmento metálico, en ese caso $W(CO)_5$. Si se modifica el centro metálico a Cr el rendimiento es menor y para Mo no se observó el producto de cicloadición, en ambos, el sustituyente en el alquino y el dipolo fue un grupo arilo.

Se analizó el papel de diferentes sustituyentes en la posición 4 de las sidnonas (Cl, Br, I, CF_3 y Ph) donde, al hacerlos reaccionar con alquinilcarbenos de Fischer no se observó el producto de cicloadición. A partir de lo anterior, se llevó a cabo un proceso de metalación de las sidnonas y su adición a los alquinilicarbenos de Fischer obteniendo anillos de seis miembros oxigenados (**60a**)

I. ANTECEDENTES

1. Pirazoles

1.1 Importancia biológica de los pirazoles

Los pirazoles son importantes subunidades estructurales, los cuales, se encuentran en una gran variedad de compuestos biológicamente activos. Por ejemplo, el sildenafilo $(1)^1$ es un potente inhibidor selectivo de la fosdiesterasa 5 (PDE-5), estos inhibidores de la PDE-5 incrementan el guanosín monofosfato cíclico (GMPc), aumentando y prologando la actividad vasodilatadora del óxido nítrico y de la prostaciclina (PGI₂), ha sido empleado en el tratamiento de la disfunción eréctil. El celecoxib (**2**) es un inhibidor específico de la ciclooxigenasa 2 (COX-2) aprobado por la FDA para el tratamiento de la artritis reumatoide y osteoartritis. El pirazofurin (**3**) ha demostrado tener un amplio espectro de actividad antimicrobiana, el fluazolato (**4**) ha sido utilizado ampliamente como herbicida y el pentiopirad (**5**) como potente fungicida (Figura 1).^{2,3}

Figura 1. Pirazoles bioactivos.

¹Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Sildenafil (ViagraTM), A Potent and Selective Inhibitor of Type 5 CGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 1819–1824.

²Culbreath, A. K.; Brenneman, T. B.; Kemerait, R. C.; Hammes, G. G. Effect of the New Pyrazole Carboxamide Fungicide Penthiopyrad on Late Leaf Spot and Stem Rot of Peanut. *Pest Manag. Sci.* **2009**, *65*, 66–73.

³Küçükgüzel, Ş. G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. J. Med. Chem. 2015, 97, 786-815

1.2 Síntesis de pirazoles

Existen diversos métodos para la preparación de pirazoles, una de las principales rutas para su obtención es la síntesis de Knorr,⁴ la cual, se lleva a cabo a partir de arilhidrazinas y compuestos 1,3-dicarbonilicos o compuestos α , β -insaturados, sin embargo, este enfoque genera la formación de mezclas regioisómericas con respecto a los sustituyentes incorporados en las posiciones 3 y 5 de los pirazoles (Esquema 1).^{5,6}

Esquema 1. Síntesis regioselectiva de pirazoles.

Otra herramienta sintética poderosa que provee pirazoles altamente sustituidos es a través de reacciones de cicloadición 1,3-dipolar. Los principales dipolos empleados para estas transformaciones son diazoalcanos, nitriliminas y sidnonas (Esquema 2).⁵

Figura 2. Dipolos empleados en reacciones de cicloadición para la síntesis de pirazoles.

1.2.1 Diazoalcanos

Se han obtenido 1*H*-pirazoles a partir de diazocompuestos (**8**) y alquinos simétricos o terminales (**9**) en rendimientos mayores al 90 % sin el uso de disolvente (Esquema 2).⁷

⁴Knorr, L. Ber. Dtsch. Chem. Ges. 1883, 16, 2597-2599.

⁵Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles *Chem. Rev.* **2011**, *111*, 6984-7034.

⁶Gosselin, P.; Shea, P. D. O.; Webster, R. A.; Reamer, R. A.; Tillyer, R. D.; Grabowski, E. J. J. Highly Regioselective Synthesis of 1-Aryl-3,4,5-Substituted Pyrazoles. *Synthesis* **2006**, *19*, 3267–3270.

⁷Vuluga, D.; Legros, J. Synthesis of Pyrazoles through Catalyst-Free Cycloaddition of Diazo Compounds to Alkynes. *Green Chem.*, **2009**, *11*, 156–159.

La principal limitante de esta estrategia sintética radica en la preparación de los diazocompuestos, debido a su alta toxicidad y propiedades explosivas, por ello, se han desarrollado procedimientos para su generación *in situ* a partir de tosilhidrazonas con una completa regioselectividad⁸ y en la obtención de pirazoles policíclicos fusionados.⁹

Esquema 2. Síntesis de pirazoles a partir de diazocompuestos.

1.2.2 Nitriliminas

Las nitriliminas son utilizadas en la síntesis de heterociclos de cinco miembros, se generan *in situ* a partir de haluros de hidrazonoilo utilizando una base y su posterior tratamiento con electrófilos apropiados C=X (X=C, N, O S, Se) o C=X (X=C, N) para generar heterociclos como: pirazoles, pirazolinas, 1,3,4-oxadiazoles, 1,2,3 o 1,2,4-triazoles.^{10,11} Esta estrategia ha sido aplicada en la síntesis regioselectiva de inhibidores selectivos de COX-2 como el celecoxib (2)^{12,13} y del rimonabant (empleado como tratamiento del tabaquismo y reducción de peso).¹⁴

En el Esquema 3 se muestra un ejemplo donde se realiza la preparación de 3trifluorometilpirazoles (13a-c) a partir de bromuros de hidrazonoilo (11) y enoléteres

⁸Kong, Y.; Tang, M.; Wang, Y. Regioselective Synthesis of 1,3,5-Trisubstituted Pyrazoles from N-Alkylated Tosylhydrazones and Terminal Alkynes. *Org. Lett.* **2014**, *16*, 576–579.

⁹Zheng, Y.; Zhang, X.; Yao, R.; Wen, Y.; Huang, J.; Xu, X. 1,3-Dipolar Cycloaddition of Alkyne-Tethered *N*-Tosylhydrazones: Synthesis of Fused Polycyclic Pyrazoles. *J. Org. Chem.* **2016**, *81*, 11072–11080.

¹⁰Giustiniano, M.; Meneghetti, F.; Mercalli, V.; Varese, M.; Giustiniano, F.; Novellino, E.; Cesare Tron, G. Synthesis of Aminocarbonyl N-Acylhydrazones by a Three-Component Reaction of Isocyanides, Hydrazonoyl Chlorides, and Carboxylic Acids. *Org. Lett.* **2014**, *16*, 5332–5335.

¹¹Zhang, C. Y.; Liu, X. H.; Wang, B. L.; Wang, S. H.; Li, Z. M. Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1,3-Dipolar Cycloaddition Reaction. *Chem. Biol. Drug Des.* **2010**, *75*, 489–493.

¹²Sui, Z.; Guan, J.; Ferro, M. P.; McCoy, K.; Wachter, M. P.; Murray, W. V.; Singer, M.; Steber, M.; Ritchie, D. M.; Argentieri, D. C. 1,3-Diarylcycloalkanopyrazoles and Diphenyl Hydrazides as Selective Inhibitors of Cyclooxygenase-2. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 601–604.

 ¹³Oh, L. M. Synthesis of Celecoxib via 1,3-Dipolar Cycloaddition. *Tetrahedron Lett.* 2006, 47, 7943–7946.
 ¹⁴Donohue, S. R.; Halldin, C.; Pike, V. W. A Facile and Regioselective Synthesis of Rimonabant through an Enamine-Directed 1,3-Dipolar Cycloaddition. *Tetrahedron Lett.* 2008, 49, 2789–2791.

(12).¹⁵ Son utilizados como bloques de construcción en la obtención de sistemas pirazólicos complejos con potencial actividad farmacéutica y agroquímica (14a).

Esquema 3. Síntesis de 3-trifluorometilpirazoles.

1.2.3 Sidnonas

Las sidnonas son compuestos heterocíclicos de 5 miembros conocidos como compuestos mesoiónicos, son empleados en la construcción de pirazoles con alquinos orgánicos a través de una reacción de cicloadición [4+2] y retrocicloadición generando una molécula de CO₂ (Esquema 4).¹⁶

Esquema 4. Cicloadición 1,3-dipolar entre sidnonas y alquinos orgánicos.

Estas reacciones de cicloadición usualmente proceden a altas temperaturas, tiempos prolongados de reacción y se obtienen mezclas de regioisómeros. Se ha reportado la síntesis de 2*H*-indazoles (**17a-c**) con derivados de bencino en altos rendimientos, buena selectividad y condiciones suaves reacción (Esquema 5).¹⁷

¹⁵Utecht, G.; Fruziński, A.; Jasiński, M. Polysubstituted 3-Trifluoromethylpyrazoles: Regioselective (3 + 2)-Cycloaddition of Trifluoroacetonitrile Imines with Enol Ethers and Functional Group Transformations. *Org. Biomol. Chem.* **2018**, *16*, 1252–1257.

¹⁶Browne, D. L.; Harrity, J. P. A. Recent Developments in the Chemistry of Sydnones. *Tetrahedron* **2010**, *66*, 553–568.

¹⁷Wu C.; Fang, Y.; Larock, Y. F.; Shi, F. Synthesis of 2*H*-Indazoles by the [3 + 2] Cycloaddition of Arynes and Sydnones. *Org. Lett.* **2010**, *12*, 2234-2237.

Esquema 5. Síntesis de 2*H*-indazoles.

La síntesis de pirazoles altamente sustituidos a partir de alquinos asimétricos y sidnonas es limitada, existen pocos ejemplos de ello, en los cuales se requieren temperaturas mayores a 140 °C y tiempos prolongados (>24 h). En el Esquema 6 se muestra el comportamiento de la 3-fenil-4-trifluorometilsidnona (**18**) frente a diferentes alquinos asimétricos (**19a-c**), obteniendo los 5-trifluorofluorometilpirazoles (**20**) de manera regioselectiva en rendimientos del 62-90%.^{18,19}

Esquema 6. Síntesis de 5-trifluorometilpirazoles.

Se han buscado alternativas para dirigir la regioselectividad de la reacción con el uso de ácidos de Lewis. Un ejemplo de ello es el uso de sales de cobre, las cuales pueden modular la regioselectividad y facilitar la reacción conocida como cicloadición sidnona-alquino mediada por cobre (CuSAC),^{20,21} dicha estrategia, solo se limita al uso alquinos terminales. De este modo, variando la naturaleza de la sal de cobre se pueden generar

¹⁸Foster, R.S.; Jacobi, H.; Harrity J. P. A. A General and Regioselective Synthesis of 5-Trifluoromethylpyrazoles. *Org. Lett.* **2012**, *14*, 4858-4861.

¹⁹Foster, R.S.; Adams, H.; Jacobi, H.; Harrity, J. P. A. Synthesis of 4-Fluoromethylsydnones and their Participation in Alkyne Cycloaddition Reactions. *J. Org. Chem.* **2013**, 78, 4049–4064.

²⁰Specklin, S.; Decuypere, E.; Plougastel, L.; Aliani, S.; Taran, F. One-Pot Synthesis of 1,4-Disubstituted Pyrazoles from Arylglycines via Copper-Catalyzed Sydnone–Alkyne Cycloaddition Reaction. *J. Org. Chem.* **2014**, *79*, 7772–7777.

²¹Decuypere, E.; Specklin, S.; Gabillet, S.; Audisio, D.; Liu, H.; Plougastel, L.; Kolodych, S.; Taran, F. Copper(I)-Catalyzed Cycloaddition of 4-Bromosydnones and Alkynes for the Regioselective Synthesis of 1,4,5-Trisubstituted Pyrazoles. *Org. Lett.* **2015**, *17*, 362–365.
pirazoles 1,3-disustituidos o 1,4-disustituidos en tiempos cortos de reacción (Esquema 7).²²

Esquema 7. Síntesis regioselectiva de pirazoles 1,3 y 1,4-disustituidos con sales de cobre.

2. Carbenos

Se define como carbeno a una especie química divalente neutra que solo dispone de 6 electrones en su capa de valencia.²³ Dichos sustratos son extremadamente reactivos por lo que se les considera como intermedios sintéticos. Entre las transformaciones más características de un carbeno destacan; las ciclopropanaciones, inserciones en enlaces C-H y la formación de iluros (Esquema 8).

Inserciones C-H

Esquema 8. Reacciones típicas de carbenos.

²²Comas-Barceló, J.; Foster, R. S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J. P. A. Cu-Promoted Sydnone Cycloadditions of Alkynes: Scope and Mechanism Studies. *Chem. Eur. J.* **2015**, *21*, 3257 – 3263.

²³De Frémont, P.; Marion, N.; Nolan, S. P. Carbenes: Synthesis, Properties, and Organometallic Chemistry. *Coordination Chemistry Reviews*. **2009**, *253*, 862–892.

2.1 Complejos metal-carbeno

De manera general, la unión entre el metal y el ligando carbeno en un complejo metalcarbeno consiste en dos interacciones sinérgicas: un enlace dador de tipo σ del ligando al orbital d vacío del metal y un enlace π generado por retrodonación de un orbital d ocupado del metal hacia un orbital p vacío del carbeno (Figura 3).²⁴

Figura 3. Representación gráfica de un complejo metal-carbeno.

2.1.1 Clasificación de los complejos metal-carbeno

Se pueden catalogar en función de la capacidad del metal para aceptar electrones σ procedentes del ligando carbeno y de su habilidad de retrodonación π al orbital p vacío del carbeno en los siguientes grupos:

1. Buen aceptor σ y buen retrodonador π

A este grupo pertenecen los denominados carbenos de Schrock²⁵; en ellos, el metal tiene un alto estado de oxidación y naturaleza nucleofílica (el átomo de carbono del carbeno posee carga negativa).

2. Pobre aceptor σ y buen retrodonador π

En este tipo se encuentran los catalizadores de Grubbs,²⁶ empleados en reacciones de metatesis de olefinas.²⁷

3. Buen aceptor σ y pobre retrodonador π

Dentro del tercer grupo se encuentran los carbenos electrófilicos, los complejos metalcarbeno tipo Fischer son ejemplos típicos de esta agrupación.

4. Pobre aceptor σ y pobre retrodonador π

²⁴Cases, M.; Frenking, G.; Durán, M.; Solà, M. Molecular Structure and Bond Characterization of the Fischer-Type Chromiun-Carbene Complexes (CO)₅Cr=C(X)R (X=H, OH, OCH₃, NH₂, NHCH₃ and R=H, CH₃, CH=CH₂, Ph, C=CH. *Organometallics* **2002**, *21*, 4182-4191.

²⁵Santamaría, J.; Aguilar, E. Beyond Fischer and Schrock Carbenes : Complexes – a General Overview. *Org. Chem. Front.* **2016**, *3*, 1561-1588.

²⁶Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. A Series of Well-Defined Metathesis Catalysts Synthesis of [RuCl₂(=CHR[^])(PR₃)₂] and Its Reactions. *Angew. Chem. Int. Ed. Engl.* **1995**, *34*, 2039-2041. ²⁷Grubbs, R. H. Olefin-Metathesis Catalysts for the Preparation of Molecules and Materials. *Angew. Chem.*

Int. Ed. **200**6, *45*, 3760 – 3765.

Al último grupo pertenecen los complejos metal-carbeno que presentan una interacción débil metal-carbeno.

2.2 Carbenos de Fischer

En los complejos de Fischer,^{24,28} el átomo central de carbono esta unido mediante un doble enlace formal a un metal de transición del grupo VI o VII. Típicamente, en estos complejos uno de los sustituyentes del carbeno (X) actúa como π donador permitiendo la estabilización electrónica del átomo de carbono deficiente en electrones; mientras que el otro sustituyente (R) es un grupo saturado o insaturado. La baja valencia del centro metálico es estabilizada por sustituyentes π aceptores como: CO, PH₃ o ligandos de ciclopentadienilo (Figura 4).

Figura 4. Estructura general de los Carbenos de Fischer.

2.2.1 Reactividad de Carbenos de Fischer en reacciones de cicloadición

Los complejos metal-carbeno tipo Fischer han destacado en el área de síntesis, ya que, actúan como dienófilos altamente reactivos en reacciones Diels-Alder,²⁸ en procesos de cicloadición superior²⁹ y como excelentes estructuras en reacciones de adición tipo Michael,³⁰ a partir de ello, se han desarrollado estrategias para su aplicación en síntesis orgánica.

En el Esquema 9 se muestra la participación de alquinil carbenos de Fischer en procesos en cascada para formar fenoles 2,4,6-trisustituidos (**26a-c**) involucrando una reacción cicloadición [3+2+1], reducción de carbonilo y posterior reacción retro-Diels-Alder. A partir de derivados de imino glicin ésteres (**29**) se pueden obtener 1*H*-pirroles (**30a-c**) en rendimientos moderados; llevándose a cabo un proceso de adición tipo Michael,

²⁸Dötz, K. H.; Stendel, J. Fischer Carbene Complexes in Organic Synthesis : Metal-Assisted and Metal-Templated Reactions. *Chem. Rev.* **2009**, *109*, 3227–3274.

²⁹Rivero, A. R.; Fernández, I.; Sierra, M. A. Regioselective and Stepwise [8 + 2] Cycloaddition Reaction between Alkynyl-Fischer Carbene Complexes and Tropothione. *J. Org. Chem.* **2012**, *77*, 6648–6652.

³⁰Collado, A.; Gómez-Gallego, M.; Santiago, A.; Sierra, M. A. Understanding the Reactivity of Group 6 Metal (M = Cr, W) Alkynyl Fischer Carbene Complexes with Multi-Reactive Masked Dienes. *Eur. J. Org. Chem.* **2019**, 369–377.

isomerización, cierre de anillo y demetalación. Finalmente, la obtención de derivados de iminocetonas (**28a-c**) a partir de nitronas (**27**) se da por medio de una reacción de cicloadición [3+2], reordenamiento y apertura de anillo.^{31,32,33}

Esquema 9. Reacciones de cicloadición de carbenos.

Un comportamiento inusual de los alquinil carbenos de Fischer en reacciones de cicloadición, es el que se presenta con 2-trifluorometiloxazolonas (**31**) donde se esperaría

³¹Flores-Conde, M.A.; Vázquez, M. A.; Reyes, L.; Tamariz, J.; Delgado, F. Unprecedented Synthesis of 3-Alkenyl-3-ethoxy-2-iminoketones via 1,3-Dipolar Cycloadditions of Nitrones with Alkynyl Fisher Carbene complexes. *Organometallics*, **2013**, *32*, 4244-4254.

³²De La Cruz, F. N.; López, J.; Jiménez-Halla, J. Ó. C.; Flores-Álamo, M.; Tamaríz, J.; Delgado, F.; Vázquez, M. A. Synthesis of Novel Polysubstituted *N*-Benzyl-1*H*-Pyrroles via a Cascade Reaction of Alkynyl Fischer Carbenes with α -Imino Glycine Methyl Esters. *Org. Biomol. Chem.* **2015**, *13*, 11753–11760.

³³López, J.; De La Cruz, F. N.; Flores-Conde, M. I.; Flores-Álamo, M.; Delgado, F.; Tamariz, J.; Vázquez, M. A. Regioselective Multicomponent Synthesis of 2,4,6-Trisubstituted Phenols from Fischer Alkynyl Carbene Complexes. *Eur. J. Org. Chem.* **2016**, *7*, 1314–1323.

obtener los 1*H*-pirroles (**32**), en lugar de ello, se dio la formación de **33**, donde se observó la pérdida del grupo CF₃ (Esquema 13).^{34,35}

Esquema 10. Síntesis de 1*H*-piroles a partir de oxazolonas.

2.3 Cicloadición 1,3-dipolar entre carbenos de Fischer y sidnonas

El único estudio reportado entre alquinilcarbenos de Fischer y sidnonas se obtienen compuestos pirazólicos con el fragmento metálico $W(CO)_5$ en rendimientos del 42-85% en tiempos de 17 a 66 h (Esquema 2).³⁶

Esquema 11. Reactividad de carbenos de Fischer-sidnonas.

³⁵López, J.; Velazco-Cabral, I.; Rodríguez-de león, E.; Gómez, C. V.; Delgado, F.; Tamariz, J.; Arrieta, A.; Cossío, F. P.; Vázquez, M. A. Selective Synthesis of Trisubstituted Pyrroles through the Reactions of Alkynyl Fischer Carbene Complexes with Oxazolones. *Org. Biomol. Chem.* **2020**, *18*, 538-550.

³⁴Rodríguez de León E. (2014). Síntesis de 1*H*-pirroles a partir de alquinil (etoxi) carbenos de Fischer (Tesis de Maestría). Universidad de Guanajuato, Guanajuato, Guanajuato.

³⁶Choi, T.H.; Kang, B.S.; Yoon, Y.J.; Kim,J.; Shin, S.C. Heteroannulation of Alkynyl Carbene Complexes: [3+2] Dipolar Cycloaddition of Pentacarbonyl-[(Alkynyl)(Methoxy)Carbene]Metals with Masked 1,3-Dipoles. *Synthetic Communications* **1995**, *25*, 2043-2050.

2.4 Reactividad de nitriliminas frente a Carbenos de Fischer

Se ha realizado la síntesis enantioméricamente pura de Δ^2 -pirazolinas **39** (Esquema 12) con alta regio y diasteroselectividad partiendo de los alquenilcarbenos de Fischer (**36a-b**) y nitriliminas (**38**) generadas *in situ* a partir de los cloruros de hidrazonoilo (**37**).^{37,38}

Esquema 12. Síntesis de Δ^2 -pirazolinas a partir de carbenos y nitriliminas.

Con base en la reactividad mostrada por los alquinilcarbenos de Fischer frente a diferentes especies químicas (nitronas, oxazolonas, sidnonas y nitriliminas), surge la necesidad de evaluar el comportamiento de 4-triflurometilsidnonas (18) y nitriliminas (37) frente a dichos complejos organometálicos, con la finalidad de sintetizar pirazoles de manera regioselectiva.

³⁷Barluenga, J.; Fernandez-Mari, F.; Gonzalez, R.; Aguilar, E.; Revelli, G. A.; Viado, A. L.; Fañanas, F. J.; Olano, B. α , β-Unsaturated Fischer Carbene Complexes vs 1,3-Dipoles: Reactions with Nitrones and Nitrilimines. *Eur. J. Org. Chem.* **2000**, 1773–1783.

³⁸Barluenga, J.; Aguilar, E.; Viado, A. L.; Olano, B. First Highly Regio- and Diastereoselective Synthesis of Δ^2 -Pyrazolines by [3 + 2] Cycloaddition of Chiral Non- Racemic Fischer Carbene Complexes with Nitrilimines. *Tetrahedron* 1998, *39*, 4887–4890.

II. JUSTIFICACIÓN

En la literatura existen pocos reportes sobre el estudio de alquinil (etoxi) carbenos con metales del grupo 6 frente a sidnonas y nitriliminas, por tal motivo, en el presente trabajo se plantea el análisis de reactividad y selectividad de carbenos tipo Fischer de Cr y W (0) frente a estos dipolos.

III.HIPÓTESIS

El uso de complejos metal-carbeno tipo Fischer en reacciones de cicloadición frente a sidnonas y nitriliminas generará heterociclos tipo pirazoles de manera regioselectiva.

IV.OBJETIVOS

Objetivo General

Estudio de reactividad y selectividad de carbenos Tipo Fischer frente a sidnonas y nitriliminas.

Objetivos Particulares

Síntesis de sidnonas sustituidas en la posición 3 y 4.

Síntesis de carbenos tipo Fischer empleando metales del grupo 6 (Cr y W).

 $\begin{array}{l} \mathsf{M}(\mathsf{CO})_5 \\ \mathsf{OEt} \\ \mathsf{R}_2 = \mathsf{C}_6\mathsf{H}_5, \ 4 \text{-} \mathsf{OMeC}_6\mathsf{H}_4, \ t \text{-} \mathsf{butil}, \ 3 \text{-} \mathsf{tiofeno}, \ \mathsf{ciclopropil}, \\ \mathsf{Ciclohexenil} \end{array}$

Síntesis de cloruros de hidrazonoilo

$$R_1 = C_6 H_5, 4-OMeC_6 H_5, 4-NO_2 C_6 H_5$$

- Optimización de las condiciones de reacción de la cicloadición 1,3-dipolar entre carbenos tipo Fischer frente a sidnonas y nitriliminas, empleando diferentes catalizadores, disolventes y fuentes de calentamiento.
- Caracterización de las moléculas obtenidas por RMN, espectrometría de masas, espectroscopia infrarroja y Difracción de Rayos X.

V. RESULTADOS Y DISCUSIÓN

3. Sidnonas

3.1. Síntesis de sidnonas

Se planteo la ruta de síntesis mostrada en el Esquema 12 para obtener como productos finales las 4-trifluorometilsidnonas (18) partiendo de las correspondientes aminas aromáticas (41).

Esquema 13. Síntesis de 4-trifluorometilsidnonas.

3.1.1 Síntesis y caracterización de fenilazidas (42a-e)

Se obtuvieron los productos **42a-e** a partir de la reacción de sales de diazonio y KN₃ por sustitución nucleófilica aromática (S_NA).³⁹ Para el caso de grupos electroactractores (CO₂H, NO₂) se observaron rendimientos altos de reacción (Tabla 1).

$\begin{array}{r} \text{i) NaNO}_2 \ (9 \ \text{equiv.}) \\ \textbf{H}_2 \ \textbf{O}, \ 25 \ \ \textbf{OC} \\ \textbf{H}_2 \\ H$					
Producto	R ₁	t (min) ^a	% R		
42a	$4-CO_2HC_6H_4$	52	88		
42b	$4-NO_2C_6H_4$	44	86		
42c	$4-BrC_6H_4$	73	80		
42d	4-OMeC ₆ H ₄	68	59		
42e	C ₆ H ₅	60	22		

Tabla 1. Fenilazidas sintétizadas.

^aEtapa de diazotación

³⁹Kutonova, K. V.; Trusova, M. E.; Postnikov, P.; Filimonov, V. D.; Parello, J. A Simple and Effective Synthesis of Aryl Azides via Arenediazonium Tosylates. *Synthesis* **2013**, *45*, 2706–2710.

En la Figura 5 se muestra el Espectro de RMN de ¹H para **42a** en donde, se puede observar la aparición de los protones H5 y H3 en 7.22 ppm, H2 y H6 se observan a campo más bajo (7.97 ppm) por el efecto de desprotección del grupo CO_2H , las señales fueron confirmadas en literatura.⁴⁰

Figura 5. Espectro de RMN de ¹H en DMSO- d_6 a 500 MHz de 42.

3.1.2 Síntesis y caracterización de iminas (45a-c)

Tabla 2. Iminofosforanos sintétizados.

$R_{1}-N_{3} \xrightarrow{PPh_{3} (1 \text{ equiv.})}{Et_{2}O, 25 \text{ °C}} R_{1} \xrightarrow{N^{2}} PPh_{3}$ 42 43				
Producto	R ₁	t (h)	% R	
43a	$4-NO_2C_6H_4$	2.0	99	
43b	$4-CO_2HC_6H_4$	2.0	95	
43c	$4-BrC_6H_4$	3.0	84	
43d	4-OMeC ₆ H ₄	4.0	44	

⁴⁰Grimes, K. D.; Gupte, A.; Aldrich, C. C. Copper(II)-Catalyzed Conversion of Aryl/Heteroaryl Boronic Acids, Boronates, and Trifluoroborates into the Corresponding Azides: Substrate Scope and Limitations. *Synthesis* **2010**, 9, 1441–1448.

Empleando cantidades equimolares de azida y de trifenilfosfina se obtuvieron los iminofosforanos (**43a-d**) bajo una reacción de Staudinger. Se observaron rendimientos altos del 95-99% para grupos NO_2 y CO_2H , caso contrario al observado para **43d** donde la influencia de grupos electrodonadores genera un menor rendimiento (Tabla 2).

La caracterización de los iminofosforanos se realizó por RMN de ¹H y de ³¹P. En la Figura 6 se muestra el espectro de RMN de ¹H para **43a**, mostrando la aparición de los 15 protones aromáticos provenientes de la trifenilfosfina con un desplazamiento químico de 7.51 a 7.76 ppm. Los protones H3 y H5 aparecen como una señal doble a campo bajo en 7.93 ppm (J = 9.2 Hz, 2H), de la misma forma que H6 y H2 se desplazan a campo más alto en 6.70 ppm (J = 9.0 Hz, 2H).

Figura 6. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 43a.

En el caso del espectro de ³¹P (Anexos, Espectro 41) se muestra un desplazamiento químico a 7.42 ppm.⁴¹

A partir de los iminofosforanos **43** se llevó a la formación de las iminas (**45a-c**) observando un mejor rendimiento de reacción con grupos electroactractores (Tabla 3).

⁴¹Adib M.; Sheikhi E.; Deljoush A. Reaction between triphenylphosphine and aromatic amines in the presence of diethyl azodicarboxylate: an efficient synthesis of aryliminophosphoranes under neutral and mild conditions. *Tetrahedron* **2010**, *67*, 2137-2140.

$\begin{array}{c} R_1 & O \\ R_1 & PPh_3 + F_3C & CO_2Et \\ \textbf{43} & \textbf{44} (1 \text{ equiv.}) \end{array} \xrightarrow{PhMe, 25 \circ C} R_1 & O \\ \hline PhMe, 25 \circ C \\ \textbf{45} \end{array}$				
Producto	R ₁	t (h)	% R	
45a	$4-BrC_6H_4$	8.6	80	
45b	$4-CO_2HC_6H_4$	3.2	79	
45c	4-OMeC ₆ H ₄	3.4	55	

Tabla 3. Iminas sintétizadas.

En la Figura 7 se muestra el espectro de RMN de ¹H de **45b** donde se observa una señal cuádruple en 4.19 ppm (J = 7.1 Hz, 2H), una señal triple en 1.09 ppm (J = 7.1 Hz, 3H) correspondientes a H1a y H1b respectivamente. En la zona de aromáticos son apreciables dos señales dobles, una en 8.15 ppm (J = 8.6 Hz, 2H) para los protones H5´ y H3´ y en 7.00 ppm (J = 8.5 Hz, 2H) para H2´ y H6´.

En RMN de ¹³C (Figura 8) se muestra una señal cuádruple con un desplazamiento químico en 119.0 ppm proveniente del grupo CF₃ (C3) con una J = 278.7 Hz, adicionalmente, se observa una señal cuádruple en 149.9 ppm (J = 37.4 Hz), señal característica de carbono de la imina. Se aprecia a campo bajo el desplazamiento químico

ppm del carbono carbonílico en 158.2 ppm, a campo alto en 63.1 y 13.6 ppm se observan las señales para C1a y C1b provenientes del grupo etoxilo. La asignación de los carbonos se realizó con los experimentos en 2D: HSQC y HMBC (Anexos, Espectros 47 y 48).

Figura 8. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 45b.

En el experimento de ¹⁹F (Anexos, Espectro 49) se observa un solo desplazamiento químico en -69.9 ppm.¹⁹

3.1.3 Síntesis y caracterización de 46a

Se llevó a cabo la reducción del grupo imino empleando diferentes condiciones de reacción, para esta optimización se empleó la imina **45b** debido a la facilidad en su síntesis, el avance de la transformación se monitoreo por RMN de ¹H y ¹⁹F (Tabla 4).

En la Entrada 1 empleando AcOH a 25 °C se observaron tres señales: una señal simple a -69.9 ppm correspondiente al desplazamiento de flúor de la imina, una señal doble a -72.3 ppm concerniente a la amina esperada **46** y finalmente una señal simple a -83.1 ppm del flúor proveniente de la especie **44** (producto de hidrólisis). Después de varios experimentos (Entradas 1-3) a temperatura ambiente; se visualizó en RMN de ¹⁹F, la desaparición de la señal de flúor de **45b** transcurridas 24 h, pero, se siguió observando la señal del producto de hidrólisis.

$HO_{2}C$ $HO_{$					
Entrada	Ácido	T (°C)	t (h)	%Conversión ^b	δ de ¹⁹ F (ppm)
1			2.3	16	s (-69.9), d (-72.3) s (-83.1)
2		25	7.4	60	s (-69.9), d (-72.3) s (-83.1)
3 ^a	AcOH		24.0	100	d (-72,3) s (-83,1)
4 ^a	1	120	23.0	100	d (-72,3)
5 ^a	TFA	25	24.0	100	s (-83.2)

Tabla 4. Condiciones de reacción para la reducción de iminas.

^aZn activado, ^bDeterminado por RMN de ¹H a 500 MHz

En la Entrada 4 a reflujo de AcOH, se observó únicamente la señal doble en 72.3 ppm (Figura 9), realizando previamente la activación del zinc; se activó con HCl y posteriores lavados con agua destilada, etanol y éter.⁴² Con el uso de ácido trifluoroacético (Entrada 5) solo es observable el producto de hidrólisis

Figura 9. Espectro de RMN de ¹⁹F en CDCl₃ a 471 MHz de 46a.

⁴²Smith, C. R. Activated Zinc Dust. Synlett 2009, 9, 1522–1523.

En el espectro de RMN de ¹H (Anexos, Espectro 53) las señales características son, la aparición de un doblete para el hidrogeno de la amina con un desplazamiento químico de 4.97 ppm (J = 8.5 Hz) y para el hidrogeno metino, una señal múltiple de 4.60 a 4.66 ppm.¹⁹ Después de llevar a cabo el proceso de purificación reportado,¹⁹ solo se obtuvo un rendimiento del 10% del producto, aunado a ello, el proceso para la obtención de las fenilazidas **42** no es escalable; por la inestabilidad térmica y propiedades explosivas de dichas especies. Debido a lo anterior, se buscó otra ruta de síntesis la cuál, se muestra en el Esquema 14.

3.2 Síntesis alterna de sidnonas

Esquema 14. Síntesis alterna de sidnonas.

3.2.1 Síntesis y caracterización de derivados de glicina (48a-h)

Partiendo de las aminas aromáticas **41** se obtuvieron los productos (**48c-g**) utilizando los protocolos A, B o C (Tabla 5). Para A, una vez generados los ésteres correspondientes por $S_N 2$ con etilbromoacetato, se realizó la hidrólisis con NaOH (**48c-d**, **48g**) o para el caso de **48h** con LiOH, mostrando en la Tabla 5 los rendimientos globales para ambas etapas. Para **48a y 48b**, únicamente se realizó el proceso de saponificación (Protocolo C). Las condiciones B, se emplearon con grupos fuertemente electroactractores (**48e y 48f**).

En la Figura 10 se muestra el espectro de RMN de ¹H para **48f**, se observa una señal triple para el protón de la amina con un desplazamiento químico de 7.44 ppm con una J = 5.9Hz. En la zona aromática, se observan dos señales dobles, una para H3´ y H5´ en 8.00 ppm que se desplaza a campo más bajo que H2´ y H6´ (6.67 ppm) por el efecto de desprotección del grupo NO₂. A campo alto en 3.98 ppm aparece la señal correspondiente a H2 que integra para dos protones con multiplicidad de doblete. En el caso del espectro de RMN de ¹³C de **48f** (Anexos, Espectro 63) la señal de C1 tiene un desplazamiento en 171.9 ppm, a su vez, en 44.9 ppm la señal de C2.²⁰

$\begin{array}{c c} R_1-NH_2 & \underline{A \circ B} \\ \textbf{41} & \textbf{48} \\ \end{array} \begin{array}{c} H & \underbrace{O} \\ R_1 & \underbrace{O} \\ \textbf{48} \\ \textbf{47a} & (R_2=Me) \\ \textbf{47b} & (R_2=Et) \\ \end{array}$				
Produ cto	R ₁	Protocolo ^a	% R	
48a ^b	Ме	С	100	
48b	Bn	С	90	
48c	4-OMeC ₆ H ₄	А	73	
48d	C ₆ H ₅	А	71	
48e	$4-CO_2HC_6H_4$	В	66	
48f	$4-NO_2C_6H_4$	В	55	
48g	$2,4,6-MeC_6H_2$	А	35	
48h	3,5-CF ₃ C ₆ H ₂	А	23	

Tabla 5. Derivados de glicina obtenidos.^{*a*}

^a Protocolo A: i) Etilbromoacetato (1 equiv.), NaOAc (1 equiv.), EtOH, reflujo,
5-20 h, ii) NaOH (1.13 equiv.), H₂O, reflujo, 30 min. o LiOH (4 equiv),
Dioxano: Agua (1:1), 25 °C, 3 h.

Protocolo B: Ácido cloroacético (2 equiv) o cloroacetato de sodio (1 equiv.), H₂O, reflujo, 12-16 h.

Protocolo C: i) éster (1 equiv.), NaOH (1.13 equiv.), H₂O, reflujo, 30 min. ^bSe parte del clorhidrato de metilsarcosina éster y 2.2 equiv de NaOH.

3.2.2 Síntesis y caracterización estructural de sidnonas (16a-h)

La preparación de **16a-g** se realizó bajo condiciones suaves de nitrosación usando isoamilnitrito (IAN), seguido de la ciclación con anhidrido trifluoroacético (Tabla 6).⁴³

	i) IAN (1.1 eq u DME, 25 °(uiv.) C R₁		
48 DCM, 0 °C - 25 °C 16a-g				
Producto	R ₁	t (h) ^a	% R ^b	
16a	C ₆ H ₅	5	84	
16b	3,5-CF ₃ C ₆ H ₂	9	80	
16c	$4-OMeC_6H_4$	3.5	75	
16d	Bn	4	58	
16e	$2,4,6-MeC_6H_2$	14	57	
16f	$4-NO_2C_6H_4$	52	51	
16g	$4-CO_2HC_6H_4$	17	38	
16h	Me	12	19	

^a Tiempo de nitrosación, ^b Rendimiento Global

En la Tabla 6 se muestran los tiempos de nitrosación para cada uno de los sustituyentes, así como los rendimientos globales de reacción de ambas transformaciones. Para la etapa de ciclación solo fue necesaria 1 h para todas las especies. En los productos **16e** y **16g** se observaron tiempos prolongados de nitrosación en comparación con **16c** donde este proceso se lleva en menor tiempo, por el efecto electrodonador del metoxilo.

La elucidación estructural de **16a-g** se realizó por RMN de ¹H y de ¹³C, teniendo un desplazamiento químico característico del protón en la posición 4 que va desde 6.18 a 6.74 en CDCl₃ o a campo más bajo (>7.5 ppm) si se emplea DMSO- d_6 (Anexos, Espectros 11 y 13).

En la Figura 11 se muestra el espectro de **16c**, donde en 6.67 ppm aparece la señal de H4, en la zona de aromáticos se observan dos señales dobles, una para los protones H8 y H9 a 7.65 ppm y para los protones H7 y H11 en 7.08 ppm, ambas con una J = 9.0 Hz.

⁴³Applegate, J.; Turnbull, K. The Efficient Synthesis of 3-Arylsydnones Under Neutral Conditions. *Synthesis* **1988**, 1011-1012.

Figura 11. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de **16c**.

En el espectro de RMN de ¹³C de **16c** (Anexos, Espectro 6), la señal característica es el desplazamiento químico de C4 a 93.7 ppm, en 127.7 ppm se aprecia el carbono de la posición ipso y a campo más bajo la señal de C5 en 169.1 ppm.^{44,45}

3.2.3 Síntesis y caracterización de sidnonas sustituidas en C4

$\frac{N^{-0}}{N^{+}} - 0^{-} \xrightarrow{AcOH, 25 \circ C}_{XY} Ph^{+} + \frac{N^{-0}}{X} - 0^{-}$ 16a 49-51				
Producto	XY (equiv)	t (h)	% R	
49	NBS (1.1)	2.0	96	
50 ª	ICl (1.1)	1.0	90	
51	NCS (2.0)	6.0	36	

Tabla 7. Sidnonas halogenadas obtenidas.

^aSe empleó 1.1 equiv. de NaOAc

⁴⁴Plougastel, L.; Koniev, O.; Specklin, S.; Decuypere, E.; Créminon, C.; Buisson, D. A.; Wagner, A.; Kolodych, S.; Taran, F. 4-Halogeno-Sydnones for Fast Strain Promoted Cycloaddition with Bicyclo-[6.1.0]-Nonyne. *Chem. Commun.* **2014**, *50*, 9376–9378.

⁴⁵Fang, Y.; Wu, C.; Larock, R. C.; Shi, F. Synthesis of 2 H -Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes. *J. Org. Chem.* **2011**, *76*, 8840-8851.

Una vez obtenidas las especies **16**, se procedió a modificar la posición 4, la cual, ha demostrado ser de gran importancia en la reactividad de la reacción de cicloadición con alquinos. Partiendo de **16a** se llevó a la halogenación obteniendo los productos **49-51** (Tabla 7).^{44,46}

Su caracterización estructural se realizó por RMN de ¹H y de ¹³C, observando para los tres productos la desaparición de la señal del protón en la posición 4 en ¹H (Anexos, Espectros 46, 48 y 49). En RMN de ¹³C, la señal de C4 para **16a** observada en 93.7 ppm desaparece y el desplazamiento químico para el enlace C-I es de 50.6 ppm (Figura 12). Los desplazamientos para el enlace C-Br y C-Cl son de 84.1 y 98.4 ppm respectivamente.

Figura 12. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 50.

La arilacion de **16a** se realizó utilizando bromobenceno (**52**) durante 12 h con un rendimiento del 27% (Esquema 15). 47,48

⁴⁶Dumitrascu, F.; Draghici, C.; Dumitrescu, D.; Tarko, L.; Raileanu, D. Direct Iodination of Sydnones and Their Cycloadditions to Form 5-Iodopyrazoles. *Liebigs Ann./Recueil* **1997**, 2613–2616.

⁴⁷Rodríguez, A.; Moran, W. J. Palladium-Catalysed Direct Arylation of Sydnones. *Synthesis* **2009**, *4*, 650–654.

⁴⁸Favre, C.; de Cremoux, L.; Badaut, J.; Friscourt, F. Sydnone Reporters for Highly Fluorogenic Copper-Free Click Ligations. *J. Org. Chem.* **2018**, *43*, 2058-2066.

Esquema 15. Arilación de sidnonas catalizada por paladio.

La caracterización de **53** se determinó únicamente por RMN de ¹H, se observó en 7.29 ppm una señal simple que integra para 5 protones (H4b-H4f) correspondientes al anillo aromático proveniente del halogenuro de arilo, para el otro anillo se observa una señal triple en 7.67 ppm para H3d, una señal triple en 7.58 ppm para H3c y H3e y en 7.49 ppm una señal doble (J = 7.9 Hz) para H3b y H3f.

Figura 13. Espectro de RMN de de 1 H en CDCl₃ a 500 MHz de **53**.

Empleando la 4-iodosidnona (**49**) como material de partida, se sintetizó **18**, utilizando como agente trifluorometilante: metilfluorosulfonildifluoroacetato (MFSDA) durante 20 h de reacción a 80 °C.^{49,50}

⁴⁹Chen, Q.Y.; Wu, S.W. Methyl Fluorosulphonyldifluoroacetate; a New Trifluoromethylating Agent. J. Chem. Soc., Chem. Commun. **1989**, 705-706.

⁵⁰Roy, S.; Gregg, B.T.; Gribble, G.W.; Le, V.; Roy, S. Trifluoromethylation of aryl and heteroaryl halides. *Tetrahedron* **2011**, *67*, 2161–2195.

Esquema 16. Síntesis de 4-trifluorometilsidnonas.

Su elucidación se realizó por RMN de ¹³C y ¹⁹F, en RMN de ¹³C (Figura 14) se aprecia la desaparición de la señal del enlace C-I observada en 50.6 ppm, aparece una señal cuádruple en 119.3 ppm (J = 267.9 Hz) proveniente del carbono del CF₃. A campo bajo en 163.1 ppm aparece el desplazamiento químico del enlace C-O y C6 en 133.6 ppm. En RMN de ¹⁹F se observa un único desplazamiento químico a -56.3 ppm (Anexos, Espectro 18).

Figura 14. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 18.

4. Carbenos de Fischer

4.1 Preparación de Carbenos de Fischer

Su síntesis se realizó empleando la metodología reportada en literatura.^{51a-c} Partiendo de los alquinos **19** (1.3 equiv.) se procedió a la formación del nucleófilo con *t*-BuLi (1.3

⁵¹a)Dötz, K. H.; Kuhn, W. J. Organomet. Chem. **1985**, 286, C23–C26, b) Aumann, R.; Hinterding, P. Chem. Ber. **1993**, 126, 421–427, c)Ferrer, M.; Lluch, A.-M.; Messeguer, A.; Sánchez-Baeza, F.; Gibert, M. Oxidative Decomplexation of Chromium Fischer Carbene Complexes Induced by Dioxiranes. J. Org. Chem. **1999**, 64, 1591–1595.

equiv.), una vez formado, se adicionó el reactivo de organolitio a la sal metálica $M(CO)_6$ (1 equiv.) obteniendo los acilmetalatos y finalmente con 1.2 equivalentes de tetrafluoroborato de trietiloxonio (su obtención se efectuó por el protocolo descrito por Meerwin^{52a,b}) se realizó el proceso de O-alquilación (Tabla 8).

$R_{1} - H_{19} + \frac{i) t-BuLi, THF -78 °C a -30 °C}{ii) M(CO)_{6}, -30 °C} + OEt OEt$ $R_{1} - H_{19} + \frac{i) t-BuLi, THF -78 °C a -30 °C}{iii) Et_{3}OBF_{4}, -30 °C a 25 °C} + OEt$				
Producto	R ₁	М	%R	
23a	ciclopropil	W	97	
23b	<i>t</i> -butil	W	92	
23c	4-OMeC ₆ H ₄	W	89	
23d	C ₆ H ₅	W	75	
23e	3-tiofeno	W	50	
23f	1-ciclohexenil	W	48	
24a	C ₆ H ₅	Cr	74	
24b	C ₆ H ₅	Мо	45	

Tabla 8. Alquinil carbenos de Fischer obtenidos.

4.2 Elucidación estructural de alquilcarbenos de Fischer

Su determinación se realizó únicamente por RMN de ¹H y ¹³C, en la Figura 15 se muestra el espectro de RMN de ¹H de **24a** usado como referencia, en la zona de aromáticos de 7.44 a 7.65 ppm una señal múltiple que integra para 5 hidrógenos, en 4.72 ppm se observa una señal cuádruple para los hidrógenos asignados como H1b y en 1.61 ppm una señal triple para H1a.

⁵²a)Meerwein, H. *Org. Synth.* **1966**, *46*, 113. b) Zhang, W.; Liu, W.; Jiang, X.; Jiang, F.; Fu, L. One-Pot Synthesis of Hydroxybenzo[d]-Oxazole-2-Aliphatic Acid Derivatives by Meerwein's Reagent. *Synthetic Communications*, **2012**, *42*, 2772-2779.

Figura 16. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 24a.

En el espectro de RMN de ¹³C (Figura 16) en el cual aparecen a campo alto las señales correspondientes el etoxilo en 15.0 (CH₃) y 75.8 (CH₂) ppm respectivamente. La señal perteneciente al alquino tiene un desplazamiento químico en 91.8 ppm (C2) y 121.0 ppm (C3). A campo bajo se observa en 216.3 ppm la señal del carbonilo *cis* y en 225.7 ppm el
carbonilo *trans*, otra señal característica es la aparición del carbono carbénico a 313.8 ppm.⁵³

5. Reactividad de sidnonas en reacciones de cicloadición

5.1. Cicloadición de sidnonas con alquinos orgánicos

Antes de probar la reactividad de los alquinil(etoxi)carbenos y sidnonas se decidió analizar primero su comportamiento con un alquino orgánico simétrico como DMAC (Esquema 17).

Esquema 17. Cicloadición 1,3-dipolar sidnona-DMAC.

Empleando dos equivalentes de DMAC (**54**) a reflujo de tolueno se obtuvieron los productos pirazólicos en rendimientos altos de reacción y en tiempos cortos de 5 a 6 h. El desplazamiento químico en RMN de ¹H del protón pirazólico de **55a** se observa a 8.40 ppm (Figura 17). Para **55b** el desplazamiento químico en RMN de ¹³C del enlace C-I es de 88.8 ppm (Anexos, Espectro 51), ambos datos son consistentes con lo reportado en literatura.⁴⁶ Cuando X=CF₃, bajo las mismas condiciones de reacción de cicloadición mostradas en el Esquema 17 no ocurre transformación química después de 51 h monitoreada por ccf. Bajo nuestras condiciones de transformación la 4-trifluorometilsidnona (**18**) no experimenta reacción de cicloadición con DMAC, confirmando que el sustituyente en la posición 4 en las sidnonas es de importancia en la reactividad de dichas especies.

⁵³Vázquez, M. A.; Reyes, L.; Miranda, R.; García, J. J.; Jiménez-Vázquez, H. A.; Tamariz, J.; Delgado, F. Facial Stereoselectivity in the Diels-Alder Reactions of Arylethynyl)ethoxycarbenes of Group 6 with 1,2,3,4,5-Pentamethylcyclopenta-1,3-diene and Unusual Rearrangement of Strained Norbornadienyl Fischer Carbene Complexes of Chromium(0). *Organometallics* **2005**, *24*, 3413–3421.

Figura 17. Espectro de RMN de ¹H en CDCl₃ a 400 MHz de **55a**.

5.2. Cicloadición de sidnonas y carbenos de Fischer

Basándonos en estudios previos donde se obtienen mezclas de regioisómeros, el uso de alquinilcarbenos de Fischer nos permitirá obtener regioselectivamente alguno de los productos pirazólicos **56** y **56**' (Esquema 18).

Esquema 18. Posibles regioisómeros de la reacción de cicloadición entre carbenossidnonas.

Se comenzó el estudio de reactividad teniendo como dipolo de partida **16a** y el alquinilcarbeno de tungsteno **23d**, se intentaron reproducir las condiciones reportadas en literatura³⁶ donde se empleó MeCN a 60 °C (Tabla 9, entrada 1) pero el rendimiento observado (13%) fue mucho menor al reportado (42%) aunque el tiempo de reacción se redujo de 66 h a 23 h, con base en lo anterior, se analizó el papel de diferentes disolventes polares apróticos en la reacción de cicloadición 1,3-dipolar. En la entrada 2 con DME después de 28 h se obtuvo un 34%, con PhMe después de 72 h a 60 °C no se observó transformación completa de **23d** generando un 21%. En la entrada 4 se logró un 37% de

56a sin consumirse totalmente **23d**. En la entrada 5 con THF a 50 °C se obtuvo un rendimiento del 36%, modificando a reflujo, se obtuvo un 40% en 13h (entrada 6).

$\begin{array}{c cccc} W(CO)_5 & & & W(CO)_5 \\ \hline & & & & & \\ & & & & \\ Ph & & & \\ & & & & \\ & & & & \\$					
Entrada	Disolvente	T (°C)	t (h)	% R ^b	
1	MeCN	60	23	13	
2	DME	60	28	34	
3	PhMe	60	72	21°	
4	DCE	60	72	37°	
5	THF	50	36	36	
6	THF	Reflujo	13	40	
7	THF	90	7	48 ^d	
8	THF	90	6	50 ^{d, e}	
9	THF	80	12	54 ^d	
10	THF	80	12	60 ^{d, f}	

Tabla 9. Optimización de la reacción de cicloadición 1,3-dipolar entre 24a y 16a.^a

^a Condiciones de reacción: **23d** (0.50 mmol), **16a** (1 mmol), disolvente (2 mL). ^b Rendimiento del producto puro, ^c No se termina de consumir **23d**, ^d Tubo de presión, ^e Se utilizó 0.25 mmol de **23d** y 0.25 mmol de CuI como aditivo, ^f Se empleó 1 mmol de **23d**.

Se realizó una ligera modificación al protocolo, utilizando un tubo de presión a 90 °C de THF donde, se observó un menor tiempo y mejor rendimiento (entrada 7). En reportes de literatura se ha demostrado la utilidad de sales de cobre como ácidos de Lewis para activar a la sidnona y con ello modular la regioselectividad de la cicloadición, reducir la temperatura y tiempos de reacción.^{20,21,22} Utilizando las mismas condiciones de la entrada 7 (THF, 90 °C, tubo de presión) se empleó una fuente de Cu^I como aditivo, donde el tiempo de reacción y el rendimiento no se vieron afectados por CuI (entrada 8) siendo semejantes a los resultados generados en la entrada 7. Bajo estas condiciones de reacción (THF, 90 °C, tubo de presión) se observó la aparición del fragmento metálico en RMN de ¹³C con un desplazamiento químico en 191.2 ppm (Anexos, Espectro 73), producto de descomposición de **56a**, por lo cual, se decidió mantener una temperatura de 80 °C durante

12 h (entrada 9). Finalmente, al aumentar la cantidad de **23d** a 1 mmol (entrada 10) se observó un 60 % de **56a**.

Una vez descritas las mejores condiciones de reacción (Tabla 9, entrada 10), se analizó el alcance de la metodología modificando la naturaleza de los sustituyentes R_1 y R_2 (Tabla 10). Primero, se analizó el comportamiento de **16a** con los alquinos organometálicos **23a-23f**, se observó un mejor rendimiento (57-64%) cuando R_2 es un grupo alquilo (*t*-butilo y ciclopropilo) en tiempos cortos de 5 a 10 h, con grupos electrodonadores (4-OMeC₆H₄) en el anillo aromático se obtuvo un rendimiento del 43% con un tiempo más prologando en comparación con su análogo **56a**. Finalmente, para un grupo heteroaromático (3-tiofeno) se generó el pirazol organometálico en un 52% durante 7 h.

La reacción es más sensible cuando se modifica R_1 , observando una disminución en la formación de **56g-j** (27-54%), si la posición 2 del anillo aromático de R_1 de las sidnonas esta sustituida (**56k**), la reacción no procede después de transcurridas 96 h recuperando un 69% de **23b**.

$W(CO)_{5}$ $W(CO)_{5}$ $W(CO)_{5}$ $W(CO)_{5}$ $HF, 80 °C$ EtO N R_{1} $HF, 80 °C$ R_{2} R_{1} $HF, 80 °C$ R_{2} K R_{2} K R_{2} K					
Producto	\mathbf{R}_1	\mathbf{R}_2	t (h)	$\% \mathbf{R}^b$	
56b	C ₆ H ₅	4-OMeC ₆ H ₄	20	43	
56c	C ₆ H ₅	Ciclohexenilo	10	44	
56d	C ₆ H ₅	3-tiofeno	7	52	
56 e	C ₆ H ₅	Ciclopropilo	5	57	
56f	C ₆ H ₅	<i>t</i> -butilo	10	64	
56g	Bn	<i>t</i> -butilo	24	54	
56h	4-OMeC ₆ H ₄	<i>t</i> -butilo	6	40	
56i	4-ClC ₆ H ₅	<i>t</i> -butilo	11	27	
56j	Me	<i>t</i> -butilo	15	27	
56k	$2,4,6-MeC_6H_2$	<i>t</i> -butilo	96	nr ^c	

 Tabla 10. Derivados de pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno

 sintetizados.^a

^{*a*} Reacciones con 1 mmol de **23a-f** en 2 mL de THF, ^{*b*} Rendimiento del producto puro, ^{*c*} No reacciona, se recupera el 69% de **23b**.

5.2.1 Elucidación estructural de pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno

Se determinó la estructura de **56a** por RMN de ¹H y ¹³C, la señal característica en el espectro de RMN de ¹H es la del protón pirazólico con un desplazamiento químico de 7.95 ppm. Analizando el sistema alcano, se observa que el grupo etoxi del éster se localiza como un cuarteto que integra para dos protones asignado como H3b (4.81 ppm), a campo alto se aprecia el protón H3c (1.09 ppm) con una multiplicidad de triplete (Figura 18).

Figura 18. Espectro de RMN de ¹H en CDCl₃ a 600 MHz de 56a.

En el espectro de RMN de ¹³C se observa a campo bajo el desplazamiento del carbono carbénico en 303.5 ppm, en 204.7 ppm (CO_{trans}), en 197.7, 198.3 y 198.8 ppm para el CO_{cis} . Con el experimento HSQC se determinaron las correlaciones ¹H-¹³C a un enlace, H5 tiene correlación con su carbono con un desplazamiento químico de 127.33 ppm. A campo alto se tiene un desplazamiento en 79.2 ppm para el metileno asignado como C3b y en 14.3 ppm para el grupo metilo C3c.

Figura 19. Espectro de RMN de ¹³C en CDCl₃ a 150 MHz de 56a.

Los desplazamientos de RMN ¹H para los hidrógenos de la posición 5 de los pirazoles **56b-f** se observan para sustituyentes aromáticos (**56b**) y heteroaromáticos (**51d**) en 7.92 y 7.98 ppm respectivamente. Para sustituyentes cíclicos (**56c**) se desplaza a 7.78 ppm y para cadenas alifáticas (**56e-f**) en 7.63 y 7.77 ppm. Para el caso de los complejos pirazólicos **56g-j** se observa un desplazamiento químico entre 7.18 y 7.73 ppm.

5.3. Influencia del metal en la reacción de cicloadición

Una vez descrito el comportamiento con tungsteno y al no tener evidencia bibliográfica de la reactividad de alquinilcarbenos de cromo y molibdeno frente a sidnonas, se continuo su estudio empleando las mismas condiciones de reacción ya descritas en la Tabla 9 (Esquema 19). El tiempo observado para Cr y Mo, fue de 5h y 2h respectivamente, el rendimiento de reacción con cromo (37%) es menor a su homólogo con W (60%), para el caso de molibdeno, no se observó el producto de cicloadición a 80 °C. Basándonos en el reporte de Vázquez *et al.*⁵³, estos sistemas son altamente reactivos, por lo tanto, la temperatura y el tiempo de reacción son menores a los del resto del grupo, de esta manera, se diseñó un experimento a 25°C para molibdeno. Después de transcurridas 18 h no se observó la transformación de **24b**, se calentó la mezcla de reacción a 50 °C observando al igual que a 80 °C el producto de oxidación **58** (Figura 22).

Esquema 19. Síntesis de pentacarbonil[(etoxi)(pirazolil)carbenos] de cromo y molibdeno.

La formación del carbeno de cromo (**57a**) se confirmó por RMN de ¹H y ¹³C, en la Figura 20 se observa en 7.83 ppm una señal simple para H5, para H3b una señal cuádruple en 4.90 ppm y una señal triple en 0.99 ppm para H3c. En el espectro de ¹³C (Figura 21) se observa el desplazamiento del carbono carbénico (330.6 ppm) a campo más bajo que sus homólogos con tungsteno y los correspondientes carbonilos *trans* y *cis* aparecen en 224.9 y 217.4 ppm respectivamente.

En la Figura 22 se muestra el espectro de RMN de ¹H para **58**, donde, la pérdida del fragmento metálico genera una modificación en los desplazamientos químicos del etoxilo, ahora, aparecen en 1.37 ppm para el CH₃ y 4.31 ppm para el CH₂, de 7.37 a 7.60 ppm se observan los 5 hidrógenos del anillo aromático.

Figura 20. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 57a.

Figura 21. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 57a.

Figura 22. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 58.

5.4. Influencia de la posición 4 de las sidnonas en la reacción de cicloadición

Se decidió analizar el papel de la sustitución de C4 en la reactividad de las sidnonas, para ello, se empleó como material de partida el carbeno de tungsteno **23d** esperando observar el mismo comportamiento que el mostrado en el Esquema 16 con diferentes dipolos. Tal

como se aprecia en el Esquema 20 y en la Tabla 11 no se obtuvieron los pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno funcionalizados en la posición 4.

Esquema 20. Síntesis de pirazoles funcionalizados en la posición 4.

 Tabla 11. Influencia de la sustitución de C4 de las sidnonas en la reacción de cicloadición.

Entrada	X	t (h)	%R
1	Cl	12	nr
2	Br	24	nr
3	Ι	7	nr
4	CF ₃	96	nr
5	Ph	47	nr

6. Funcionalización del enlace C-H de sidnonas con carbenos de Fischer

El átomo de hidrógeno en la posición 4 de las sidnonas es bastante ácido (el pka de la 3fenilsidnona es de aproximadamente de 18-20), por lo tanto, se puede llevar a cabo un proceso de metalación con bases fuertes (*n*-BuLi, LDA) y la posterior adición de un electrófilo que, en nuestro caso, sería el alquinilcarbeno de Fischer. Con base en lo anterior, se modificaron las condiciones de reacción llevando a cabo la metalación de **16a** utilizando *n*-BuLi a -78 °C en THF como disolvente.^{54a-d}

A continuación, se adicionó **23a** y se analizó el comportamiento de dichos sistemas a baja temperatura esperando la adición 1,2 en el carbono carbénico donde puede ocurrir la alquilación del enlace C-H vía eliminación de Cr (CO)₅ para generar la especie **60a** o la

⁵⁴a)Fuchigami, T.; Chen, C.S.; Nonaka, T.; Yeh, M.Y.; Tien, H.J. Synthesis of Sydnone Compounds Substituted by Heteroatom Groups at the 4-Positions. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 483-486; (b) Fuchigami, T.; Chen, C.S.; Nonaka, T.; Yeh, M.Y.; Tien, H.J. Preparation of Sydnone Compounds Substituted by Thio and Seleno Functional Groups at the 4-positions. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 487-491. c) Hu, F.; Yang, J.; Xia, Y.; Ma, C.; Xia, H.; Zhang, Y.; Wang, J. C–H Bond Functionalization of Benzoxazoles with Chromium (0) Fischer Carbene Complexes. *Organometallics* **2016**, *35*, 1409–1414. d) Wiechmann, S.; Freese, T.; Drafz, M. H. H.; Hübner, E. G.; Namyslo, J. C.; Nieger, M.; Schmidt, A. Sydnone Anions and Abnormal N-Heterocyclic Carbenes of O-Ethylsydnones. Characterizations, Calculations and Catalyses. *Chem. Commun.* **2014**, *50*, 11822–11824.

eliminación del grupo alcoxi obteniendo **60b** (Esquema 21). Una vez terminada la adición, se mantuvo en agitación a temperatura ambiente por 12h. Se aisló un producto por cromatografía en columna, el cual, se analizó por RMN de ¹H (Figura 23).

Esquema 21. Adición nucleofílica de sidnonas a alqunilcarbenos.

Figura 23. Espectros de RMN de ¹H a 500 MHz en CDCl₃ de 16a y 60a.

En dicha Figura, se muestra la comparativa entre los espectros de RMN de ¹H de **16a** y el posible producto **60a**. En el espectro de color rojo se observa el desplazamiento químico del metileno y el metilo que tienen un desplazamiento químico en 4.26 ppm y 1.33 ppm respectivamente, por la aparición de este fragmento, se descartó la formación de **60b**. En el reporte de *Hu y colaboradores*^{54c} donde llevaron a cabo la funcionalización

del enlace C-H de benzoxazoles con carbenos de Fischer, reportaron el desplazamiento químico desde 5.52 a 6.03 ppm del metino adyacente al etoxilo.

En nuestro caso, aparece un singlete a 5.69 ppm que pudiera corresponder a esta señal, también se observa una señal simple a 6.72 ppm muy parecida al desplazamiento de H4 en **16a**, en la zona de aromáticos desde 6.75 ppm a 7.84 se aprecian por integración, los diez protones de **60a**. La señal adicional en 6.72 ppm nos sugiere analizar **60a** por otra técnica, como Espectrometría de Masas. En la Figura 24 se muestra una comparativa del Espectro de masas de **16a** y el Espectro de masas/masas de **60a** donde el valor de m/z para **16a** es de 163.0510. Para **60a** se analizó el patrón de fragmentación y no se observó el valor de m/z correspondiente a **16a**, confirmando la ausencia de la estructura propuesta, el valor encontrado de m/z es de 308.1279 siendo el teórico de 321.1239.

Figura 24. Espectro de ESI (+) para 16a y 60a.

A partir de lo anterior, se intentó cristalizar el producto por difusión empleando una mezcla DCM/Hexano. Se analizó la estructura cristalina por Difracción de Rayos X obteniendo sorpresivamente el núcleo de 2*H*-piran-2-ona (**61a**) (Figura 25).

Figura 25. Estructura molecular de 61a con elipsoides térmicos, probabilidad del 50%.

6.1 Elucidación estructural de 61a por Resonancia Magnética Nuclear

En el Espectro de RMN de ¹H (Figura 26) se aprecia el desplazamiento químico del hidrógeno del grupo amino en 5.69 ppm observado como una señal simple, a su vez en 6.72 ppm el del hidrógeno de la posición vinílica asignado como H5 con multiplicidad de singlete.

Figura 26. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 61a.

A campo alto se observan los desplazamientos químicos correspondientes al sistema alcano, en 1.33 ppm aparece una señal triple para H4b y en 4.26 ppm una señal cuádruple para H4a. En la zona de aromáticos, se observa una señal doble en 6.75 ppm con una J=

7.3 Hz para H2´ y H6´, una señal triple para H4´ en 6.88 ppm y en 7.23 ppm un triplete para H3´ y H5´. Para los protones H2´´ y H6´´ se observa una señal doble que se desplaza a 7.83 ppm y finalmente H3´´, H4´´, H5´´ una señal múltiple de 7.46-7.49 ppm.

En la Figura 27 se muestra el Espectro de RMN de ¹³C, la asignación de los carbonos se realizó con ayuda de los experimentos en 2D: HSQC y HMBC (Figura 28, 29 respectivamente) y el experimento DEPT-135 (Figura 30).

Figura 27. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 61a.

A partir del experimento HSQC se determinaron las correlaciones ¹H-¹³C a un enlace, se realizó la expansión únicamente de la zona de aromáticos, ya que, por el desplazamiento químico a campo alto se asignaron C4a (65.4 ppm) y C4b (14.9 ppm), de la misma manera se asignó C5 (95.4 ppm). Con el experimento HMBC, se asignó C4 (156.7 ppm) por el acoplamiento a tres enlaces con H4 (Figura 29).

Figura 28. Espectro 2D: HSQC de 61a.

Figura 29. Espectro 2D: HMBC de 61a.

Continuando con el experimento HMBC, la señal del grupo amino en 5.69 ppm tiene interacción con los carbonos cuaternarios señalados como C4 (156.7 ppm) y C2 (162.7 ppm), se observó el acoplamiento con un metino en 116.5 ppm, de esta manera, se asignó C2' y C6' y sus correspondientes hidrógenos con el HSQC, los cuales tienen un

desplazamiento químico en 6.75 ppm con multiplicidad de doblete. La señal doble en 6.75 ppm (H6['], H2[']) tiene acoplamiento con un metino a 120.2 ppm (C4[']), este carbono en el experimento HSQC tiene interacción a un enlace con la señal triple observada en 6.88 ppm (H4[']) que integra para un hidrógeno. H4['] tiene acoplamiento con un metino (128.6 ppm), con lo anterior, asignamos C3['] y C5['] y sus protones H3['] y H5['] que se desplazan a 7.22 ppm con multiplicidad de triplete. Finalmente, la señal triple (7.22 ppm) con ayuda del Experimento DEPT-135 (Figura 29), interacciona a tres enlaces con el carbono cuaternario asignado como C1^{''} (143.4 ppm).

Figura 30. Experimento DEPT-135 de 61a.

El hidrógeno de la posición vinílica asignado como H5 (6.72 ppm) tiene acoplamiento con los carbonos cuaternarios C4 (156.7 ppm) y con el carbono que se desplaza a 155.0 ppm, por el efecto del átomo de oxígeno hace que su desplazamiento químico se observe a campo bajo, por lo tanto, esta señal debe corresponder a C6. C6 fue vital para la asignación de los hidrógenos H6['], H2^{''} (7.83 ppm) con multiplicidad de doblete y sus correspondientes carbonos C6^{''}, C2^{''} con un desplazamiento químico en 125.3 ppm.

La señal doble en 7.83 ppm tiene acoplamiento con un metino (130.5 ppm) que se nombró como C4^{''}. A partir de esta señal, asignamos C3^{''} y C5^{''}que aparecen en 129.0 ppm. Estos hidrógenos H3^{''}, H4^{''} y H5^{''} aparecen como una señal múltiple de 7.46 a 7.49 ppm. Esta señal múltiple tiene interacción con un carbono cuaternario en 131.3 ppm que

corresponde a C1⁻⁻⁻, para concluir con nuestra asignación, la señal cuaternaria restante es la de C3 con un desplazamiento a 110.6 ppm.

Adicionalmente, se determinó la presencia de los grupos funcionales: amino y carbonilo, por Espectroscopia Infrarroja (Figura 31), los cuales, son observados en 3342 y 1672 cm⁻¹ respectivamente.

Figura 31. IR-KBr en pastilla de **61a**.

6.2 Optimización de condiciones de reacción en la síntesis de 2H-piran-2-onas

Tabla 12. Efecto del disolvente en la síntesis 61a.^a

Ph ⁻⁰ + 16a	Et <mark>? equiv.)</mark> c, 1h °C, 1h	Ph Ph 61a		
Entrada	Disolvente	T (°C)	t (h)	% R
1	THF	25	12	10
2	Et ₂ O	25	24	nr
3	MeCN	25	24	nr

^a Las reacciones fueron realizadas empleando **16a** (1.34 mmol), **23d** (1.61 mmol) en 20 mL de disolvente.

Tal como se mostró en el Esquema 21, se emplearon 1.2 equivalentes del alquinilcarbeno de Fischer (**23d**) para obtener **61a** en un rendimiento del **10%** (entrada 1, Tabla 12), a partir de lo anterior, se comenzó a estudiar el efecto de diferentes disolventes polares

apróticos. En la entrada 2 y 3 (Tabla 12) se empleó Et_2O y MeCN^{54d} como disolvente, pero no se observó la formación del producto después de mantener en agitación por 24 h a temperatura ambiente.

El mejor disolvente para la generación de **61a** fue THF, ahora, se modificó la relación estequiométrica **16a**:**23d**, la naturaleza de la base, el metal y el dipolo (Tabla 13).

En la entrada 1 con M=Cr y X=H se obtuvo **61a** en 13% de rendimiento, para mejorar el proceso de metalación, se planteó el intercambio metal-halógeno utilizando la bromosidnona (**49**)⁵⁵ y la iodosidnona (**50**), pero no se encontró diferencia significativa en la formación de **61a** (entrada 2 y 3).

$\begin{array}{c} MCO_{5} \\ OEt \\ 23d, 24a \end{array} + \begin{array}{c} 1.2 \\ Ph \\ $					
Entrada	М	X	Base	$\% \mathbf{R}^b$	
1	Cr	Н	n-BuLi	13	
2	Cr	Br	n-BuLi	13	
3	Cr	Ι	n-BuLi	17	
4	Cr	Н	LiHMDS	13	
5 ^c	Cr	Н	LiHMDS	51	
6 ^c	W	Н	LiHMDS	41	

Tabla 13. Optimización de la reacción para la síntesis de 61a.^a

^a Las reacciones fueron realizadas empleando: **alquinilcarbeno** (1.07 mmol), **dipolo**

(1.28 mmol) en 20 mL de disolvente, ^{*b*} Rendimiento del producto puro, ^c Se emplearon 2 equiv. de **23d** o **24a**.

En el pasado, *n*-BuLi ha sido utilizado ampliamente como iniciador de ataques electrofílicos en la posición 4 de la sidnonas. Sin embargo, estas reacciones sufren una rápida descomposición a medida que se aumenta la temperatura. Basándonos en los estudios publicados por Freese *et al.*⁵⁶, donde, se realizan metalaciones de iminosidnonas

⁵⁵Lücke, A. L.; Wiechmann, S.; Freese, T.; Nieger, M.; Földes, T.; Pápai, I.; Gjikaj, M.; Adam, A.; Schmidt, A. Anionic N-Heterocyclic Carbenes by Decarboxylation of Sydnone-4-Carboxylates. *Tetrahedron* **2018**, *74*, 2092–2099.

⁵⁶Freese, T.; Lücke, A. L.; Namyslo, J. C.; Nieger, M.; Schmidt, A. Heterocycle Syntheses with Anionic N-Heterocyclic Carbenes: Ring Transformations of Sydnone Imine Anions. *Eur J. Org. Chem.* **2018**, 1646–1654.

con bis (trimetilsilil) amida de litio (LHDMS), en la entrada 4 se planteó el uso de LHMDS generando **61a** en un 13%, similar a los resultados generados por *n*-BuLi.

De manera general (entrada1-4), se observó la desaparición de **23a** transcurrida 1 h a - 80°C después de su adición a **16a**. Bajo esta premisa, se diseñó un experimento con 2 equivalentes del alquino obteniendo **61a** en un 51% de rendimiento (entrada 5). Con el alquinilicarbeno de tungsteno fue del 41%.

6.3 Propuesta mecanística para la formación de 2H-piran-2-ona

Con base en la estructura obtenida por difracción de rayos X de **60a**, la primera etapa en el mecanismo de reacción (Figura 31) es la adición nucleofílica de la 4-litiosidnona (**A**) al alquinilcarbeno (**B**) para formar el intermediario tetraédrico (**C**), en el cual, el oxígeno se adiciona a la posición β del alquino para generar la estructura (**D**), que es susceptible a ataques nucleofílicos, en este caso el agua (H₂O) es la que ataca la posición 5 de las sidnonas, a continuación, se propone la salida de una molécula de NO⁺ generando la estructura (**F**).⁵⁷

Figura 32. Propuesta de mecanismo de reacción para la formación de 61a.

⁵⁷Puranik, G. S.; Suschitzky, H. Syntheses of Heterocyclic Compounds. Part XVIII. Aminolysis of 3-Aryl-4-bromosydnones, and Acid Hydrolysis of 3-Arylsydnoneimines *J. Chem. Soc. C* **1967**, 1006.

7. Nitriliminas

7.1 Síntesis y caracterización estructural de cloruros de hidrazonilo

Su preparación se realizó por una reacción de sustitución nucleofílica en el grupo acilo obteniendo las benzoilhidrazinas (**64a-c**) en rendimientos del 51-79%, finalmente, a través de una reacción de Appel se sintetizaron los cloruros de hidrazonilo (**37a-c**) con rendimientos del 64 al 81%.^{58,59}

Esquema 22. Síntesis de cloruros de hidrazonilo.

La caracterización estructural de **37a** se realizó por RMN de ¹H y ¹³C, en la Figura 32 se muestra el espectro de RMN de ¹H donde la señal característica se observa en 7.92 ppm correspondiente al protón de la amina, las señales de los 9 protones aromáticos aparecen de 6.90 a 7.84 ppm y en 3.83 ppm una señal simple con integración para tres hidrógenos para el metoxilo, en RMN de ¹³C la señal del carbono de la imina se desplaza a 143.6 ppm (Anexos, Espectro 31), lo anterior se comprobó en reportes previos .⁶⁰

⁵⁸Giustiniano, M.; Meneghetti, F.; Mercalli, V.; Varese, M.; Giustiniano, F.; Novellino, E.; Cesare Tron, G. Synthesis of Aminocarbonyl N-Acylhydrazones by a Three-Component Reaction of Isocyanides, Hydrazonoyl Chlorides, and Carboxylic Acids. *Org. Lett.* **2014**, *16*, 5332–5335.

 ⁵⁹Zhang, C. Y.; Liu, X. H.; Wang, B. L.; Wang, S. H.; Li, Z. M. Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1,3-Dipolar Cycloaddition Reaction. *Chem. Biol. Drug Des.* 2010, 75, 489–493.
 ⁶⁰Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Asymmetric Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Imines for the Synthesis of Chiral Spiro-Pyrazoline-Oxindoles. *Org. Lett.* 2013, *15*, 76–79.

Figura 33. Espectro de RMN de ¹H de 600 MHz en CDCl₃ de **37a**.

7.2 Reacción de cicloadición entre nitriliminas y alquinilcarbenos de Fischer

Obtenidos los precursores **37a-c**, se promovió la reacción de cicloadición 1,3-dipolar con una base esperando teóricamente la formación de los regioisómeros **65** y **66** (Esquema 23) donde aún se conserva el fragmento metálico.

Esquema 23. Síntesis de pirazoles altamente sustituidos.

7.3 Optimización de la reacción entre nitriliminas-carbenos de Fischer

Se probaron como condiciones iniciales: **24a**, **37a**, THF como disolvente y 10 equivalentes de TEA¹⁵ a temperatura ambiente, transcurridas 19 h se observó la desaparición del alquino (Tabla 19, entrada 1). Se determinó la regioselectividad de la cicloadición por difracción de Rayos X obteniendo el pirazol tetrasustituido **65a**' donde, se observó la oxidación del fragmento metálico (Figura 33).

Figura 34. Estructura molecular de 65a'con elipsoides térmicos, probabilidad del 50%.

M(CO) ₅ OEt + 1.2 MeO 23d, 24a S9a			Base Ph-	N Ph M(CO) ₅ 65a	OMe
Entrada	Μ	Base (equiv.)	Disolvente	t (h)	$\% \mathbf{R}^b$
1	Cr	TEA (10)	THF	19	28°
2	W	TEA (10)	THF	22	28
3	W	TEA (10)	MeCN	2	41
4	W	TEA (2)	MeCN	2	32
5	W	$K_2CO_3(2)$	MeCN	11	41
6	W	$Cs_2CO_3(2)$	MeCN	5	7
7	W	DIPEA (2)	MeCN	2	42
8	W	DIPEA (2)	DCE	15	26

Tabla 14. Condiciones de reacción para la síntesis de 65a.^a

^{*a*} Condiciones de reacción: **23d** o **24a** (0.5 mmol, **59a** (0.6 mmol) en 5 mL de disolvente, Rendimiento del producto puro, ^cSe obtuvo el producto de oxidación **65a**'.

De manera general, se observó una mayor susceptibilidad de los complejos de Cr a la oxidación que los de W, por tal motivo, se decidió evaluar la cicloadición con **23d.** El cambio de metal no muestra un efecto considerable en la velocidad de reacción ni en el

rendimiento, se obtuvo un 28% de **65a** (entrada 2). Si se modifica el disolvente a MeCN (entrada 3) se aprecia transformación de **23d** en 2 h con un 32%.

En la entrada 4 se emplearon 2 equivalentes de base generando una disminución en **65a**. Con el uso de sales inorgánicas como K_2CO_3 y Cs_2CO_3 se sintetizó **65a** en un 41% y 7% respectivamente. Con DIPEA al igual que con TEA, se consume **23d** en 2 h observando **65a** en un 42%. Si se emplea DCE (entrada 8) como disolvente la reacción es más lenta y con menor rendimiento.

Bajo las condiciones encontradas (Tabla 14, entrada 7) se realizó la síntesis de **65b** en un 18% utilizando **37c** como precursor de la nitrilimina (Esquema 24).

Esquema 24. Síntesis de 65b.

7.4 Caracterización estructural de 65a por Resonancia Magnética Nuclear

En la Figura 34 se muestra el espectro de RMN de ¹H del producto **65a**, en el cual, se observó una señal doble para el metileno con un desplazamiento químico en 4.72 ppm y dos señales triples para el metilo en 1.57 ppm y 1.49 ppm en una relación (1:3), esta misma relación se mantiene para el metilo (OMe) que se presenta como una señal simple en 3.71 ppm y 3.76 ppm. En la zona aromática se observan 19 hidrógenos, lo que nos sugiere la presencia de dos estructuras. En el espectro de RMN de ¹³C (Figura 35) se aprecia a campo bajo la señal del carbono carbénico en 311.2 ppm, los carbonilos *cis* y *trans* en 195.1 ppm y 203.6 ppm. A campo alto en 14.7 ppm y en 79.3 ppm las señales correspondientes al metileno y metilo del etoxilo, en 55.2 ppm y 55.4 ppm los desplazamientos metoxilo del anillo aromático.

Figura 36. Espectro de RMN de ¹³C en CDCl₃ a 125 MHz de 65a.

7.5 Elucidación estructural de 65a´ por Resonancia Magnética Nuclear y Espectrometría de Masas

Previamente, se determinó la estructura por difracción de Rayos X (Figura 33), a continuación, se analizó **65a**' por RMN de ¹H, en la Figura 36 se muestra el Espectro de

RMN de ¹H, donde, a campo bajo se observa con un desplazamiento químico en 0.92 ppm una señal triple correspondiente a H5c, en 3.78 ppm los hidrógenos correspondientes a H4a' y en 4.06 una señal cuádruple para H5b. En la zona de aromáticos aparece una señal doble en 6.80 ppm (J = 8.9 Hz) para los protones en H3' y H5', con ayuda del experimento en 2D: COSY (Anexos, Espectro 74), determinamos su correlación con los hidrógenos H2' y H6' (J = 8.9 Hz). De 7.35 a 7.39 ppm aparece una señal múltiple con integración para 5 hidrógenos (H4a-H4e). En 7.45 ppm se distingue un señal doble de triples para H1c y señales múltiples en 7.50 ppm para H1b y H1d y en 7.56 ppm para H1a y H1e respectivamente, las señales previas fueron corroboradas en literatura.⁶¹

Adicionalmente, se determinó la masa exacta por la técnica de ionización por electrospray (ESI), observando un valor de 399.1704 de m/z para el ion molecular [M+H]⁺, siendo el teórico de 399.1703 m/z (Figura 37).

Figura 37. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 65a⁻.

⁶¹Li, Y.; Hong, D.; Lu, P.; Wang, Y. Synthesis of Pyrazoles from 2-Azidoacrylates and Hydrazonyl Chlorides. *Tetrahedron Lett.* **2011**, *52*, 4161–4163.

Figura 38. Espectro ESI (+) de 65a´.

7.5. Caracterización estructural de 65b

La caracterización de **65b** únicamente se realizó por RMN de ¹H y ¹³C (Figura 38 y 39). En el espectro de RMN de ¹H se observó el fragmento del etoxilo con un desplazamiento químico de 1.66 ppm y 4.80 ppm con multiplicidad de triplete y cuarteto respectivamente. En la zona de aromáticos de 7.24 a 7.53 ppm aparecen los protones de los tres anillos con una integración para 15 hidrógenos. En el de RMN de ¹³C a campo bajo aparece en 14.7 ppm el metilo y en 79.3 ppm el metileno del etoxilo, los carbonilos *cis* y *trans* tienen un desplazamiento en 195.1 ppm y 203.6 ppm, el carbono carbénico está en 311.1 ppm.

Figura 39. Espectro de RMN de ¹H en CDCl₃ a 500 MHz de 65b.

Figura 40. Espectro de RMN de 13 C en CDCl₃ a 125 MHz de **65b**.

7.6 Reacción de benzanillación de pirazoles con isonitrilos

Al obtener los pirazoles altamente funcionalizados con la presencia del fragmento metálico, se decidió analizar su reactividad en reacciones de benzanillación (Esquema 25) con isonitrilos,^{62,63,64} con la finalidad de generar las estructuras policíclicas (**67**).

Esquema 25. Aminobenzanillación empleando complejos carbénicos.

Bajo las condiciones que se describen a continuación: 1 equiv. de **65a** y 3 equiv. de **66** en THF a 80 °C durante 24 h, no se observó la presencia del indazol **67**, en lugar de ello y

⁶²Merlic, C. A.; Burns, E. E. Chemoselectivity in the Isonitrile Metathesis Route to Aromatic Amines. *Tetrahedron Lett.* **1993**, *34*, 5401–5404.

⁶³Merlic, C. A.; Burns, E. E.; Xu, D.; Chen, S. Y. Aminobenzannulation via Metathesis of Isonitriles Using Chromium Carbene Complexes. J. Am. Chem. Soc. **1992**, 114, 8722–8724.

⁶⁴Merlic, C. A.; Aldrich, C. C.; Albaneze-Walker, J.; Saghatelian, A.; Mammen, J. Total Synthesis of the Calphostins: Application of Fischer Carbene Complexes and Thermodynamic Control of Atropisomers. *J. Org. Chem.* **2001**, *66*, 1297–1309.

dependiendo del metal correspondiente de generaron los productos de oxidación **65a'** y **68 (30 mg)** (Esquema 26).

Esquema 26. Productos obtenidos entre los complejos carbénicos e isonitrilos.

En la Figura 40 se muestra una comparativa del espectro de RMN de ¹H entre **65a**' y el producto obtenido de la reacción benzanulación (M=W), donde la multiplicidad (espectro rojo) en la zona de aromáticos es totalmente diferente a **65a**', la integración de esta zona es de 14 hidrógenos para los tres sistemas aromáticos, así como en **65a**', el desplazamiento químico del OMe y del metileno aparecen ahora en 3.88 ppm y 3.80 respectivamente, lo que sugiere la formación de otra estructura.

Figura 41. Espectros de RMN de ¹H en CDCl₃ a 500 MHz de 65a´ (verde) y producto de benzanulación (rojo) (M=W).

VI.CONCLUSIONES

- Se sintetizaron derivados pirazólicos 1,3,4-sustituidos (56a-j,57) regioselectivamente en rendimientos del 27-64% donde se conserva el fragmento metálico en tiempos de 5 a 24 h para W, si se emplea Cr, son más reactivos y se obtiene el complejo en un 37%, para Mo, no se observó el producto de cicloadición
- La reacción de cicloadición 1,3-dipolar no procede cuando la posición 4 de los dipolos esta sustituida por Cl, Br, I, CF₃ y Ph.
- Si la posición 4 de los dipolos experimenta un proceso de metalación, estos sistemas 1,3-dinucleófilos pueden reaccionar con los alquinil carbenos de Fischer (23a-f, 24a-b) generando anillos de 6 miembros.

Alternativamente, se sintetizaron los cloruros de hidrazonilo (59a-c) a través de una reacción Appel en rendimientos del 75-81%, los cuales se hicieron reaccionar con alquinil carbenos de Fischer (23a-f, 24a-b) obteniendo pirazoles altamente funcionalizados, donde se conserva el fragmento metálico, cabe señalar que los complejos con cromo se oxidan más rápidamente que sus análogos de tungsteno.

VII. PERSPECTIVAS

Evaluar el alcance de la ruta sintética en la formación de 2*H*-piran-2-onas con diferentes sustituyentes en R₁ y R₂, así como la elucidación del mecanismo de reacción.

 $\begin{array}{l} \mathsf{R_1}{=}4{-}\mathsf{NO}_2\mathsf{C}_6\mathsf{H}_4, \, 4{-}\mathsf{CIC}_6\mathsf{H}_4, \, 4{-}\mathsf{CO}_2\mathsf{HC}_6\mathsf{H}_4, \, 4{-}\\ \mathsf{OMeC}_6\mathsf{H}_4, \, \mathsf{C}_6\mathsf{H}_5, \, \mathsf{CH}_2\mathsf{C}_6\mathsf{H}_5, \, \mathsf{Me}, \, 3{,}5{-}\mathsf{CF}_3\mathsf{C}_6\mathsf{H}_3, \\ \mathsf{2}{,}4{,}6{-}\mathsf{MeC}_6\mathsf{H}_2 \\ \mathsf{R}_2{=}\mathsf{C}_6\mathsf{H}_5, \, 4{-}\mathsf{OMeC}_6\mathsf{H}_4, \, t{-}\mathsf{butil}, \, 3{-}\mathsf{tiofeno}, \, \mathsf{ciclopropil}, \\ \mathsf{Ciclohexenil} \end{array}$

Extender el análisis de reactividad de la cicloadicion entre nitriliminas y carbenos, analizando el papel de R₁, R₂ y R₃, X (grupo saliente) y el fragmento metálico en la regioselectividad de la reacción.

 R_1 =4-NO₂C₆H₅, Ciclopropil, CF₃

 $\label{eq:R2} \begin{array}{l} \mathsf{R_2}\text{=}4\text{-}\mathsf{OMeC_6H_5},\\ \mathsf{X}\text{=}\mathsf{Br}, \ \mathsf{I}, \ \mathsf{OTs}\\ \mathsf{R_3}\text{=} \ \mathsf{C_6H_5}, \ 4\text{-}\mathsf{OMeC_6H_4}, \ \mathsf{t}\text{-}\mathsf{butil}, \ 3\text{-}\mathsf{tiofeno}, \ \mathsf{ciclopropil},\\ \mathsf{Ciclohexenil}\\ \mathsf{M}\text{=} \ \mathsf{Cr}, \ \mathsf{W} \end{array}$
VIII. ANEXOS

8. DESARROLLO EXPERIMENTAL

Para el análisis de RMN, las muestras se disolvieron en CDCl₃ o DMSO- d_6 según sea el caso, los espectros fueron obtenidos empleando un espectrómetro modelo Bruker Avance III HD con un magneto Bruker Ascend de 400 MHz o bien, con magneto Bruker Ultrashield de 500 MHz. Los desplazamientos químicos de protón fueron reportados en ppm a partir de trimetilsilano. Los datos se informaron de la siguiente manera: desplazamiento químico, multiplicidad (s= singlete, d=doblete, t=triplete, q=cuarteto, br=ancha, m=multiplete), constante de acoplamiento (Hz), integración y asignación. Los estudios de masas se realizaron usando un espectrómetro Bruker-ESI-QTOF-MS, las muestras se analizaron en presencia de estearato de metilo como estándar interno. Los datos de difracción de Rayos X se realizaron en un difractómetro Oxford Diffraction

Xcalibur de la Facultad de Química de la UNAM.

8.1 Síntesis de fenilazidas (42a-e)

En un matraz de 25 mL que contiene APTS (9 mmol, 9 eq), 9 mL de agua destilada se agregó ArNH₂ (1 mmol, 1 eq), manteniendo en agitación, se adicionó cuidadosamente NaNO₂ (9 mmol, 9 eq) durante 5 minutos. Se mantuvo en agitación hasta que se consume ArNH₂ monitoreando por ccf. A la solución resultante se añade lentamente KN₃ (1.6 mmol, 1.6 eq).

Las arilazidas sólidas se filtraron y se lavaron con 50 mL de agua destilada, en el caso de las liquidas, se extraen con AcOEt (3 x 10 mL), secadas con Na_2SO_4 y el exceso de solvente se evaporó en el rotaevaporador.

Acido 4-azidobenzoico^{39,40}
Formula Molecular: C₇H₅N₃O₂
Apariencia: Sólido color blanco
PM: 163.14
% R= 88
RMN ¹H (500 MHz, DMSO-d₆) δ 7.22 (d, J = 8.6 Hz, 2H). 7.97 (d, J = 8.6 Hz, 2H).
RMN ¹³C (125 MHz, DMSO-d₆ + CDCl₃) δ 123.6, 132.5, 136.2, 136.3, 149.0 (C-N), 172.0 (C=O).

➤ 1-azido-4-nitrobenceno^{39,40} Formula Molecular: C₆H₄N₄O₂ Apariencia: Sólido color amarillo claro **PM:** 164.12 %**R**= 86 **RMN** ¹**H** (500 MHz, CDCl₃) δ 7.15 (d, J = 9.0 Hz, 2H). 8.25 (d, J = 9.0 Hz, 2H). **RMN** ¹³**C** (**125** MHz, CDCl₃) δ 119.4, 125.6, 144.7, 146.9.

➤ 1-azido-4-metoxibenceno^{39,40} Formula Molecular: C7H7N3O Apariencia: Líquido amarillo OMe **PM:** 149.15 42d %**R**= 59 **RMN** ¹**H** (500 MHz, DMSO- d_6) δ 3.75 (s, 3H), 6.98 (d, J = 9.0 Hz, 2H), 7.05 (d, J = 9.1Hz, 2H).

RMN ¹³C (125 MHz, CDCl₃) δ 55.6, 115.2, 120.0, 132.4, 157.0.

8.2. Síntesis de iminofosforanos (**43a-d**)

➤ N-(4-nitrofenil) trifeniliminofosforano^{19,41}

En un matraz redondo de 25 mL que contiene la azida correspondiente (1 eq) en éter etílico (1 mmol azida/1.5 mL), se añadió lentamente una solución de trifenilfosfina (1eq) en éter etílico (1 mmol PPh₃/1.5 mL). La mezcla se agitó a temperatura ambiente hasta que se consume la azida. El exceso de disolvente se evaporo en el rotaevaporador y el crudo de reacción de purifico por precipitación Hex/DCM o para el caso de 4-OMe por columna cromatográfica.

Formula Molecular: C₂₄H₁₉N₂O₂P Apariencia: Sólido cristalino color amarillo Ph₃P^{≠N} PM: 398.40 %**R**= 99 **RMN** ¹**H** (500 MHz, CDCl3) δ 6.70 (d, J = 9.0 Hz, 2H), 7.51 (td, J = 7.6, 3.0 Hz, 6H), 7.60 (td, J = 7.3, 1.3 Hz, 3H), 7.72 – 7.77 (m, 6H), 7.93 (dd, J = 9.1, 0.9 Hz, 2H). ³¹P RMN (202 MHz, CDCl₃) δ 7.42.

92

> N-(4-carboxifenil) trifeniliminofosforano^{19,41}

Formula Molecular: C₂₅H₂₀NO₂P

Apariencia: Sólido color blanco

PM: 397.41

% R= 95

RMN ¹**H** (**500 MHz, DMSO-***d*₆) δ 6.64 (*J* = 8.6 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.58 (td, *J* = 7.5, 2.8 Hz, 6H), 7.63 – 7.67 (m, 3H), 7.74 – 7.79 (m, 6H). ³¹**P RMN** (**202 MHz, DMSO-***d*₆) δ 4.01.

8.3 Síntesis de iminas (45a-c)

En un matraz redondo de 25 mL que contiene etiltrifluoropiruvato (1 eq) en tolueno (2.7 mL/1 mmol de etiltrifluoropiruvato), se agregó el iminofosforano correspondiente (1 eq) en una sola porción. Se mantuvo en agitación a temperatura ambiente hasta la desaparición del iminofosforano, monitoreando por ccf. Se evaporó el exceso de disolvente en el rotaevaporador y el crudo de reacción se purifico por columna cromatográfica empleando como sistema eluyente Hex/AcOEt (7:3).

Ácido-((Z)-etil-3,3,3-trifluoro-2-(fenilimino) propanoato) benzoico^{18,19}

Formula Molecular: C₁₂H₁₀F₃NO₄

Apariencia: Sólido cristalino color amarillo

PM: 289.21

%**R=**79

RMN ¹H (500 MHz, CDCl₃) δ 1.09 (t, *J* = 7.1 Hz, 3H, H1b), 4.19 (q, *J* = 7.1 Hz, 2H, H1a), 7.00 (d, *J* = 8.5 Hz, 2H, H2'y H6'), 8.15 (d, *J* = 8.6 Hz, 2H, H3' y H5'). RMN ¹³C (125 MHz, CDCl₃) δ 13.6 (C1b), 63.1 (C1a), 118.5 (2C, C2' y C6'), 119.0 (*J* = 278.7 Hz, C3), 127.4 (C4'), 131.4 (2C, C3' y C5'), 149.9 (*J* = 37.4 Hz, C2), 151.3 (C1'), 158.2 (C1), 171.4 (C4a').

RMN ¹⁹F (471 MHz, CDCl₃) δ -69.9.

Etil-(Z)-3,3,3-trifluoro-2-((4-metoxifenil) imino) propanoato^{18,19}

Formula Molecular: C₁₂H₁₂F₃NO₃

Apariencia: Líquido color amarillo

PM: 275.23

%R= 55

RMN ¹H (500 MHz, CDCl₃) δ 1.19 (t, J = 7.1 Hz, 3H,

H1b), 3.83 (s, 3H, H4a´), 4.26 (q, *J* = 7.1 Hz, 2H, H1a), 6.90 (d, *J* = 9.0 Hz, 2H, H3´ y H5´), 7.02 (d, *J* = 8.9 Hz, 2H, H2´ y H6´). RMN ¹³C (125 MHz, CDCl₃) δ 13.7 (C1b), 55.5 (C4a´), 62.7 (C1a), 114.3 (2C, C3´ y C5´), 118.4 (d, *J* = 278.2 Hz, C3), 122.3 (2C, C2´ y C6´) 139.1 (C1´), 146.8 (d, *J* = 36.6

45c

Hz, C2), 159.4 (C1), 160.4 (C4´).

RMN ¹⁹F (471 MHz, CDCl₃) δ -69.5.

8.4 Síntesis de 46a

En un matraz redondo de 5 mL se añadio Zn (0.77 mmol, 2 equiv), 1 mL de AcOH y **45b** (0.38 mmol, 1 equiv), se llevó a reflujo durante 24 h. La mezcla de reacción se filtró y se neutralizo con NaHCO₃. La solución se extrajo con AcOEt (3 x 10 mL) y se lavó con agua destilada (20 mL) y se secó con Na₂SO₄ anhidro El disolvente se evaporo en el rotaevaporador.

RMN ¹⁹F (471 MHz, CDCl₃) δ -72.3 (d, *J* = 6.8 Hz).

8.5 Síntesis de aminas (48a-h)

Protocolo A: En un matraz redondo de 25 mL con un agitador magnético se agregó bromoacetato de etilo (10 mmol, 1 eq) en 3 mL de etanol absoluto, enseguida, se añadió R_1 -NH₂ (10 mmol, 1 eq) y acetato de sodio (10 mmol, 1 eq). La mezcla de reacción se llevó a reflujo durante el tiempo apropiado hasta consumirse la amina aromática.

Se vierte la mezcla sobre un vaso de precipitado con hielo y se filtró a vacío el sólido obtenido. El éster se recristalizo en EtOH.

En un matraz de 5 mL se agregó del derivado de *N*-fenilglicina (3.35 mmol) en H_2O destilada (1.7 mL) y se añadió de NaOH (3.77 mmol), la reacción se llevó a reflujo durante 30 minutos. Se enfrío en un baño de hielo y se adicionó HCl concentrado hasta pH=2. El sólido obtenido se filtró y se lavó con H_2O destilada.

Síntesis de **48h**. En un matraz redondo de 25 mL se agregó la 3,5-bis (trifluorometil)fenilglicina (1.74 mmol, 1 eq), LiOH (6.98 mmol, 4 eq) en 5 mL dioxano/agua (1:1) y se agitó a temperatura ambiente durante 3 h. Se evaporo el exceso de disolvente en el rotaevaporador, el sólido obtenido se diluyo en 5 mL de agua destilada y se acidificó con ácido acético hasta pH=4. El sólido obtenido se filtró y lavo con agua destilada.

Protocolo B

Síntesis de **48e**. En un matraz redondo de 50 mL se agregó ácido monocloroacético (15.72 mmol) y se neutralizo con NaOH en 16 mL de H₂O destilada, una vez finalizada la reacción se añadió ácido *p*-aminobenzoico (15.72 mmol) y se mantuvo en reflujo durante 10 h. Se enfrió a temperatura ambiente y el sólido se filtró y se lavó sucesivamente con H₂O destilada.

Síntesis de **48f.** En un matraz redondo de 50 mL se añadió 4-nitroanilina (21.5 mmol) en 22 ml de H_2O destilada, enseguida se agregó ácido monocloroacético (43 mmol) y la mezcla de reacción se llevó a reflujo durante el tiempo apropiado. El precipitado se filtró y se lavó sucesivamente con una mezcla hexano/éter etílico.

El sólido se disolvió en una solución acuosa de NaOH 6 *M* y la solución resultante se lavó con acetato de etilo. Las fases orgánicas se extrajeron con una solución de NaOH 6 *M* y

las fases acuosas se acidificaron con HCl hasta pH=2. Se filtró el sólido obtenido y se lavó con agua destilada.

Protocolo C (Hidrolisis de metilésteres)

Síntesis de **48a.** En un matraz redondo de 25 mL se agregó el clorhidrato de éster metilsarcosina (6.95 mmol, 1 equiv.), NaOH (14.80 mmol, 2.13 equiv.) en 3.5 mL de agua destilada y se reflujo durante 30 min. Se enfrió en un baño de hielo y se agregó HCl concentrado hasta pH=2. Se evaporo el exceso de agua en el rotaevaporador.

Síntesis de **48b**. Misma metodología de hidrólisis que la descrita para el Protocolo A.

➢ Metilglicina ^{44,65}	
Formula Molecular: C ₃ H ₇ NO ₂	
Apariencia: Sólido color blanco	H N
PM: 89.09	4 3
%R= 100	
RMN ¹³ C (125 MHz, DMSO- <i>d</i> ₆) δ 32.9 (C4), 49.4 (C2), 168.5 (C1).	

➤ 4-metoxifenilglicina^{20,67}

Formula Molecular: C9H11NO3 Apariencia: Sólido color café oscuro PM: 181.19 %R= 73

`ОН **48**а

⁶⁵Kano, K.; Scarpetti, D.; Warner, J. C.; Anselme, J.-P.; Springer, J. P.; Arison, B. H. Benzoyl phenyl 1methylpyrazoles. Synthesis, characterization, and spectra. *Can. J. Chem.* **1986**, *64*, 2211–2219.

⁶⁶Fang, Y.; Wu, C.; Larock. R.C.; Shi, F. Synthesis of 2*H*-Indazoles by the [3+2] Dipolar Cycloaddition of Sydnones with Arynes. *J. Org. Chem.* **2011**, *76*, 8840-8851.

⁶⁷Kalluraya, N.B.; Aamir, S.; Shabaraya, A.R. Regioselective reaction: Synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. *Eur. J. Med. Chem.* **2012**, *54*, 597-604.

RMN ¹H (500 MHz, CDCl₃ + DMSO-*d*₆) δ 3.63 (s, 3H, H4a´), 3.70 (s, 2H, H2), 6.48 (d, *J* = 8.3 Hz, 2H, H3´ y H5´), 6.65 (d, *J* = 8.4 Hz, 2H, H2´ y H6´). RMN ¹³C (125 MHz, CDCl₃ + DMSO-*d*₆) δ 51.0 (C2), 60.4 (C4a´), 118.6 (2C, C3´ y C5´), 119.5 (2C, C2´ y C6´), 146.8 (C1´), 156.6 (C4´), 177.9 (C1).

> *N*-Fenilglicina⁶⁷

Formula Molecular: C₈H₉NO₂

Apariencia: Sólido color blanco

PM: 151.17

%**R=**71

RMN ¹H (500 MHz, DMSO-*d*₆) δ 3.78 (s, 2H, H2), 6.54 – 6.57 (m, 3H, H2⁻, H4⁻ y H6⁻),

7.05 – 7.10 (m, 2H, H3´ y H5´).

RMN ¹³**C** (**125** MHz, DMSO-*d*₆) δ 45.1 (C2), 112.6 (2C, C2´ y C6´), 116.6 (C4´), 129.3

(2C, C3´ y C5´), 148.6 (C1´), 173.1 (C1).

HRMS (ESI): *m/z* calculada para C₈H₉NO₂ [M+H]⁺: 151.0633; encontrada: 151.0635.

Ácido-((4-carboximetil) amino) benzoico^{20,68}

Formula Molecular: C9H9NO4

Apariencia: Sólido color blanco

PM: 195.17

%**R=** 66

RMN ¹**H** (**500 MHz, DMSO-***d*₆) δ 3.88 (s, 2H, H2), 6.58 (d, *J* = 8.2 Hz, 2H, H2´ y H6´), 6.63 (s, br, 1H, H3), 7.69 (d, *J* = 8.2 Hz, 2H, H3´ y H5´), 12.34 (s, 1H, 4a´-OH).

RMN¹³**C** (**125** MHz, DMSO-*d*₆) δ 44.6 (C2), 111.6 (C2´ y C6´), 118.1 (C4´), 131.5 (C3´

y C5´), 152.6 (C1´), 167.9 (C1), 172.5 (C4a´).

➢ N-(4-nitrofenil) glicina²⁰

Formula Molecular: C₈H₈N₂O₄

Apariencia: Sólido color amarillo

PM: 196.16

 $[\]begin{bmatrix} 6' & H & 0 \\ 5' & 1' & 1 & 0 \\ 0_2 N & 4' & 2' & 48f \end{bmatrix}$

⁶⁸Moustafa, M. A.; Gineinah, M. M.; Nasr, M. N.; Bayoumi, W. A. H. Novel Analogues of Sydnone: Synthesis, Characterization and Antibacterial Evaluation. *Arch. Pharm. Pharm. Med. Chem.* **2004**, *337*, 427–433.

RMN ¹H (400 MHz, DMSO-*d*₆) δ 3.98 (d, *J* = 6.0 Hz, 2H, H2), 6.67 (d, *J* = 9.2 Hz, 2H, H2´ y H6´), 7.44 (t, *J* = 5.9 Hz, 1H, H3), 8.00 (d, *J* = 9.2 Hz, 2H, H3´ y H5´).
RMN ¹³C (100 MHz, DMSO-*d*₆) δ 44.6 (C2), 111.7 (C4´), 126.5 (2C, C2´ y C6´), 136.7 (2C, C3´ y C5´), 154.7 (C1´), 171.9 (C1).

Mesitilglicina ⁶⁷	
Formula Molecular: C ₁₁ H ₁₅ NO ₂	6 3'
Apariencia: Sólido color amarillo	
PM: 193.25	5 3 2 1 OH
<mark>% R= 35</mark>	4a' 4' 3' 2a' 48g
RMN ¹H (500 MHz, CDCl ₃) δ 2.24 (s, 3H, H4a	´), 2.34 (s, 6H, H2a´ y H6a´), 3.80 (s,
2H H2) 6 84 (s 2H H3' v H5')	

8.6 Síntesis de sidnonas (16a-h)

En un matraz redondo de 25 mL se disolvió el derivado de fenilglicina (5.0 mmol, 1 eq) en 5 mL de dimetoxietano, enseguida se adicionó isoamilnitrito (5.5 mmoles, 1,1 eq) y se agitó a temperatura ambiente hasta consumirse el ácido, el avance de la reacción se monitoreo por ccf. Una vez terminada la reacción se evaporó el exceso de disolvente y el sólido obtenido se lavó con éter de petróleo o hexano y se filtró a vacío.

La nitrosamina se disolvió en 5 mL de DCM y se añadió anhídrido trifluoroacético (1.5 equiv.) en un baño de hielo, al término de la adición se llevó a temperatura ambiente durante 1 h, se agregó la mínima cantidad de agua destilada y se neutralizó el crudo de reacción con NaHCO₃, se realizaron 3 extracciones con DCM, se secaron con Na₂SO₄ las fases orgánicas y se concentraron en el rotaevaporador. El sólido formado se redisuelve en la mínima cantidad de DCM y se precipita utilizando hexano, el producto final se obtiene por filtración a vacío.

3-fenil-1,2,3-oxadiazol-3-ium-5-olato^{43,69}
 Formula Molecular: C₈H₆N₂O₂
 Apariencia: Sólido color amarillo
 PM: 162.15
 % R= 84

⁶⁹Browne, D. L.; Taylor, J. B.; Plant, A.; Harrity, J. P. A. Cross Coupling of Bromo Sydnones: Development of a Flexible Route toward Functionalized Pyrazoles. *J. Org. Chem.* **2009**, *74*, 396-400.

RMN ¹**H** (**500 MHz, CDCl**₃) δ 6.74 (s, 1H), 7.62-7.74 (m, 5H).

RMN ¹³**C** (**125** MHz, CDCl₃) δ 93.7 (C₄), 121.3 (2C), 130.3 (2C), 132.5, 134.9 (C-N), 169.0 (C-O).

HRMS (ESI): *m/z* calculada para C₈H₆N₂O₂ [M+H]⁺: 163.0508; encontrada: 163.0510.

➢ 3-(3,5-bis(trifluorometil)fenil)-1,2,3-oxadiazol-3-ium-5-olato^{43,69}

Formula Molecular: C₁₀H₄F₆N₂O₂

Apariencia: Sólido cristalino color blanco

PM: 298.14

% R= 80

RMN ¹H (500 MHz, CDCl₃) δ 7.02 (s, 1H), 8.20 (s, 1H), 8.30 (s, 1H).

RMN ¹³**C** (**125 MHz, CDCl**₃) δ 94.2, 122.02, 122.05, 122.0 (q, *J* = 273.5 Hz), 126.12, 126.15, 126.18, 134.4 (q, *J* = 35.2 Hz), 135.9, 168.3.

RMN ¹⁹**F** (471 MHz, CDCl₃) δ -63.1.

→ 3-(4-metoxifenil)-1,2,3-oxadiazol-3-ium-5-olato^{43,44}

Formula Molecular: C₉H₈N₂O₃

Apariencia: Sólido color café claro

PM: 192.17

%**R**=75

RMN ¹H (500 MHz, CDCl₃) δ 3.91 (s, 3H), 6.67 (s, 1H), 7.08 (d, *J* = 9.0 Hz, 2H), 7.65 (d, *J* = 9.0 Hz, 2H).

RMN ¹³**C** (**125** MHz, CDCl₃) δ 55.9 (CH₃), 93.5 (C₄), 115.3 (2C), 122.7 (2C), 162.5 (C-N), 169.1 (C-O).

3-bencil-1,2,3-oxadiazol-3-ium-5-olato^{43,44}

Formula Molecular: C₉H₈N₂O₂

Apariencia: Sólido cristalino color blanco

PM: 176.18

% R= 58

RMN ¹H (400 MHz, CDCl₃) δ 5.36 (s, 2H), 6.18 (s, 1H), 7.37-7.39 (m, 2H), 7.44 – 7.48 (m, 3H).

RMN¹³C (125 MHz, CDCl₃) δ 57.2, 94.7, 128.7, 129.6, 130.1, 130.6, 169.2.

Formula Molecular: C11H12N2O2 Apariencia: Sólido color amarillo claro **PM:** 204.23 %R= 57 **RMN** ¹**H** (**500 MHz**, **CDCl**₃) δ 2.16 (s, 6H), 2.37 (s, 3H), 6.36 (s, 1H), 7.04 (s, 2H). **RMN** ¹³C (125 MHz, CDCl₃) δ 16.6, 21.2, 97.2, 129.6, 131.3, 133.7, 142.2, 169.3 (C-**O**).

> 3-(4-nitrofenil)-1,2,3-oxadiazol-3-ium-5-olato^{43,44,70}

➢ 3-mesitil-1,2,3-oxadiazol-3-ium-5-olato^{43,44,55}

Formula Molecular: C₈H₅N₃O₄

Apariencia: Sólido color amarillo claro

PM: 207.15

%R= 51

RMN ¹**H** (500 MHz, DMSO- d_6) δ 7.98 (s, 1H), 8.24 (d, J =

9.1 Hz, 2H), 8.54 (d, *J* = 9.1 Hz, 2H).

RMN ¹³C (125 MHz, DMSO-d₆) δ 96.3 (C₄), 123.7 (2C), 126.0 (2C), 139.0, 149.8 (C-N), 168.8 (C-O).

➢ 3-(4-carboxifenil)-1,2,3-oxadiazol-3-ium-5-olato⁶⁸

Formula Molecular: C9H6N2O4

Apariencia: Sólido color blanco

PM: 206.16

%**R**= 38

RMN ¹**H** (500 MHz, DMSO- d_6) δ 7.88 (s, 1H), 8.08 (d, J = 8.5 Hz, 2H), 8.21 (d, J = 8.5Hz, 2H), 13.53 (s, 1 H).

RMN¹³**C** (125 MHz, DMSO-*d*₆) δ 95.3, 120.9, 130.9, 135.1, 144.5, 168.5, 169.0.

16f

 O_2N

⁷⁰Browne, D. L.; Vivat, J. F.; Plant, A.; Gomez-bengoa, E.; Harrity, J. P. A. Investigation of the Scope and Regiochemistry of Alkynylboronate Cycloadditions with Sydnones. J. Am. Chem. Soc. 2009, 59, 7762-7769.

> 3-metil-1,2,3-oxadiazol-3-ium-5-olato^{44,65}
 Formula Molecular: C₃H₄N₂O₂
 Apariencia: Líquido viscoso color amarillo claro
 PM: 100.08
 % R= 19
 RMN ¹H (500 MHz, CDCl₃) δ 4.11 (s, 3H), 6.47 (S, 1H)
 RMN ¹³C (125 MHz, CDCl₃) δ 39.4 (C3a), 96.1 (C4), 169.4 (C5).

 $\begin{bmatrix} {}^{2}N^{-O} \\ {}^{3}N^{+} \\ {}^{3}N^{+} \\ {}^{4} \\ {}^{16h} \end{bmatrix}$

9. Síntesis de sidnonas funcionalizadas en la posición 4

9.1 Síntesis de 49

En un matraz redondo de 5 mL se agregó el derivado de sidnona (1,23 mmol, 1 eq) en ácido acético (3 mL) y se agrega *N*-bromosuccinimida (1.30 mmol, 1,1 eq) y se agitó a temperatura ambiente durante el tiempo apropiado. El sólido formado se filtró a vació y se lavó con agua destilada. A continuación, el producto se disuelve en la mínima cantidad de DCM y se precipito empleando hexano, se filtró y se secó a vacío.

▶ 4-bromo-3-fenil-1,2,3-oxadiazol-3-ium-5-olato^{44,69}
Formula Molecular: C₈H₅BrN₂O₂
Apariencia: Sólido color blanco
PM: 241.04
% R= 96
RMN ¹H (500 MHz, CDCl₃) δ 7.62-7.74 (m, 5H)
RMN ¹³C (125 MHz, CDCl₃) δ 84.1 (C-Br), 124.7, 130.1, 132.7, 133.9 (C-N), 165.7 (C-O).

9.2 Síntesis de 50

En un vial se preparó una solución ICl (3.39 mmol, 1.1 eq) en ácido acético (1.7 mL) y se añadió gota a gota a un matraz redondo de 25 mL que contiene el derivado de sidnona (3.08 mmol, 1 eq), acetato de sodio (3.85 mmol, 1.25 eq) disuelto en ácido acético (2.31 mL). Se mantuvo en agitación a temperatura ambiente hasta observar la formación de un precipitado, el cual se filtró a vacío y se lavó sucesivamente con agua destilada. El sólido

obtenido se disolvió en la mínima cantidad de DCM, se precipito empleando Hexano y se filtró a vacío el producto.

4-iodo-3-fenil-1,2,3-oxadiazol-3-ium-5-olato^{44,46}

Formula Molecular: C₈H₅IN₂O₂

Apariencia: Sólido color blanco

PM: 288.04

% R= 90

RMN ¹**H** (**500 MHz, CDCl**₃) δ 7.59 (d, *J* = 7.9 Hz, 2H), 7.66 (t, *J* = 7.7 Hz, 2H), 7.73 (t, *J* = 7.4 Hz, 1H).

RMN ¹³**C** (**125** MHz, CDCl₃) δ 50.6 (C-I), 125.1 (2C), 130.1 (2C), 132.6, 135.2 (C-N), 168.8 (C-O).

HRMS (ESI): *m/z* calculada para C₈H₅IN₂O₂ [M+H]⁺: 288.9474; encontrada: 288.9481.

9.3 Síntesis de 51

En un matraz redondo de 5 mL se disuelve el derivado de fenilsidnona (0.5 mmol, 1 eq) en ácido acético (1.2 mL), a continuación, se agregó a *N*-clorosuccinimida (1 mmol, 2 eq). La mezcla de reacción se agitó a temperatura ambiente durante 6 h. Se añadió acetato de etilo y la mezcla de reacción se evaporó el exceso de disolvente en el rotaevaporador. El crudo se purifica por cromatografía en columna empleando un sistema Hexano: AcOEt (7:3). para obtener el producto clorado.

4-cloro-3-fenil-1,2,3-oxadiazol-3-ium-5-olato^{44,48}

Formula Molecular: C₈H₅ClN₂O₂ Apariencia: Solido color amarillo claro PM: 196.59 % R= 36 RMN ¹H (500 MHz, CDCl₃) δ 7.63-7-75 (m, 5H) RMN ¹³C (125 MHz, CDCl₃) δ 98.4 (C-Cl), 124.4 (2C), 130.2 (2C), 132.8, 133.0, 164.0 (C-O).

9.4 Síntesis de 18

En un matraz de 5 mL se añadió el derivado de 4-iodosidnona (0.35 mmol, 1 eq), CuI (0.35 mmol, 1 eq) en 1.75 mL de DMF, enseguida se adicionó gota a gota metil-2,2-

difluoro-2-(fluorosulfonil) acetato (1.74 mmol, 5 eq) bajo atmosfera de nitrógeno. La mezcla de reacción se calentó a 80 °C durante el tiempo apropiado.

Se filtró la mezcla de reacción y se añadió una solución saturada de NaCl, la solución se extrajo con acetato de etilo. Las fases orgánicas se lavaron sucesivamente con la solución de NaCl y secadas con Na₂SO₄, posteriormente las fases orgánicas se concentran y se evaporan en el rotaevaporador.

El crudo de reacción se purifica por columna cromatográfica empleando un sistema Hexano: AcOEt (9:1).

> 3-fenil-4-(trifluorometil)-1,2,3-oxadiazol-3-ium-5-olato^{18,19}

Formula Molecular: C₉H₅F₃N₂O₂

Apariencia: Sólido cristalino color blanco

PM: 230.15

% R= 46

RMN ¹**H** (**500 MHz, CDCl**₃) δ 7.60 (d, *J* = 7.9 Hz, 1H), 7.68 (t, *J* = 8.0 Hz, 2H), 7.77 (t, *J* = 7.5 Hz, 1H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 119.3 (CF₃, *J* = 267.9 Hz), 124.6 (2C), 130.2 (2C), 133.3, 133.6 (C-N), 163.1 (C-O).

RMN ¹⁹**F** (471 MHz, CDCl₃) δ -56.3.

9.5 Síntesis de 53

En un matraz redondo de 25 mL boca 14/23 se agrega (1.23 mmol, 1 eq) de sidnona, Pd $(OAc)_2$ (0.62 mmol, 0.05 eq), K_2CO_3 (2.47 mmol, 2 eq), PPh₃ (0.12 mmol, 0.1 eq), bromobenceno (1.85 mmol, 1.5 eq) en 4 ml DMF. La mezcla de reacción se mantiene en agitación a 120°C durante el tiempo apropiado. Se enfrío el crudo de reacción y se agregó 50 mL de H₂O, se extrae con AcOEt (3 x 30 mL). Las fases orgánicas se secaron con Na₂SO₄ anhidro y se evaporan en el rotaevaporador. Se purifico por columna cromatográfica empleando Hexano/AcOEt (9:1).

3,4-difenil-1,2,3-oxadiazol-3-ium-5-olato^{47,48}
 Formula Molecular: C₁₄H₁₀N₂O₂
 Apariencia: Solido cristalino de color naranja
 PM: 238.25
 % R= 27

RMN ¹H (500 MHz, CDCl₃) δ 7.29 (s, 5H), 7.49 (d, *J* = 7.9 Hz, 7.581 (t, *J* = 7.8 Hz, 2H), 2H), 7.67 (t, *J* = 7.5 Hz, 1H).

RMN ¹³**C** (**126 MHz**, **CDCl**₃) δ 107.9, 124.4, 124.9 (2C), 127.4 (2C), 128.8 (2C), 130.2 (2C), 132.2, 134.7, 167.1.

10. Síntesis de tetrafluoroborato de trietiloxonio

En un matraz de dos bocas de 50 mL equipado con un agitador magnético y conectado a un refrigerante se añadió BF_3 ·Et₂O (13.91 mmol, 1.3 eq, 1.72 mL) y 5 mL de Et₂O bajo atmosfera de nitrógeno. La mezcla de reacción se mantuvo en reflujo y se añadió gota a gota epiclorhidrina (10.70 mmol, 1 eq, 0.85 mL) durante 1 h. Una vez terminada la adición se mantuvo a reflujo durante 1 h, se enfrió lentamente en un baño de hielo durante 2 h para que el producto cristalice.

Vía cánula se eliminó el exceso de solvente, se lavó con Et_2O anhidro (3 x 10 mL) y se retiró el éter bajo el mismo procedimiento. Se seco a vacío y se obtuvo un sólido blanco cristalino.

Tetrafluoroborato de trietiloxonio⁵²
 Formula Molecular: C₆H₁₅BF₄O
 Apariencia: Solido granuloso color blanco
 PM: 189.99
 % R= 90

11. Síntesis de alquinil(alcoxi) carbenos de Fischer (23-24)

En un matraz redondo boca 24/40 de 50 mL provisto de un agitador magnético previamente purgado se adicionó el alquino correspondiente (11.69 mmol, 1.3 eq, 1,3 mL) en 10 mL de THF anhidro y se llevó el matraz a -78 °C en un baño de acetona. Se midió en una probeta *t*-BuLi (11.69 mmol, 1.3 eq, 7 mL) y se adiciono gota a gota al matraz que contiene el alquino. Una vez terminada la adición se elevó la temperatura del baño hasta -30 °C y se mantiene durante 1h. A esta temperatura se añadió vía cánula a un matraz redondo boca 24/40 de 50 mL que contiene la sal metálica (9.00 mmol, 1 eq, 2.02 g) en 10 mL de THF anhidro manteniendo agitación constante a temperatura ambiente. Una vez consumida la sal metálica se adiciono a -5 °C en pequeñas porciones tetrafluoroborato de trietiloxonio (10.80 mmol, 1.2 eq) y se mantuvo en agitación durante 30 min.

Se realizaron lavados con una solución saturada de NaHCO₃ (3 x 15 mL) y un lavado con agua destilada (15 mL). La mezcla de reacción se extrajo con *n*-hexano, las fases orgánicas se secaron con Na₂SO₄ anhidro y el solvente fue removido a vacío a 35 °C.

La purificación se llevó a cabo cromatografía en columna usando como eluente *n*-hexano, para obtener los correspondientes carbenos.

Pentacarbonil (3-ciclopropil-1-etoxi-2-propin-1-ilideno) de tungsteno (0)^{53,71}
 Formula Molecular: C₁₃H₁₀O₆W

Apariencia: Líquido viscoso color café rojizoPM: 446.06%R= 97

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.16-1.20 (m, 2H), 1.28 (td, *J* = 7.4, 4.1 Hz, 2H), 1.53 (t, *J* = 7.1 Hz, 3H), 1.79 (dq, *J* = 8.1, 4.8 Hz, 1H), 4.58 (d, *J* = 5.1 Hz, 2H).

RMN ¹³**C** (**126 MHz, CDCl**₃) δ 2.6, 12.5, 14.7, 75.8, 197.3, 197.8, 198.3, 205.5 (CO, *trans*), C=W (C1, C2, y C3 no se aprecian en el espectro)

Pentacarbonil (1-etoxi-2-propin-3-terbutil-1-ilideno) de tungsteno (0)^{53,71}

Formula Molecular: C₁₄H₁₄O₆W

Apariencia: Líquido viscoso color café oscuro

PM: 462.11

% R= 92

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.36 (s, 9H), 1.53 (t, *J*=7.0 Hz,

3H), 4.60 (s, 2H).

RMN¹³**C** (**126 MHz, CDCl**₃) δ 14.7, 29.8, 191.2 (CO, *cis*), 197.6 (CO, *trans*), C=W (C1, C1a, C2, C3 no se aprecian en el espectro).

Pentacarbonil [1-etoxi-3-(p-metoxifenil)-2-propin-1-ilideno)] de tungsteno (0)^{53,71}

Formula Molecular: C₁₇H₁₂O₇W **Aparienci**a: Solido cristalino color café oscuro

PM: 512.12

%**R=**89

1a 1b

23a

 ⁷¹Aumann, R.; Fröhlich, R.; Prigge, J.; Meyer, O. Organic Syntheses via Transition-Metal Complexes. 99.¹
 Cyclopentadiene Annelation to Enolizable Cyclic Ketones via (1-Alkynyl) Carbene Complexes (M = Cr, W). *Organometallics* 1999, *4*, 1369–1380.

RMN ¹**H** (500 MHz, CDCl₃) δ 1.59 (t, J = 7.1 Hz, 3H), 3.89 (s, 3H), 4.68 (q, J = 7.1 Hz, 2H), 6.95-6.98 (m, 2H), 7.58-7.62 (m, 2H).

RMN ¹³C (126 MHz, CDCl₃) δ 14.8, 55.6, 75.7, 112.9, 114.9 (2C), 135.5 (2C), 162.8, 197.3, 197.8, 198.3 (CO, cis), 205.8 (CO, trans), C=W (C1, C2, C3 no se observan en el espectro).

Pentacarbonil (1-etoxi-3-fenil-2-propin-1-ilideno) de tungsteno (0)^{53,71}

Formula Molecular: C₁₆H₁₀O₆W

Apariencia: Solido cristalino color café oscuro

PM: 482.09

%**R**= 75

RMN ¹**H** (500 MHz, CDCl₃) δ 1.60 (t, J=7.1 Hz, 3H, H1b), 4.70 (q, J= 7.0 Hz, 2H), 7.42-7.46 (m, 2H), 7.52-7.56 (m, 1H), 7.61-7.64 (m, 2H).

RMN ¹³C (125 MHz, CDCl₃) δ 14.8 (C1b), 76.1 (C1a), 121.1 (C3), 129.0 (2C), 131.6 (C7), 132.9 (2C), 197.0, 197.5, 198.0 (CO, cis), 205.8 (CO, trans), C=W (C1, C2 no se observan en el espectro).

Pentacarbonil [3-(3-tiofenil)-1-etoxi-2-propin-1-ilideno) de tungsteno (0)^{53,71}

Formula Molecular: C₁₄H₈O₆SW

Apariencia: Solido cristalino color café oscuro

PM: 488.11

%**R**= 50

W(CO)₅ 23e

W(CO)₅

23d

RMN ¹**H** (500 MHz, CDCl₃) δ 1.60 (t, J = 7.1 Hz, 3H), 4.68

(q, J = 6.9 Hz, 2H), 7.24-7.27 (m, 1H), 7.41 (dd, J = 5.0, 3.0 Hz, 1H), 7.88 (dd, J = 2.9, 3.0 Hz, 1H)0.9 Hz, 1H).

RMN ¹³C (126 MHz, CDCl₃) δ 14.8, 76.1, 120.7, 126.8 (2C), 130.0 (2C), 134.8, 197.6 (CO, trans), 205.7 (CO, cis), C=W (La señal de C2 al igual que C1 no aparecen en el espectro).

Pentacarbonil [3-(ciclohex-1-eno)-1-etoxi-2-propin-1-ilideno) de tungsteno **(0)**^{53,71}

Formula Molecular: C₁₆H₁₄O₆SW Apariencia: Solido cristalino color café oscuro **PM:** 486.12 %**R**= 48

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.54 (t, *J*= 7.1 Hz, 3H), 1.64-1.69 (m. 2H), 1.70-1.76 (m, 2H), 2.21-2.16 (m, 2H), 2.28-2.33 (m, 2H), 4.58 (q, *J*= 6.5 Hz, 2H), 6.62-6.66 (m, 1H) **RMN** ¹³**C** (**126 MHz, CDCl**₃) δ 14.7, 20.9, 22.0, 26.9, 28.4, 75.5, 121.1, 145.2, 198.2, (CO, *cis*) 205.9 (CO, *trans*), C=W (C2 y C1 no aparecen en el espectro).

> Pentacarbonil (1-etoxi-3-fenil-2-propin-1-ilideno) de cromo (0)^{51,53,71}

Formula Molecular: C₁₆H₁₀CrO₆

Apariencia: Solido cristalino color purpura

PM: 350.25

% R= 74

RMN ¹H (500 MHz, CDCl₃) δ 1.61 (t, *J*=7.1 Hz, 3H), 4.72 (q, *J*=7.0 Hz, 2H), 7.43-7.47 (m, 2H), 7.53-7.57 (m, 1H), 7.62-7.65 (m, 2H).

RMN ¹³**C** (**126 MHz, CDCl**₃) δ 15.0 (OCH₂CH₃), 75.9 (OCH₂CH₃), 91.8 (C \equiv), 121.0 (=CPh),), 128.9 (2C), 131.6, 132.7 (2C), 216.3 (CO, *cis*), 225.7 (CO, *trans*), 313.8 (Cr=C).

12. Síntesis de pirazoles con DMAC (55a-b)

En un matraz de 25mL se disolvió el derivado de sidnona (1.23 mmol, 1 eq) en 5 mL de tolueno y se añadió gota a gota dimetilacetilendicarboxilato (2.47 mmol, 2 eq), la mezcla de reacción se llevó a reflujo durante el tiempo apropiado, monitoreando por ccf.

Se evaporó el exceso de disolvente en el rotaevaporador y se purificó por columna cromatográfica empleando un sistema Hexano/AcOEt (8:2).

Dimetil-1-fenil-1*H***-pirazol-3,4-dicarboxilato**⁴⁶

Formula Molecular: C₁₃H₁₂N₂O₄

Apariencia: Sólido cristalino color amarillo claro

PM: 260.25

% R= 90

RMN ¹H (400 MHz, CDCl₃) δ 3.89 (s, 3H), 4.00 (s, 3H),

7.41 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 7.9 Hz, 2H), 8.40 (s, 1H). **RMN** ¹³**C** (**125 MHz, CDCl**₃) δ 52.0, 52.7, 116.4, 120.2 (2C), 128.4, 129.7 (2C), 131.8, 138.8, 144.6, 161.9, 162.1.

> Dimetil-5-iodo-1-fenil-1*H*-pirazol-3,4-dicarboxilato⁴⁶ Formula Molecular: C₁₃H₁₁IN₂O₄ CO₂Me Apariencia: Sólido cristalino color blanco **PM:** 386.14 %**R**= 83 **RMN** ¹**H** (500 MHz, CDCl₃) δ 3.94 (s, 3H), 3.96 (s, 3H), 7.47-7.54 (m, 5H). **RMN** ¹³C (125 MHz, CDCl₃) δ 52.4, 52.8, 88.8 (C-I), 121.7, 127.0, 129.2, 130.0, 139.3,

145.2, 161.5, 162.4.

13. Síntesis pentacarbonil[(etoxi)(pirazolil)carbenos] de tungsteno (56a-j, 57a)

En un tubo de presión dotado de un agitador magnético se añadió el carbeno 23a-f (1 mmol) y la sidnona correspondiente (2 mmol) en 2 mL de THF anhidro. La reacción se calentó a 80 °C en un tubo de presión durante el tiempo apropiado hasta que se consume el alquino monitoreando la transformación por CCF. Una vez terminada la reacción se evaporo el exceso de disolvente en el rotaevaporador y se purifico por columna cromatográfica empleando como eluente hexano.

4-fenil-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1H-pirazol³⁶

Molecular: Formula

 $C_{23}H_{16}N_2O_6W$

Exact Mass: 601.0590 m/z: 601.0590 (100.0%), 603.0625 (92.8%), 599.0563 (86.5%), 600.0583 (46.7%), 602.0624 (24.9%), 604.0658 (23.1%), 600.0597 (21.5%), 601.0617 (11.6%), 603.0658 (2.7%), 605.0692 (2.5%), 601.0630 (2.3%), 602.0650 (1.4%), 603.0633 (1.2%), 605.0667 (1.1%), 601.0606 (1.1%)

56a

W(CO)₅

Apariencia: Solido cristalino color naranja **PM:** 600.23

%R=61

RMN¹H (600 MHz, CDCl₃)

 $\delta 1.09 (t, J = 7.0 \text{ Hz}, 3\text{H}), 4.81$

(q, J = 7.0 Hz, 2H), 7.29 (d, J = 7.0 Hz, 2H), 7.34-7.41 (m, 4H),), 7.54 (t, J = 7.7 Hz, 7.10 Hz)2H), 7.88 (d, J = 7.8 Hz, 2H), 7.95 (s, 1H).

RMN ¹³C (150 MHz, CDCl₃) δ 14.0, 79.2, 119.0, 121.7, 127.3, 127.3 (C5), 127.7, 128.0, 129.3, 129.8, 133.2, 139.5, 160.9 (C3), 197.8, 198.2, 198.7 (CO_{cis}), 204.7 (CO_{trans}), 303.5 (C3a).

HRMS (ESI): m/z calculada para C₂₃H₁₆N₂O₆W [M+H]⁺: 601.0590; encontrada: 601.0599, 545.0692 (M⁺-2CO).

4-(p-metoxifenil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1H-pirazol

Formula Molecular: C₂₄H₁₈N₂O₇W

Apariencia: Solido cristalino color naranja

PM: 630.26

%**R** = 43

RMN ¹H (500 MHz, CDCl₃) δ 1.17 (t, *J* = 7.1 Hz, 3H), 3.86 (s, 3H), 4.83 (q, *J* = 7.1 Hz, 2H), 6.93 (*J* = 8.7 Hz, 2H), 7.22 (*J* = 8.7 Hz, 2H), 7.38-7.41 (m, 1H), 7.51-7.55 (m, 2H), 7.88 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.92 (s, 1H).

RMN ¹³**C** (**125 MHz, CDCl**₃) δ 14.3, 55.4, 79.3, 113.5 (2C), 118.9 (2C), 121.4, 125.4, 127.3, 127.6, 129.7 (2C), 130.4 (2C), 139.5, 159.0, 160.8 (C3), 197.8, 198.3, 198.8 (CO_{cis}), 204.7 (CO_{trans}), 303.7.

HRMS (ESI): m/z calculada para C₂₄H₁₈N₂O₇W [M+H]⁺: 631.0696; encontrada: 631.0697.

> 4-(ciclohex-1-ene)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1H-pirazol

Formula Molecular: C₂₃H₂₀N₂O₆W

Apariencia: Solido cristalino color rojo

PM: 604.26

%**R** = 44

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.64-1.69 (m, 5H), 1.73-1.79 (m, 2H), 2.13-2.16 (m, 4H), 5.04 (q, *J* = 7.1 Hz, 2H), 5.65-5.67 (m, 1H), 7.34-7.38 (m, 1H), 7.48-7.53 (m, 2H), 7.78 (s, 1H), 7.81-7.84 (m, 2H).

RMN ¹³**C** (**125 MHz, CDCl**₃) δ 15.1, 22.0, 22.9, 25.5, 29.9, 79.5, 118.8, 123.9, 126.3, 126.4, 127.4, 129.6, 130.0, 139.5, 161.2 (C3), 197.8, 198.3, 198.8 (CO_{cis}), 204.8 (CO_{trans}), 304.8 (C3a).

HRMS (ESI): m/z calculada para C₂₃H₂₀N₂O₆W [M+H]⁺: 605.0903; encontrada: 605.0910.

4-(3-tiofenil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1Hpirazol

Formula Molecular: C₂₁H₁₄N₂O₆SW

Apariencia: Solido cristalino color café claro

PM: 606.25

%**R** = 52

RMN ¹H (500 MHz, CDCl₃) δ 1.27 (t, *J* = 7.1 Hz, 3H), 4.89 (q, *J* = 7.1 Hz, 2H), 7.05 (m, 1H), 7.20 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.35 (dd, *J* = 4.9, 3.0 Hz, 1H), 7.40 (ddt, *J* = 8.6, 7.1, 1.1 Hz, 1H), 7.52-7.56 (m, 2H), 7.86-7.89 (m, 2H), 7.98 (s, 1H).

RMN ¹³**C** (**125** MHz, CDCl₃) δ 14.3 (C3c), 79.4 (C3b), 116.1, 119 (2C), 122.9, 125.0, 127.5, 127.7, 129.3, 129.8 (2C), 132.9, 160.9 (C3), 197.7, 198.2, 198.7 (CO_{cis}), 204.6 (CO_{trans}), 303.4 (C3a).

IR (**KBr, cm**⁻¹): 2069, 1987, 1939, 1908, 1596, 1496, 1397, 1361, 1260, 1226, 1205, 1079, 1015, 914, 825, 758, 659, 616, 590.

HRMS (ESI): m/z calculada para C₂₁H₁₄N₂O₆SW [M+H]⁺: 607.0155; encontrada: 607.0155.

4-(ciclopropil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1*H*pirazol

Formula Molecular: C₂₀H₁₆N₂O₆W

Apariencia: solido cristalino color naranja

PM: 564.20

% R= 57

RMN ¹H (500 MHz, CDCl₃) δ 0.57-0.60 (m, 2H), 0.90-0.93 (m, 2H), 1.72 (t, *J* = 7.1 Hz, 3H), 1.96 (tt, *J* = 8.4, 5.3 Hz, 1H), 5.11 (q, *J* = 7.1 Hz, 2H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.48-7.52 (m, 2H), 7.63 (s, 1H), 7.80-7.83 (m, 2H).

RMN ¹³**C** (**125** MHz, CDCl₃) δ 7.7, 7.8 (2C), 15.1 (C3c), 79.4 (C3b), 118.9 (2C), 124.6, 125.4, 127.5, 129.6 (2C), 139.6, 162.3 (C3), 198.0, 198.5, 199.0 (CO_{cis}), 204.6 (CO_{trans}), 302.7 (C3a).

HRMS (ESI): m/z calculada para C₂₀H₁₆N₂O₆W [M+H]⁺: 565.0590; encontrada: 565.0587.

4-(t-butil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-fenil-1Hpirazol W(CO)5

Formula Molecular: C₂₁H₂₀N₂O₆W Apariencia: Solido cristalino color naranja PM: 580.24 % R = 64

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.33 (s, 9H), 1.77 (t, *J* = 7.2 Hz, 3H), 5.17 (q, *J* = 7.2 Hz, 2H), 7.32-7.36 (m, 1H), 7.47-7.51 (m, 2H), 7.77 (s, 1H), 7.79-7.81 (m, 2H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 15.0 (C3c), 30.8 (C1⁻), 31.3 (C2⁻-C4⁻), 80.2 (C3b), 118.7 (2C), 125.2, 127.1, 129.6 (2C), 130.1, 139.6, 163.4 (C3), 197.6, 198.1, 198.6 (CO_{cis}), 205.1 (CO_{trans}), 311.3 (C3a).

HRMS (ESI): m/z calculada para C₂₁H₂₀N₂O₆W [M+H]⁺: 581.0903; encontrada: 581.0906.

4-(t-butil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-bencil-1Hpirazol

Formula Molecular: C₂₂H₂₂N₂O₆W

Apariencia: Solido cristalino color naranja

PM: 594.27

%**R** = 54

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.24 (s, 9H), 1.73 (t, *J* = 7.2 Hz, 3H), 5.15 (q, *J* = 7.1 Hz, 2H), 5.28 (s, 2H), 7.20 (s, 1H), 7.32-7.41 (m, 5H).

RMN¹³**C** (**125 MHz, CDCl**₃) δ 15.0 (C3c), 30.8 (C1[′]), 31.1 (C2^{′′}-C4[′]), 56.9 (C1a), 80.1 (C3b), 128.0, 128.1 (2C), 128.4, 128.9 (2C) 129.4, 135.6, 161.9 (C3), 197.8, 198.3, 198.8 (CO_{cis}), 205.2 (CO_{trans}), 310.3 (C3a).

HRMS (ESI): m/z calculada para C₂₂H₂₂N₂O₆W [M+H]⁺: 595.1060; encontrada: 595.1070.

4-(t-butil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-(4metoxifenil)-1H-pirazol

Formula Molecular: C₂₂H₂₂N₂O₇W

Apariencia: Solido color naranja

PM: 610.27

%**R** = 40

RMN ¹**H** (**500 MHz**, **CDCl**₃) δ 1.33, (s, 9H), 1.76 (t, *J* = 7.2 Hz, 3H), 3.86 (s, 3H), 5.1 (q, *J* = 7.1 Hz, 2H), 7.00 (d, *J* = 9.1 Hz, 2H), 7.68 (s, 1H), 7.71 (d, *J* = 9.1 Hz, 2H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 15.0 (C3c), 30.8 (C1[^]), 31.1 (C2^[^]-C4[^]), 55.6 (OMe), 80.2 (C3b), 114.7 (2C), 120.3 (2C), 125.3, 130.1, 133.3, 158.7 (C4^[^]), 162.9 (C3), 197.7, 198.2, 198.7 (CO_{cis}), 205.1 (CO_{trans}), 310.2 (C3a).

HRMS (ESI): m/z calculada para C₂₂H₂₂N₂O₇W [M+H]⁺: 611.1009; encontrada: 611.1016.

4-(t-butil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-(4-clorofenil)-1H-pirazol

Formula Molecular: C₂₁H₁₉ClN₂O₆W **Aparienci**a: Solido color naranja

PM: 614.68

% R = 27

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.32 (s, 9H), 1.76 (td, *J* = 7.1, 2.0 Hz, 3H), 5.16 (qd, *J* = 7.1, 2.9 Hz, 2H), 7.44-7.46 (m, 2H), 7.74 (dd, *J* = 6.0, 4.0 Hz, 3H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 15.0 (C3c), 30.8 (C1⁻), 31.2 (C2⁻-C4⁻), 80.3 (C3b), 119.8 (2C), 125.1, 129.7 (2C), 130.2, 132.6, 138.1, 163.7 (C3), 197.5, 198.0, 198.5 (CO_{cis}), 205.0 (CO_{trans}), 311.6 (C3a).

HRMS (ESI): m/z calculada para C₂₁H₁₉ClN₂O₆W [M+H]⁺: 615.0514; encontrada: 615.0513.

4-(t-butil)-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-tungsta-2-eno)-1-metil-1Hpirazol

Formula Molecular: C₁₆H₁₈N₂O₆W

Apariencia: Solido color naranja

PM: 518.17

%**R** = 27

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.25 (s, 9H), 1.72 (t, J = 7.2 Hz, 3H), 3.91 (s, 3H), 5.13 (q, J = 7.1 Hz, 2H), 7.18 (s, 1H).

RMN ¹³**C** (**125 MHz**, **CDCl**₃) δ 15.0 (C3c), 30.7 (C1[′]), 31.1 (C2[′]-C4[′]), 39.5 (C1^{′′}), 80.0 (C3b), 129.0 (C5), 129.0 (C4), 161.8 (C3), 197.9, 198.4, 198.9 (CO_{cis}), 205.2 (CO_{trans}), 310.0 (C3a).

HRMS (ESI): m/z calculada para C₁₆H₁₈N₂O₆W [M+H]⁺: 519.0747; encontrada: 519.0761.

> 4-fenil-3-(1,1,1,1,1-pentacarbonil-2-etiloxi-1-croma-2-eno)-1-fenil-1*H*-pirazol

Formula Molecular: C₂₃H₁₆N₂O₆Cr

Apariencia: Solido color rojo

PM: 468.39

% R= 37

RMN ¹H (500 MHz, CDCl₃) δ 0.99 (t, *J* = 7.1 Hz, 3H), 4.90 (q, *J* = 7.1 Hz, 2H), 7.15-7.18 (m, 2H), 7.25-7.32 (m, 4H), 7.46 (dd, *J* = 10.8, 5.2 Hz, 2H), 7.79-7.82 (m, 2H), 7.83 (s, 1H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 14.2 (C3c), 76.6 (C3b), 118.9 (2C), 120.6, 126.8, 127.2, 127.6, 128.1 (2C), 129.2 (2C), 129.7 (2C), 133.2, 139.5, 159.3 (C3), 217.4 (CO_{cis}), 224.9 (COt_{rans}), 330.6 (C3a).

HRMS (ESI): m/z calculada para C₂₃H₁₆N₂O₆Cr [M+H]⁺: 469.0486; encontrada: 269.0499.

14. Preparación de 61a

En un matraz redondo boca 24/40 de 50 mL provisto de un agitador magnético previamente purgado se agregó 3-fenilsidnona (1 equiv) en 10 mL de THF anhidro y se llevó el matraz a un baño de acetona a -78 °C y se mantuvo a esta temperatura durante una hora.

Una vez trascurrido este tiempo, se agregó gota a gota una solución 1.6 M de *n*-BuLi (1.2 equiv) en hexano y se mantuvo a -78 °C durante 2 h. Vía cánula se agregó una solución del alquinilcarbeno (1.2 equiv) correspondiente en 10 mL de THF anhidro. Se monitoreo el progreso de la reacción por CCF.

Una vez terminada la reacción se evapora el exceso de disolvente y se purifica el crudo de reacción por columna cromatográfica empleando como eluyente una mezcla hexano: acetato de etilo (9:1).

4-etoxi-6-fenil-3-(fenilamino)-2H-piran-2-ona

Formula Molecular: C₁₉H₁₇NO₃

Apariencia: Solido color amarillo

PM: 307.35

%**R=**51

RMN ¹**H** (**500 MHz, CDCl**₃) δ 1.33 (t, *J* = 6.0 Hz, 3H), 4.26 (dd, *J* = 12.2, 6.6 Hz, 2H), 5.69 (s, 1H), 6.72 (s, 1H), 6.75 (d, *J* = 7.3 Hz, 2H), 6.88 (t, *J* = 7.0 Hz, 1H), 7.23 (t, *J* = 6.9 Hz, 2H), 7.47 (d, *J* = 5.3 Hz, 3H), 7.83 (d, *J* = 6.6 Hz, 2H).

RMN ¹³**C** (**126 MHz**, **CDCl**₃) δ 14.9, 65.4, 94.8, 110.6, 116.5 (2C), 120.2, 125.3 (2C), 128.6 (2C), 129.0 (2C), 130.5, 131.3, 143.4, 155.0, 156.7, 162.7.

IR (**KBr, cm⁻¹**): 3342, 1672, 1636, 1602, 1519, 1497, 1438, 1417, 1378, 1343, 1316, 1267, 1193, 1084, 1045, 997, 767, 748, 691, 501.

HRMS (ESI): *m/z* calculada para C₁₉H₁₇NO₃ [M+H]⁺: 308.1281; encontrada: 308.1279.

14.1 Datos cristalográficos de 61a

Table 1. Crystal data and structure refinement for 61a.

Identification code	shelx	
Empirical formula	C19 H17 N O3	
Formula weight	307.33	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	I 2/a	
Unit cell dimensions	a = 18.459(3) Å	a= 90°.
	b = 11.1052(17) Å	b=96.226(14)°.
	c = 14.967(2) Å	$g = 90^{\circ}$.

Volume	3050.0(8) Å ³
Z	8
Density (calculated)	1.339 Mg/m ³
Absorption coefficient	0.091 mm ⁻¹
F(000)	1296
Crystal size	0.470 x 0.330 x 0.270 mm ³
Theta range for data collection	3.572 to 29.198°.
Index ranges	-23<=h<=16, -10<=k<=14, -19<=l<=15
Reflections collected	6397
Independent reflections	3382 [R(int) = 0.0433]
Completeness to theta = 25.242°	98.1 %
Absorption correction	Analytical
Max. and min. transmission	0.978 and 0.969
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3382 / 0 / 209
Goodness-of-fit on F ²	1.068
Final R indices [I>2sigma(I)]	R1 = 0.0683, wR2 = 0.1578
R indices (all data)	R1 = 0.0890, wR2 = 0.1804
Extinction coefficient	n/a
Largest diff. peak and hole	0.420 and -0.607 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for exp_866. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
C(1)	940(1)	9069(1)	4116(1)	
C(2)	555(1)	7987(2)	4250(1)	35(1)
C(3)	-770(1)	7569(1)	4017(1)	35(1)
C(4)	-1445(1)	7759(2)	4327(1)	41(1)
C(5)	-2060(1)	7228(2)	3909(2)	53(1)
C(6)	-2022(1)	6493(2)	3174(2)	57(1)
C(7)	-1361(1)	6324(2)	2857(1)	54(1)
C(8)	-738(1)	6851(2)	3265(1)	44(1)
C(9)	913(1)	6912(1)	4241(1)	36(1)
C(10)	885(1)	4767(2)	4480(2)	54(1)
C (11)	896(1)	4220(2)	3575(2)	72(1)
C(12)	1644(1)	6873(2)	4035(1)	36(1)
C(13)	1997(1)	7891(1)	3885(1)	32(1)
C(14)	2756(1)	7990(2)	3692(1)	33(1)
C(15)	3149(1)	6969(2)	3510(1)	43(1)
C(16)	3871(1)	7050(2)	3370(1)	50(1)
C(17)	4218(1)	8146(2)	3412(1)	51(1)
C(18)	3833(1)	9160(2)	3569(1)	50(1)
C(19)	3107(1)	9090(2)	3712(1)	44(1)
N(1)	-159(1)	8104(1)	4470(1)	40(1)
O(1)	1655(1)	8968(1)	3926(1)	37(1)
O(2)	708(1)	10083(1)	4164(1)	49(1)
O(3)	541(1)	5934(1)	4443(1)	49(1)

C(1)-O(2)	1.2104(19)
C(1)-O(1)	1.383(2)
C(1)-C(2)	1.422(2)
C(2)-C(9)	1.366(2)
C(2)-N(1)	1.397(2)
C(3)-N(1)	1.386(2)
C(3)-C(8)	1.386(2)
C(3)-C(4)	1.391(2)
C(4)-C(5)	1.368(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.378(3)
C(5)-H(5)	0.9300
C(6)-C(7)	1.370(3)
C(6)-H(6)	0.9300
C(7)-C(8)	1.373(3)
C(7)-H(7)	0.9300
C(8)-H(8)	0.9300
C(9)-O(3)	1.3360(19)
C(9)-C(12)	1.417(2)
C(10)-O(3)	1.441(2)
C(10)-C(11)	1.486(4)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-H(11A)	0.9600
C(11)-H(11B)	0.9600
C(11)-H(11C)	0.9600
C(12)-C(13)	1.336(2)
C(12)-H(12)	0.9300
C(13)-O(1)	1.3566(18)
C(13)-C(14)	1.466(2)
C(14)-C(19)	1.382(2)
C(14)-C(15)	1.389(2)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **61a**.

C(15)-C(16)	1.374(2)
C(15)-H(15)	0.9300
C(16)-C(17)	1.374(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.365(3)
C(17)-H(17)	0.9300
C(18)-C(19)	1.381(3)
C(18)-H(18)	0.9300
C(19)-H(19)	0.9300
N(1)-H(1)	0.8601
O(2)-C(1)-O(1)	116.04(15)
O(2)-C(1)-C(2)	126.31(16)
O(1)-C(1)-C(2)	117.64(13)
C(9)-C(2)-N(1)	123.54(15)
C(9)-C(2)-C(1)	119.16(15)
N(1)-C(2)-C(1)	117.01(14)
N(1)-C(3)-C(8)	122.65(15)
N(1)-C(3)-C(4)	118.89(15)
C(8)-C(3)-C(4)	118.46(17)
C(5)-C(4)-C(3)	120.68(18)
C(5)-C(4)-H(4)	119.7
C(3)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	120.63(18)
C(4)-C(5)-H(5)	119.7
C(6)-C(5)-H(5)	119.7
C(7)-C(6)-C(5)	118.8(2)
C(7)-C(6)-H(6)	120.6
C(5)-C(6)-H(6)	120.6
C(6)-C(7)-C(8)	121.43(19)
C(6)-C(7)-H(7)	119.3
C(8)-C(7)-H(7)	119.3
C(7)-C(8)-C(3)	119.97(17)
C(7)-C(8)-H(8)	120.0
C(3)-C(8)-H(8)	120.0

O(3)-C(9)-C(2)	116.60(15)
O(3)-C(9)-C(12)	123.27(15)
C(2)-C(9)-C(12)	120.13(15)
O(3)-C(10)-C(11)	112.50(19)
O(3)-C(10)-H(10A)	109.1
C(11)-C(10)-H(10A)	109.1
O(3)-C(10)-H(10B)	109.1
C(11)-C(10)-H(10B)	109.1
H(10A)-C(10)-H(10B)	107.8
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
C(13)-C(12)-C(9)	120.24(15)
C(13)-C(12)-H(12)	119.9
C(9)-C(12)-H(12)	119.9
C(12)-C(13)-O(1)	120.06(15)
C(12)-C(13)-C(14)	126.22(15)
O(1)-C(13)-C(14)	113.71(13)
C(19)-C(14)-C(15)	118.20(15)
C(19)-C(14)-C(13)	121.26(15)
C(15)-C(14)-C(13)	120.52(14)
C(16)-C(15)-C(14)	120.75(17)
C(16)-C(15)-H(15)	119.6
C(14)-C(15)-H(15)	119.6
C(17)-C(16)-C(15)	120.44(18)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(18)-C(17)-C(16)	119.27(17)
C(18)-C(17)-H(17)	120.4
C(16)-C(17)-H(17)	120.4
C(17)-C(18)-C(19)	120.84(18)

C(17)-C(18)-H(18)	119.6
C(19)-C(18)-H(18)	119.6
C(18)-C(19)-C(14)	120.46(18)
C(18)-C(19)-H(19)	119.8
C(14)-C(19)-H(19)	119.8
C(3)-N(1)-C(2)	125.72(14)
C(3)-N(1)-H(1)	117.1
C(2)-N(1)-H(1)	117.2
C(13)-O(1)-C(1)	122.62(12)
C(9)-O(3)-C(10)	120.29(13)

Symmetry transformations used to generate equivalent atoms:

15. Preparación de cloruros de hidrazonoilo (37a-c)

A una solución en agitación de fenilhidracina (10 mmol, 1 eq, 1.02 mL) en 10 mL de DCM se agregó lentamente piridina (10 mmol, 1 eq, 0.8 mL) en un baño de hielo. Con un embudo de adición se adiciono gota a gota el cloruro de benzoilo **62a-c** (10 mmol, 1 eq.) en 5 mL de DCM durante 2 h. Se agito posteriormente a temperatura ambiente durante 12h. El crudo de reacción se vierte en un baño de hielo y se extrae con DCM (3 x 15 mL), se concentran las fases orgánicas, se secan con Na₂SO₄ y se evapora el disolvente en el rotaevaporador. El producto se recristaliza en EtOH obteniendo **64a-c** en rendimientos del 51-79%.

En un matraz redondo de 25 mL se agregó **64a-c** (2.5 mmol, 1 eq), PPh₃ (3.25 mmol, 1.3 eq, 860 mg) en 5 mL de MeCN y se mantuvo en agitación durante 1h. A continuación, se añadió CCl₄ (3.25 mmol, 1.3 eq, 0.31 mL). Después de agitar a 25°C por 24 h el disolvente es removido a vacío y el residuo se purifico por columna cromatográfica empleando Hexano como eluente o una mezcla Hexano/Acetato de Etilo según sea el caso.

> Cloruro de (Z)-4-metoxi-N-fenilbenzohidrazonoilo^{58,59,60}

Formula Molecular: C₁₄H₁₃ClN₂O

Apariencia: Solido color blanco

PM: 260.72

%R=81

RMN ¹H (600 MHz, CDCl₃) δ 3.83 (s, 3H), 6.87-7.01 (m, 3H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.26-7.36 (m, 2H), 7.84 (d, *J* = 8.9 Hz, 2H), 7.92 (s, 1H).

RMN ¹³**C** (**150** MHz, CDCl₃) δ 55.4 (OMe), 113.3 (2C), 113.8 (2C), 120.9, 124.8, 127.2, 127.9 (2C), 129.4 (2C), 143.6, 160.6.

Cloruro de (Z)-4-nitro-*N*-fenilbenzohidrazonoilo^{58,59,60}

Formula Molecular: C₁₃H₁₀ClN₃O₂

Apariencia: Solido color naranja

PM: 275.69

%**R**=75

37c

RMN ¹H (500 MHz, DMSO-*d*₆) δ 6.96 (t, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 7.9 Hz, 2H), 8.10 (d, *J* = 8.9 Hz, 2H), 8.28 (d, *J* = 8.9 Hz, 2H), 10.31 (s, 1H).
RMN ¹³C (125 MHz, DMSO-*d*₆) δ 114.5 (2C), 120.4, 121.8, 124.4 (2C), 127.0 (2C), 129.6 (2C), 140.7, 143.9, 147.4.

> Cloruro de (Z)-*N*-fenilbenzohidrazonoilo^{58,59,60}

Formula Molecular: C₁₃H₁₁ClN₂

Apariencia: Solido color blanco

PM: 230.70

% R=64

RMN ¹H (500 MHz, CDCl₃) δ 6.97-7.01 (m, 1H), 7.22 (dd, *J* = 8.6, 1.0 Hz, 2H), 7.33-7.47 (m, 5H) 7.96-7.99 (m, 2H), 8.08 (s, 1H).

RMN¹³**C** (**125** MHz, CDCl₃) δ 113.5 (2C), 121.2, 124.7, 126.5 (2C), 128.4 (2C), 129.2, 129.4 (2C), 134.5, 143.4.

16. Síntesis de 65a´

> Etil-3-(4-metoxifenil)-1,4-difenil-1*H*-pirazol-5-carboxilato

Formula Molecular: C₂₅H₂₂N₂O₃

Apariencia: Solido color blanco

PM: 398.1630

% R=28

RMN ¹**H** (500 MHz, CDCl₃) δ 0.92 (t, J = 7.1 Hz, 3H),

3.78 (s, 3H), 4.06 (q, *J* = 7.1 Hz, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 7.35-7.39 (m, 5H), 7.41 (d, *J* = 8.9 Hz, 2H), 7.45 (dt, 4.7, 1.8 Hz, 1H), 7.48-7.51 (m, 2H), 7.55-7.57 (m, 2H). **RMN**¹³**C** (**125 MHz, CDCl**₃) δ.

IR (KBr, cm⁻¹): 1720, 1613. 1528, 1498, 1433, 1284, 1235, 1177, 1101, 1035, 839, 758. **HRMS (ESI):** *m/z* calculada para C₂₅H₂₂N₂O₃ [M+H]⁺: 399.1703; encontrada: 399.1704.

IX. ESPECTROS

Espectro 1. RMN de ¹H en CDCl₃ a 500 MHz de **16a**.

Espectro 2. RMN de ¹³C en CDCl₃ a 125 MHz de **16a**.

Espectro 3. RMN de 1 H en CDCl₃ a 500 MHz de **16b.**

Espectro 4. RMN de ¹³C en CDCl₃ a 125 MHz de 16b.

Espectro 5. RMN de ¹⁹F en CDCl₃ a 471 MHz de 16b.

Espectro 6. RMN de 13 C en CDCl₃ a 125 MHz de **16c**.

Espectro 7. RMN de 1 H en CDCl₃ a 400 MHz de **16d**.

Espectro 8. RMN de ¹³C en CDCl₃ a 125 MHz de 16d.

Espectro 9. RMN de ¹H en CDCl₃ a 500 MHz de **16e**.

Espectro 10. RMN de ¹³C en CDCl₃ a 125 MHz de **16e**.

Espectro 11. Espectro de RMN de ¹H en DMSO-*d*₆ a 500 MHz de **16f**.

Espectro 12. RMN de ¹³C en CDCl₃ a 125 MHz de 16f.

Espectro 13. Espectro de RMN de ¹H en DMSO-*d*₆ a 500 MHz de **16g**.

Espectro 14. RMN de 13 C en DMSO- d_6 a 125 MHz de **16g**.

Espectro 15. RMN de ¹H en CDCl₃ a 500 MHz de **16h**.

Espectro 16. RMN de ¹³C en CDCl₃ a 125 MHz de 16h.

Espectro 17. RMN de ¹H en CDCl₃ a 500 MHz de **18**.

Espectro 18. RMN de ¹⁹F en CDCl₃ a 471 MHz de **18**.

Espectro 19. RMN de ¹³C en CDCl₃ a 125 MHz de 23a.

Espectro 20. RMN de ¹³C en CDCl₃ a 125 MHz de 23a.

Espectro 21. RMN de ¹H en CDCl₃ a 500 MHz de **23b**.

Espectro 22. RMN de ¹³C en CDCl₃ a 125 MHz de 23b.

Espectro 23. RMN de ¹H en CDCl₃ a 500 MHz de **23c**.

Espectro 24. RMN de ¹³C en CDCl₃ a 125 MHz de **23c**.

Espectro 25. RMN de ¹H en CDCl₃ a 500 MHz de **23d**.

Espectro 26. RMN de ¹H en CDCl₃ a 500 MHz de 23d

Espectro 27. RMN de ¹H en CDCl₃ a 500 MHz de **23e**.

Espectro 28. RMN de ¹³C en CDCl₃ a 125 MHz de **23e**.

Espectro 29. RMN de ¹H en CDCl₃ a 500 MHz de 23f.

Espectro 30. RMN de ¹³C en CDCl₃ a 125 MHz de **23f**.

Espectro 31. RMN de ¹³C en CDCl₃ a 150 MHz de **37a**.

Espectro 32. RMN de ¹H en CDCl₃ a 500 MHz de 37b.

Espectro 33. RMN de ¹³C en CDCl₃ a 125 MHz de 37b.

Espectro 34. RMN de ¹H en CDCl₃ a 500 MHz de **37c**.

Espectro 35. RMN de ¹³C en CDCl₃ a 125 MHz de **37c**.

Espectro 36. RMN de 13 C en CDCl₃ + DMSO- d_6 a 125 MHz de **42a**.

Espectro 37. RMN de ¹H en CDCl₃ a 500 MHz de **42b**.

Espectro 38. RMN de ¹³C en CDCl₃ a 125 MHz de 42b.

Espectro 39. RMN de ¹H en DMSO- d_6 a 500 MHz de **42d**.

Espectro 40. RMN de ¹³C en CDCl₃ a 125 MHz de 42d.

Ph ₃ P ² N 6	10 ₂ 43a			-7.42						
	50 45	40 35	 20 15		 -10	 -25 -30	 	 	ant-155	

Espectro 41. RMN de ³¹P en CDCl₃ a 202 MHz de **43a**.

Espectro 42. RMN de ¹H en DMSO-d₆ a 500 MHz de 43b.

Espectro 43. RMN de ³¹P en DMSO- d_6 a 202 MHz de **43b**.

Espectro 44. RMN de ¹H en CDCl₃ a 500 MHz de **45a**.

Espectro 45. RMN de ¹³C en CDCl₃ a 125 MHz de 45a.

Espectro 46. RMN de ¹⁹F en CDCl₃ a 471 MHz de 45a.

Espectro 47. Experimento 2D: HSQC de 45b.

Espectro 48. Experimento 2D: HMBC de 45b.

Espectro 49. RMN de ¹⁹F en CDCl₃ a 471 MHz de **45b**.

Espectro 50. RMN de ¹H en CDCl₃ a 500 MHz de **45c**.

Espectro 51. RMN de ¹³C en CDCl₃ a 125 MHz de **45c**.

Espectro 52. RMN de ¹⁹F en CDCl₃ a 471 MHz de **45c**.

Espectro 53. Crudo de reacción en AcOH a 120 °C por 24 h de ¹H en CDCl₃ a 500 MHz de 46a.

Espectro 54. RMN de 13 C en DMSO- d_6 a 125 MHz de **48a**.

Espectro 55. RMN de 1 H en D₂O a 400 MHz de **48b**.

Espectro 56. RMN de ¹H en CDCl₃ + DMSO- d_6 a 500 MHz de **48c**.

Espectro 57. RMN de 13 C en CDCl₃ + DMSO- d_6 a 125 MHz de **48c**.

Espectro 58. RMN de ¹H en DMSO- d_6 a 500 MHz de **48d**.

Espectro 59. RMN de 13 C en DMSO-d₆ a 125 MHz de **48d**.

Espectro 60. HRMS (ESI): [M+H]⁺ de **48d**.

Espectro 61. RMN de ¹H en DMSO-d₆ a 500 MHz de 48e.

Espectro 62. RMN de ¹³C en DMSO-d₆ a 125 MHz de 48e.

Espectro 63. RMN de ¹³C en DMSO-*d*₆ a 100 MHz de 48f.

Espectro 64. RMN de ¹H en CDCl₃ a 500 MHz de 48g.

Espectro 65. RMN de ¹H en CDCl₃ a 500 MHz de **49**.

Espectro 66. RMN de ¹³C en CDCl₃ a 125 MHz de **49**.

Espectro 67. RMN de 1 H en CDCl₃ a 500 MHz de **50**.

Espectro 68. HRMS (ESI): [M+H]⁺ de **50**.

Espectro 69. RMN de ¹H en CDCl₃ a 500 MHz de 51.

Espectro 70. RMN de ¹³C en CDCl₃ a 125 MHz de **51**.

Espectro 71. RMN de ¹³C en CDCl₃ a 125 MHz de **53**.

Espectro 72. RMN de ¹³C en CDCl₃ a 125 MHz de **55a**.

Espectro 73. RMN de ¹H en CDCl₃ a 500 MHz de 55b.

Espectro 74. RMN de ¹³C en CDCl₃ a 125 MHz de **55b**.

Espectro 75. RMN de ¹H en CDCl₃ a 500 MHz de **56b**.

Espectro 76. RMN de ¹³C en CDCl₃ a 125 MHz de 56b.

Espectro 77. RMN de ¹H en CDCl₃ a 500 MHz de **56c**.

Espectro 78. RMN de ¹³C en CDCl₃ a 125 MHz de **56c**.

Espectro 79. RMN de ¹H en CDCl₃ a 500 MHz de 56d.

Espectro 80. RMN de ¹³C en CDCl₃ a 125 MHz de 56d.

Espectro 81. IR-KBr en pastilla de 56d.

Espectro 82. RMN de ¹H en CDCl₃ a 500 MHz de **56e**.

Espectro 83. RMN de ¹³C en CDCl₃ a 125 MHz de 56e.

Espectro 84. RMN de ¹H en CDCl₃ a 500 MHz de 56f.

Espectro 85. RMN de ¹³C en CDCl₃ a 125 MHz de 56f.

Espectro 86. RMN de ¹H en CDCl₃ a 500 MHz de **56g**.

Espectro 87. RMN de ¹³C en CDCl₃ a 125 MHz de 56g.

Espectro 88. RMN de ¹H en CDCl₃ a 500 MHz de **56h**.

Espectro 89. RMN de ¹³C en CDCl₃ a 125 MHz de 56h.

Espectro 90. RMN de ¹H en CDCl₃ a 500 MHz de 56i.

Espectro 91. RMN de ¹³C en CDCl₃ a 125 MHz de **56i**.

Espectro 92. RMN de ¹H en CDCl₃ a 500 MHz de 56j.

Espectro 93. RMN de ¹³C en CDCl₃ a 125 MHz de 56j.

300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Espectro 94. RMN de 13 C en CDCl₃ a 125 MHz de W(CO)₅.

Espectro 95. HRMS (ESI): [M+H]⁺ de **56a**.

Espectro 96. HRMS (ESI): [M+H]⁺ de **56b**.

Espectro 98. HRMS (ESI): [M+H]⁺ de **56d**.

Espectro 101. HRMS (ESI): [M+H]⁺ de 56g.

Espectro 102. HRMS (ESI): [M+H]⁺ de **56h**.

Espectro 103. HRMS (ESI): [M+H]⁺ de 56i.

Espectro 104. HRMS (ESI): [M+H]⁺ de **56j**.

Espectro 105. Experimento 2D: COSY de 65a'.

Espectro 106. RMN de ¹³C en CDCl₃ a 125 MHz de 65a'.

Espectro 107. IR-KBr en pastilla de 65a´.