
U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 48

 ∗

Nowadays, we can find powerful calendar systems in computer industry to manage appointments and to plan
tasks. They may classify appointments, work in groups, be updated and consulted anywhere in the world.
To the authors’ knowledge, however, current commercial calendar systems1 are still far from implementing
mechanisms to gather a group of people with different preferences, for a common meeting or managing con-
flicting situations like scheduling more than one appointment at the same time!
One of the most elegant ways of some of such calendars is limited to saying that there is a conflict by means
of a red line around the conflicting appointment, and the user should solve it as he or she can.
So, we need a way of producing a more elaborated suggestion from such conflicts, by taking into account the
user’s preferences and the other’s intentions.

In Artificial Intelligence, for instance, several proposals aim at the solution
of the problem to manage coherent calendars with multiple users’ agents and
common meetings: [1, 2, 3]. They use sophisticated algorithms and a mixture of
frameworks to overcome the limitation of current industrial approaches, with
solid ordinary systems. However, if we are to build autonomous intelligent
agents in general, we need to provide them both with an evolving knowledge
base (KB) and guaranteed autonomy so as to change not only information,
but even their very specifications and configuration.These features from the
literature ought to allow them both to learn naturally from their environment
and to sense it with a corresponding reaction.

∗
1In our opinion, some of the most popular calendars are Google CalendarTM; Yahoo CalendarTM; Apple iCalTM (http://www.apple.com/
macosx/features/ical/), that use several techniques to identify overlapping events and letting the user know about it, in the best cases.

Vol. 22 (NE-1), ENC Marzo 2012 49

U n i v e r s i d a d d e G u a n a j u a t o

We propose a framework of autonomous robust
agents that can automatically help re-schedule ap-
pointments, without contravening previous ones,
where they can arrange meetings in order to gather
people together in a common event at a convenient
time.

In an attempt to provide a solid foundation to the
agent community, there is an earlier proposal [4] of
autonomous intelligent agents to rationally achieve
such an autonomy under a changing environment
with incomplete information, and little or null human
guidance. Despite the nice analysis, it lacks of general
results and was founded on a semantics that later
presented a couple of issues that jeopardised the in-
tegrity of the knowledge bases [5]. Inspired in that
work, we present a proposal based on a more-robust
theoretical basis for updates and a simple mechanism
to reach consensus. As a result, our focus is on pre-
liminary specifications of the inference machine of the
involved agents. We claim that the current seman-
tics is appropriate to realize reliable management of
the knowledge bases to change specifications, and to
achieve a consensual goal.

The following section begins with a background
of Answer Sets Programming (ASP hereafter) and up-
dates, where we have founded our proposal, and the
update semantics. Section The Calendar Agent de-
scribes our calendar agents, modelled in a logic pro-
gramming semantics for updates, where we present
several methods to solve conflicting policies and a
result on specifications change. Next, Section The
General Multi-Agent Setting generalizes the proposed
multi-agent setting. Finally, Section Conclusions con-
cludes and describes some future challenges.

In this section we briefly introduce some basics about
ASP and updates, foundation of our work to get the
desired goals.

In order to emphasize a one-to-one relationship be-
tween an agent and its user, we use the first person in
the following story.

If I had an assistant or secretary who helped me
do my job, one of the tasks that I would expect from
him/her/it is managing my calendar. Although there
are already sophisticated systems to help me, I would
like to have the possible minimum contact with my
calendar, and that my assistant limited itself only
to remind me the appointments with enough time

in advance, and without overwhelming me. That is
to say, the assistant should work for my benefit, be
autonomous and awareness, learn, have a rational
inference, plan and cooperate with other agents in
common goals like a meeting [6, 7, 8].

On the other hand, as gathering people implies
negotiating schedules such that they are convenient
for the majority, I would like a loyal secretary, always
trying to get as much advantage as possible.

To model these features we propose a solid theoret-
ical basis on knowledge representation and reasoning
for agent design like belief updates.

In this section, we introduce the well-known language
of Answer-Sets Programming (or simply ASP) and the
class of programs we need is extended disjunctive logic
programs (EDLP) as a main foundation of this proposal.
Due to space constraints, however, we omit its seman-
tics and language, which can easily be found in the lit-
erature. Nevertheless, below we introduce some par-
ticular definitions that we need in our context.

Definition 1 ([9]) An abductive logic program is a
pair P,A∗ where P is an arbitrary program and A∗
a set of literals, called abducibles.

Definition 2 (GAS, [9]) The expressionM(∆) is a gen-
eralised answer set of the abductive program P,A∗
if and only if ∆ ⊆ A∗ and M(∆) is an answer set of
P ∪ {α← | α ∈ ∆}.

Definition 3 ([10]) Let M(∆1) and M(∆2) be gener-
alised answer sets of P,A∗. The relation M(∆1) ≤A∗
M(∆2) holds if and only if ∆1 ⊆ ∆2.

One of the key features of an intelligent agent from the
literature is autonomy, which means the agent ability
to meet its goals on behalf of the user, by operating
on its own without the need of human guidance and
by taking the initiative [7]. Accordingly, each agent
must have the ability to rearrange its goals as well, by
changing its own preferences and policies not to fall
into conflict.

The update semantics we employ consists of the
following set of definitions taken from [5]:

Formally, an α-relaxed rule is a rule ρ that is
weakened by a default-negated atom α in its body:
Head(ρ)← Body(ρ) ∪ {¬α}.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 50

In addition, an α-relaxed program is a set of α-
relaxed rules. A generalised program of A∗ is a set
of rules of form {l ← | l ∈ A∗}, where A∗ is a given set
of literals.
Definition 4 (•-update Program, [5]) Given an up-
date pair of extended logic programs, denoted as P1•P2,
over a set of atoms A; and a set of unique abducibles
A∗, such that A ∩A∗ = ∅; and the α-relaxed program P
from P1, such that α ∈ A∗; and the abductive program
PA∗ = P ∪P2,A∗ . Its •-update program is P ∪P2∪PG,
where PG is a generalised program of M∩A∗ for some
minimal generalised answer setM of PA∗ and “•” is the
corresponding update operator.

Last but not least, the associated models S of the new
knowledge base correspond to the answer sets of a
•-update program as follows.

Definition 5 (•-update Answer Set, [5]) Let P• = (P1•
P2) be an update pair of extended logic programs over
a set of atoms A. Then, S ⊆ A is a •-answer set of P•
if and only if S = S ∩ A for some minimal generalised
answer set S of its •-update program.

Owing to the agent’s evolution in time and autonomy,
however, we claim that logic programming should be
a framework not only for prototyping, but also for a
final product as we already lean on reliable efficient
solvers from the literature.

Accordingly, the inference machine might be di-
vided into two subparts to make a distinction between
both static and dynamic knowledge, as [4] explained.
However, as an agent is expected to deal with in-
complete information, we claim that even the entire
knowledge base should be a object of change.

We illustrate our proposal through an example
of three agents and a mediator, later generalised by
means of a formal setting. The mediator agent shall
be responsible of having a general knowledge base as
well as the particular ones from the other agents, al-
ways updated.

The inference machine is the main basis for this case
study encoded into SMODELS [11]. It shall be re-
sponsible of managing beliefs, desires, intentions and
actions about its agents and the outside world, ac-
cording to the literature.

Similar to [4], we introduce three main persistent
inertial rules to manage the calendar: proposal, the

meeting appointment itself and counterproposal, which
are desires, actions and intentions, (prop, meet and
cprop in short) respectively, as following illustrated:

{meet(1,th,17):- prop(1,a,th,17),
pref(b,1,17), not app(1,b,th,17),
pref(c,1,17), not app(1,c,th,17).}
⊆ P1

The rule represents the following statement: when-
ever there is a desire from agent a to propose meeting
1 on Thursday at 17:00 hr and the slot is free for the
rest of the agents b and c, and the proposed hour is in
their preferences, make it a meeting appointment at
that time. Then we shall get an inertial appointment
from the corresponding agent.

The first step in the process of scheduling an ap-
pointment is the desire. For example, let us suppose
agent a’s preference for a meeting is from 13:00 to
18:00 hr, b’s from 12:00 to 14:00 hr, and suppose c
has no preferences—say, anytime from 8:00 to 18:00.
Now suppose a proposes meeting 1 on Thursday at
17:00 hr, represented as U1 = P1 • {prop(1,a,th,17).}
Such an event becomes a desire (a goal) to schedule
the meeting. However, the mediator agent, d, con-
cludes that the meeting is impossible just because it
falls off b’s preferences. So, agent d has to pose a
convenient counterproposal.

In order to figure out the above situation, we have a
couple of rules in P1 that pose a counterproposal when
the proposed meeting is impossible:

{cProp(1,th,13):- prop(1,a,th,17),
not meet(1,th,17),
pref(a,1,13), not app(1,a,th,13),
pref(b,1,13), not app(1,b,th,13),
pref(c,1,13), not app(1,c,th,13).}
⊆ P1

which means that there is a counterproposal say, for
Thursday at 13:00 hr, when there was a proposal
at 17:00 hr where the meeting was impossible. The
counterproposal is based upon the three agents’ pref-
erences and their free slots. After the first update, U1,
there is a proposal from a on Thursday at 17:00 hr
and a counterproposal from d at 13:00 hr. Next, agent
d can derive a list of counterproposals from the cor-
responding conflicting desires at another time, which
in turn should be acknowledged by the other agents.
Note that counterproposals are agents’ capabilities to
negotiate appointments with the other agents. Sev-
eral other rules to make counterproposals should be

Vol. 22 (NE-1), ENC Marzo 2012 51

U n i v e r s i d a d d e G u a n a j u a t o

defined in order to figure out other kinds of conflicts.
For the moment, we suppose they exist.

In this framework we propose a consensus stage,
where each agent has a list of proposals to meet with
the other two. First, agent d places a meeting appoint-
ment according to the others’ preferences. Otherwise,
it poses a counterproposal based upon everybody’s
preferences and waits for acknowledgements. In this
example, we have a counterproposal to agent a’s pro-
posal. So, agent d has the following set of rules to deal
with such situation:

{meet(1,th,13):- cProp(1,th,13),
ack(1,a,th,13), ack(1,b,th,13).

meet(1,th,13):- cProp(1,th,13),
ack(1,a,th,13), ack(1,c,th,13).}
⊆ P1

They mean that a meeting appointment is possible
when there is an acknowledged counterproposal from
at least one of the other participants and the original
proponent: majority.

For instance, let us suppose that, from the above
counterproposal, all agents acknowledge it. This situ-
ation can be easily achieved with a second update:

U2 = U1•{ack(1,a,th,13).
ack(1,b,th,13). ack(1,c,th,13).}

Finally we have a consensual action, where the agent
mediator can already make a meeting appointment on
Thursday at 13:00 hr, and everybody is attending.

As stated before, we cannot predict all future system
specifications, and as a software industry, we would
like to automate maintenance for the calendar to meet
them, with as much autonomy as possible.

For example, let us recall the possible situation
introduced in [12], where several circumstances are
not conceived because we cannot anticipate the pref-
erences of all possible users.

• A date after one year from today is considered in
the long term.

• Today year is 2011.

• Agent a never schedules long-term appoint-
ments.

Here, the agent states that a long-term appointments
never occur.

Now let us suppose somehow the agent states that
a long-term appointment is from one year and beyond,
and that, for some reason2 , the user need to schedule
an appointment in 2012.

We may represent this situation by means of a set
of rules similar to [4], in P1, although abbreviated as
follows.

P1 ={ :- app(2012).
:- app(2013).
:- app(2014). . . .}

which means that 2012, 2013, etc. are for some rea-
son (are in the long term) banned. So far, so good.

Next let us suppose the agent updates the calen-
dar with the appointment in 2012. We can model it by
U1 = P1 • {app(2012).}. According to the corresponding
update operator, there is an update program

:-app(2012), not α1.
:-app(2013), not α2.
:-app(2014), not α3.
app(2012).

with a conflicting rule (the first one) where the user
should decide whether it should be changed or not.
Suppose the user does want to change the restriction,
by allowing the introduction of α1 as a fact. As a result,
the model corresponds to {app(2012), α1}, which means
that the appointment in 2012 is no longer banned,
and that indeed there is an appointment in such year.

By following the semantics introduced in Section
Background (Update Semantics), the rules in the •-
update program give enough information so as to find
the source of conflict, by means of its α-rules, when
one of them is satisfied, as shown also in [13].

A rule ρ ∈ P is said to contradict a consistent EDLP,
P, if {ρ} ∪ P has no answer sets.

Proposition 1 ([13]) Suppose two consistent EDLP’s
P1, P2 and the update P1 • P2 with its corresponding
α-relaxed program, P1, its abductive program PA∗ with
a minimal generalised answer setM; where P1∪P2 has
no model. The rule ρ ∈ P1 contradicts P2 if and only if its
corresponding α-relaxed rule ρ ∈ P1, where α ∈ M and
¬α ∈ Body(ρ).

The next step is to ask the user what to do with
that appointment and/or the restriction, by means
of a meta-program and further development similar

2Some good reasons may be found in the same reference, [4].

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 52

to the counterproposals in the previous section. The
user might want to inhibit either, depending on the
particular circumstances.

Naturally, there are other trivial cases to consider,
like resolving conflicts when making an appointment
at the same time of another of lower priority.

So, we have presented preliminary specifications
of the inference machine of three calendar agents
and a mediator, which can schedule meetings and
make counterproposals from conflicting appointments
by using a semantics for updates of knowledge bases.
Some other proposed features for the society of agents
are a consensual stage and changes of specifications.
The former consists of a simple majority protocol
and the latter of a specifications-change mechanism,
which we consider important in an adapting-agent en-
vironment.

In order to generalize the story of the consensual meet-
ing, illustrated previous sections, we propose the fol-
lowing framework. So, let us begin with what an agent
is.

Definition 6 Given a knowledge base, Ψ, an agent G
is a quintuple (F,G, I,D,R) such that F,G, I,D,R ⊆ Ψ and
F ∩G ∩ I ∩ D∩R = ∅. We say that F are facts, G are goals,
I are intentions, D are desires and R are restrictions.

Individually, an agent’s knowledge base can be up-
dated following Answer Sets methodologies [5]. In this
section, we present a general setting to model agents’
agreements. Firstly, we need to establish the commu-
nication mechanism that they shall employ.

There are at least two communication mecha-
nisms. The first one consists in a message-passing
approach among agents. The second one consists in
adding a mediator agent whose purpose is to make
the agreement among agents considering their KBs,
e.g their beliefs, intentions, etc. We choose the second
one since from our point of view is more natural in
Answer Sets.

Definition 7 Let A1 = (F1,G1, I1,D1,R1), A2 =

(F2,G2, I2,D2,R2), . . . , An = (Fn,Gn, In,Dn,Rn) be agents.
A mediator agent is a quintuple (F,G, I,D,R) such that

F = F1 ∪ F2 ∪ · · · ∪ Fn

G = G1 ∪ G2 ∪ · · · ∪ Gn

I = I1 ∪ I2 ∪ · · · ∪ In

D = D1 ∪ D2 ∪ · · · ∪ Dn

R = R1 ∪ R2 ∪ · · · ∪ Rn

Mediator

Agent A1 Agent A2 Agent An

pr
op

os
al

mee
tin

g a
pp

oin
tm

en
t

pr
op

os
al

m
ee

tin
g

ap
po

in
tm

en
t

proposal

meeting appointment

 .

Figure 1 represents the scheme adopted in this
work. The mediator keeps an updated copy of the
knowledge base of each agent. Each agent can sub-
mit a proposal to the mediator to agree an activity.

Definition 8 A proposal is a request of the form
prop(P, A,D,H) where P is an identifier the proposal has,
A is the agent that raised the proposal, D and H are the
proposed day and time respectively.

If a proposal is raised by an agent, the mediator
shall do the following:

1. Update its KB with the new proposal, i.e include
prop(P) to its KB.

2. Find the models of its KB.

(a) If there is a model in which an agreement of
the proposal is factual, then then a meeting
is arranged.

(b) If there are no models in which an agree-
ment of the proposal is present then, there
are agents whose schedule does not allow
them to agree the proposal. So, the media-
tor has to find an appropriate counterpro-
posal in order to find models in which the
agents can meet. This reasoning seems not
appropriate since there should be a consen-
sus among the agents, however, because
the mediator has the beliefs, desires and in-
tentions of the agents, the models obtained
will consider beliefs, desires and intentions
of the agents.

(c) If there is more than one model in which the
counterproposal can be agreeded then, the
mediator has to choose one in which most
of the agents can meet.

Vol. 22 (NE-1), ENC Marzo 2012 53

U n i v e r s i d a d d e G u a n a j u a t o

3. Once the meeting has been arranged (dictated
by the model obtained), the mediator updates
the KB of each agent . The update consists in
incorporating the rules from the model, which
confirms the meeting on each agent.

Proposition 2 Let M = (F,G, I,D,R) be a mediator
agent, G1,G2, . . .Gn the agents that M mediates and
prop(P,Gi,Day,H) a proposal raised by an agent Gi,
0 < i ≤ n. If there is a model of M = (F,G, I,D ∪ {S },R)
where a grounding head of the rule S , given by

meet(P,Day,H) ←
prop(P,Gi,Day,H),
pre f (G j, P,H), not app(P,G j,Day,H)
∀G j, 0 < j ≤ n and j i

is present then the agent proposal can be confirmed.

Note: The above proposition holds not only in An-
swer Sets but probably in any other logical framework,
since no contradiction arises, e.g there are no pairs of
contradictory rules.

Definition 9 Let M = (F,G, I,D,R) be a mediator
agent, G1,G2, . . .Gn the agents that M mediates and
prop(P,Gi,Day,H) a proposal raised by an agent Gi,
0 < i ≤ n. A counterproposal is a rule of the form

cProp (P,Day,Hour, {G1,G2, . . .Gn})←
prop(P,Gi,Day,H), not meet(P,Day,H)
pre f er(G1, P,Day,Hour),
not app(G1, P,Day,Hour),
cProp(P,Day,Hour, {G2, . . .Gn})

cProp(P,Day,Hour, {})←

The last fact is a counterproposal raised by the me-
diator without considering the agents, so it is vacu-
ously true.

Proposition 3 Let M = (F,G, I,D,R) be a mediator
agent, G1,G2, . . .Gn the agents that M mediates and
prop(P,Gi,Day,H) a proposal raised by an agent Gi,
0 < i ≤ n. If the head of a counterproposal S is part
of the models of M = (F,G, I,D ∪ {S },R), then there is a
consensus to appoint the desire raised by Gi on the day
and time given by Day and H respectively.

Last, it might happen that not all the agents can agree
the desire of Gi, hence the mediator has to find a model
in which at least half of the agents.

Definition 10 Let M = (F,G, I,D,R) be a mediator
agent, G1,G2, . . .Gn the agents that M mediates and
cProp(P,Day,H, {G1,G2, . . .Gn}) a counterproposal raised

by the mediator. An agreement by majority is a rule
of the form

meet(P,Day,H) ← cProp(P,Day,H, {G1,G2, . . .Gn}),
∃G1,G2, . . . ,G j ∈ {G1,G2, . . .Gn},
j ≥ n/2
ack(P,Gi,Day,H),∀i 0 < i ≤ j.

Proposition 4 Let M = (F,G, I,D,R) be a mediator
agent, G1,G2, . . .Gn the agents that M mediates and A
an agreement by majority rule. If a grounded head of A
is part of a model of M = (F,G, I ∪ {A},D,R), then there is
a consensus by majority to appoint the counterproposal
on the day and time established in the head of A.

In this section, we have introduced general defini-
tions of the proposed example focused on consensus
amongst agents, so that we can have a formal frame-
work to discover further properties and features.

We present both a case study and generalisation
on preliminary specifications of a multi-agent sys-
tem, and guidelines to a practical example prototype
with asynchronous communication amongst intelli-
gent agents. This work provides some evidence to
argue how simple and robust an intelligent or rational
agent system can be if it is modelled by an appropriate
update semantics—syntax independence, fault toler-
ance and dynamic information. In contrast to [4], we
report further development towards a model of negoti-
ation and cooperation on common goals, and suggest
simpler but stronger platforms of update languages.

Nevertheless, being still far from a fully-fledged
calendar system, much work is to be done. We begin
by arguing that updates based on structural proper-
ties [5] is a suitable approach for the needs of this
an agent society setting, and the examples here in-
troduced can be tested in their implemented solver
prototype that is an approximation to the declara-
tive semantics. Such a semantics is founded in ASP,
which gives advantages of actual logic programming,
efficient solvers, as well as some logics characteristics
that provide the agent system with a strong theoreti-
cal base to deal with social behaviour.

This project has been supported by a project from The
Mexican Council of Science and Technology, CONA-
CyT and UAEM.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 54

