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The coloring of a graph G = (V, E), with a vertex set V and an edge set E, is a topic very important in the
computers science area. This is an active field of researching with many interesting applications. Some of the
possible applications for the coloring of a graph, are for example: scheduling problems, frequency allocation,
planning, energizing networks [5] [6] [7] [9], etc. Essentially the problem of the coloring of a graph is to minimize
the number of colors used to color the vertices with the restriction that two adjacent vertices cannot have the
same color, as we shown in figure 1. The chromatic number of a graph G, denoted as χ(G), is the minimum
number of colors for coloring G in a proper way (no any pair of adjacent vertices have the the same color).

 
    
      

    
    

Determining the chromatic number of a graph G was one of the first 22
NP-complete problems initially presented by Karp. One of the first bound to
color a 3-colorable graph was established by Wigderson [8], he showed how to
color 3-colorable graphs with at most 3 ·

√
n


colors, where n is the number of
nodes on the graph. Blum and Karger [4] applied semidefinite programming
(SDP) to improve this bound to O(n3/14), where the notation O is used to supress
polylogarithmic factors. More recently, Arora et al. [1] using stronger SDPs
have improved the bound to O(n0.2111).

*                    
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Throughout these years of study, it has found that
this problem can be partially modeled on a polynomial
time when the degree of the graph n is n ≤ 2, however
when n ≥ 3, then becomes a NP problem.

Subsequently, several algorithms have been de-
signed for modeling the 3 − coloring graph problem and
it has become an active field of researching. Among
other goals, to reduce the performing time of algo-
rithms for 3-coloring graphs is a relevant objective in
this area.

  .           

In the issue of graph coloring is very important the
time complexity of the algorithm. Along the history,
many researchers as: Lawler, Byskov, Wigderson,
Blum and Kargen, among others, they have proposed
different algorithms with varied time complexity in or-
der to resolve the problem of 3 − coloring graphs [5] [8]
[4].

The analysis of the time complexity for the color-
ing problem is usually based on the size of the graph
(number of vertices and number of edges). We be-
lieve that better upper bounds for this problem can
be achieved if we consider the basic cycles of the in-
put graph, since this allow us to find necessary condi-
tions for the 3− coloring of a graph and with the advan-
tages that such conditions can be checked in polino-
mial time.

It should be emphasized that not every graph is
likely to be 3− colored since it depends on several char-
acteristics that the graph must have. One of the main
objetives of this article is to list such characteristics.

We consider the analysis of patterns formed by
the basic cycles of a graph, and we try to discover
which patterns give us necessary conditions for the
3 − coloring of a graph. And when the graph has not
those conditions, we present a novel reduction from

the 3-coloring problem to the satisfiability problem of
a two conjunctive form.

We associated a graph G with a two conjunctive
form (2-CF) FG in such a way that any model of FG

determines a proper 3 − coloring of G. If G is not 3-
colorable, then FG is an unsatisfiable formula.

 

Let G = (V, E) be an undirected simple graph (i.e. finite,
loop-less and without multiple edges) with vertex set
(or nodes set) V and set of edges E. E(G) and V(G)
emphasize that these are the edges and vertex sets of
a particular graph G. Two vertices v and w are called
adjacent if there is an edge {v,w} ∈ E, joining them.

The Neighborhood of x ∈ V is N(x) = {y ∈ V : {x, y} ∈ E}
and its closed neighborhood is N(x) ∪ {x} which is de-
noted by N[x]. Note that v is not in N(v).

We denote the cardinality of a set A, by |A|. Given
a graph G = (V, E), the degree of a vertex x ∈ V, denoted
by δ(x), is |N(x)|. The size of the neighborhood of x,
δ(N(x)), is δ(N(x)) =


y∈N(x) δ(y).

The maximum degree of G or just the degree of G
is ∆(G) = max{δ(x) : x ∈ V}, while we denote with
δmin(G) = min{δ(x) : x ∈ V} and with δ(G) = (2 · |E|)/|V |
the average degree of the graph.

Given a subset of vertices S ⊆ V the subgraph of
G denoted by G|S has vertex set S and set of edges
E(G|S ) = {{u, v} ∈ E : u, v ∈ S }. To G|S is called the sub-
graph of G induced by S. We write G − S to denote the
graph G|(V − S ). The subgraph induced by N(v) is de-
noted as H(v) = G|N(v) which has to N(v) as the set of
nodes and all edges upon them.

A path from a vertex v to a vertex w in a graph is a
sequence of edges: v0v1, v1v2, . . . , vn−1vn such that v = v0,
vn = w, vk is adjacent to vk+1 and the length of the path
is n. A simple path is a path such that v0, v1, . . . , vn−1, vn

are all distinct. A cycle is just a nonempty path such
that the first and last vertices are identical, and a
simple cycle is a cycle in which no vertex is repeated,
except the first and last vertices.

A k-cycle is a cycle of length k, that is, a k-cycle has
k edges. A cycle of odd length is called an odd cycle,
while a cycle of even length is called an even cycle. A
graph G is acyclic if it has not cycles.

A complete graph of n nodes has n · (n − 1)/2 distinct
edges, we denote Kn the complete graph of n nodes. A
graph G is a regular graph if all vertices have the same
degree, G is k − regular if it is regular, of degree k.
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A connected component of G is a maximal induced
subgraph of G, that is, a connected subgraph which
is not a proper subgraph of any other connected sub-
graph of G. Note that, in a connected component, for
every pair of its vertices x, y, there is a path from x to y.
If an acyclic graph is also connected, then it is called
a free tree.

A coloring of a graph G = (V, E) is an assignment of
colors to its vertices. A coloring is proper if adjacent
vertices always have different colors. A k-coloring of G
is a mapping from V into the set {1, 2, . . . , k} of k “colors”.
The chromatic number of G denoted by χ(G) is the min-
imum value k such that G has a proper k-coloring. If
χ(G) = k, G is then said to be k-chromatic. To deter-
mine the value χ(G) is polynomial computable when
χ(G) ≤ 2, but when χ(G) ≥ 3, the problem becomes NP-
complete, even for graphs G with degree ∆(G) ≥ 3.

Let G = (V, E) be a graph, G is a bipartite graph if V
can be partitioned into two subsets U1 and U2, called
partite sets, such that every edge of G joins a vertex of
U1 and a vertex of U2.

If G = (V, E) is a k-chromatic graph, then it is pos-
sible to partition V into k independent sets V1,V2, ...,Vk,
called color classes, but it is not possible to partition
V into k − 1 independent sets.

     

Given an undirected connected graph G = (V, E), apply-
ing a depth-first search for traversing G produces a
tree graph TG, where V(TG) = V(G). The edges in TG are
called tree edges, whereas the edges in E(G)\E(TG) are
called back edges.

Let e ∈ E(G)\E(TG) be a given back edge. The union
of the path in TG between the endpoints of e with the
edge e itself forms a simple cycle, such cycle is called
a basic (or fundamental) cycle of G with respect to TG.
Each back edge holds the maximum path contained
in the basic cycle which it is part of. We define the
end-nodes of a cycle as the nodes which are part of
the back edge of the cycle.

Let C = {C1,C2, ...,Ck} be the set of fundamental cy-
cles found during the depth-first search on G. Given
any pair of basic cycles Ci and C j from C, if Ci and
C j share any edges they are called intersected cycles;
otherwise they are called independent cycles.

The or-exclusive operation between two intersected
cycles: Ci ⊕ C j form a new cycle, ⊕ denotes the or-
exclusive operation between the set of edges of both

cycles. In particular, if two cycles share one edge they
are called adjacent. We say that a set of cycles is inde-
pendent if no two cycles in the set are intersected.

It is known that any acyclic graph is 2-colorable
and therefore, 3-colorable too. Furthermore, if a graph
G has only cycles of even length then G is also 2-
colorable since alternating two colors with respect to
the levels of the tree TG builds proper 2-colorings.

Cycles of odd length require at least 3 colors to
make proper colorings. Therefore, the subgraph struc-
tures which generate conflict for the 3-colorings are
the odd cycles in the graph. We show in the following
subsection how to treat those structures for building
3-colorings.

    


Let us assume an input connected graph G = (V, E),
with n = |V | and m = |E|, as well as an order on the
vertices for applying a depth-first search. For exam-
ple, starting the search with a node v ∈ V of minimum
degree and visiting the node of lowest degree whenever
there are multiple possible nodes to visit. Such depth
first search will be denoted as G = d f s(G).

The main class of graphs which is known to be
colored in polynomial time is the class of bipartite
graphs.

Lemma 1. A graph G has chromatic number 2 if and
only if G is bipartite.

This is true because the partite set U1 can be col-
ored with the first color while the other partite set
U2 is colored with the second color. Furthermore, as
the bipartite property can be recognized in polynomial
time, then a 2-colorable graph can be recognized in
polynomial time, based on the following property.

Lemma 2. A graph G is bipartite if and only if G
contains no odd cycles.

G = d f s(G) builds the new depth-first graph G and
moreover, d f s allows us to detect if G has cycles or
not and whether these cycles are even or odd in time
O(m + n) [2].

Given G = d f s(G), let TG be the spanning tree of G.
Notice that V(TG) = V(G). If G is an acyclic graph, then
TG = G. Let {G,R} be the set of two basic colors. If G

is acyclic or it contains only even fundamental cycles,
then G is bipartite and it is proper colorable with just
the two basic colors, because the vertices in G can be
colored according to the levels of the spanning tree TG,
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that is, all vertices in the same level on the tree have
the same color and the nodes of two sequential levels
from the tree are colored with two alternating colors.

Given a graph G = (V, E), S ⊆ V is an indepen-
dent set in G if for whatever two vertices v1, v2 in S ,
{v1, v2}  E. Let I(G) be the set of all independent sets of
G. An independent set S ∈ I(G) is maximal, abbreviated
as MIS, if it is not a subset of any larger independent
set and, it is maximum if it has the largest size among
all independent sets in I(G).

The most common method for coloring a graph
G, is to build a Maximum (or sometimes a Maximal)
Independent Set of G in order to determine a class
color for the graph [3, 4, 5]. Many of the coloring
algorithms utilize a combination of improved upper
bounds on the number of MIS’s of size at most k,
and some changes in the way to fill the table of sub-
solutions in a dynamic programming approach. We
address here another interesting direction, we look for
cycle-patterns which allow us to determine when the
graph could be coloring with at most three colors.

       

It is known that any simple odd cycle requests three
colors to be colored. We enumerate now several cases
describing necessary conditions for the 3-coloring of a
graph.

1. If G has no odd basic cycles then G is 2-
colorable. This option considers the case where
G is a bipartite graph. Since alternating two col-
ors with respect to the levels of the tree TG builds
proper 2-colorings.

2. If G is a planar triangle-free graph then G is 3-
colorable.

3. If G has odd cycles, but every one of them is in-
dependent from every other odd cycle, then G is
3-colorable.
Because we can color G by levels and using the
third color for coloring just one end-node of each
odd cycle.

4. If all odd cycles of a graph G can be arranged in
groups with less than four intersected odd cycles
and without any even cycle then G is 3-colorable.
As in the previous case, G is two colored by lev-
els, and the third color is used for coloring one
end-node of an odd cycle which appears as a
common node of a pair of intersected odd cycles.

5. If all set of intersected odd cycles in G can be
arranged as embedded plane cycles, then G is 3-
colorable. We color any set of embedded plane

cycles from the most internal to the most ex-
ternal cycle. When we start to color a new cy-
cle, we use a different color to their neighboring
nodes (at most there are two neighboring nodes),
since we consider that only the nodes in the in-
ternal cycles have already been colored. In this
case, we can consider the input graph G as an
instance of a Series-Parallel graph.

Notice that all the previous cases describe cycle-
patterns which allow efficient 3-colorings of graphs.
Furthermore, all the procedures described in those
cases have a polynomial time complexity on the size
of the input graphs. Therefore, if the topological struc-
ture of the input graph G is any of the aforementioned
basic cases, G is 3-colorable in polynomial time.

If a graph G is not 3-colorable, then it does not
hold any of the previous cycle-patterns. For example,
a graph G with two intersected basic odd cycles which
are intersected with only one basic even cycle is given
by the complete graph K4 which requires 4 colors to be
colored. In the same way, a simple graph formed by 3
odd cycles and 1 even cycle can not be 3-colored; all of
them are intersected cycles and that graph requests a
minimum of 4 colors to be colored.

In general, we can color a graph by coloring group
of intersected cycles, which include at least two odd
cycles involved in such group since otherwise, the
graph would fall into one of the previous cases.

Now, we propose a way to color from one inter-
sected cycle group to another, assuming that there
are not common cycles between two different groups
of intersected set cycles. For each group, we design
the procedure to be presented in the following section
in order to determine the 3-colorability of any group
of intersected cycles.

     
 

Let G = (V, E) be a simple graph. Let G = d f s(G) and
TG be as we have described them in previous section.
Let C = {C1,C2, ...,Ck} be the set of basic cycles found
during the depth-first search on G.

During the application of the “depth-first search”,
two sets Co and Ce are formed. Co contains the basic
cycles of odd length and Ce the basic cycles of even
length of G.

We apply the following procedure in order to deter-
mine the possible 3-colorability of the input graph G.



Vol. 22 (NE-1), ENC Marzo 2012       59

U n i v e r s i d a d  d e  G u a n a j u a t o

1. We start colouring the nodes in TG using two col-
ors {G,R} - the same colour for all nodes at the
same level, and with different colours for differ-
ent levels, that is, alternating colours with re-
spect to the levels of the tree TG.

2. If Co = ∅ then G is 2-Colorable.

3. If all the odd basic cycles are independent, then
G is 3-colorable.
Two alternating colours on TG and a third colour
assigned to just one of the two nodes of each
back edge of the cycles in Co build the proper
3-Coloring of G.

4. Let CE ⊆ Ce be the set of cycles of even length
which are intersecting with any odd cycle in G,
i.e.,

CE = {Ci ∈ Ce : ∃Ci ∈ Co,Ci ∩C j  };

5. We assume k = |Co|, there are k odd basic cycles
in G. Let De = {be1, . . . , bek} be the set of k back
edges formed from Co, such that each be j ∈ De is
the back edge of C j ∈ Co, j = 1, . . . , k.

6. For each be j = {x j, y j} ∈ De, j = 1, 2, . . . , k two binary
clauses are built. I.e., Aj = (x j ∨ y j) ∧ (∼ x j∨ ∼ yi)

7. For each pair of different back edges in De:
bel = {xl, yl} and be j = {x j, y j}, l  j where one of its
endpoints (x j or y j) is adjacent to xl o yl, assum-
ing that xl y x j are adjacent nodes to xl or yl, the
following binary clause Bj is built as: (∼ xl∨ ∼ x j).

8. For each back edge el = {xl, yl} of a cycle in CE, the
following binary clause El is built as: (∼ xl∨ ∼ yl).

9. Let FG be the 2-CF formed by the conjunction
of the A

i s and B
j s and E

l s clauses built in the
previous steps.

10. Determine if FG is satisfiable or not. If FG is sat-
isfiable then G is 3-colourable and any model of
FG represents a proper 3-Colouring of G. Other-
wise, our heuristic can not determine a proper
3-Colouring of G.

11. The variables assigned true in a model of FG cor-
respond to the nodes to be colored with the third
color “W”. If such nodes are deleted from G, the
remaining subgraph is bipartite and its nodes
can be colored with the two basic colors: {G,R}.

Each type of clause in our procedure has a spe-
cific function into the 3-coloring. Table 1 describes
the meaning of each clause.

  .

          
  
Aj s For each back edge of an odd cycle, just one of its two

nodes
must be colored with W

Bj s No pair of nodes with color W may be adjacent
E

j s Both end-nodes of a back edge of an even cycle
are not colored with W

The assignments that satisfy FG conform a subset of
all possible ways of 3-coloring G. Any model of FG

represents a way to 3− coloring G, although it may hap-
pen that G is 3 − colorable, but FG is unsatisfiable. We
can conclude about of our proposal that any satisfi-
able assignment of the 2-CF FG determines a proper
3 − coloring for the input graph G.

Figure 2 shows an example of a graph G, which
meets all the requirements to apply the algorithm pre-
sented. The segmented edges represent back edges
found during the search graph depth.

  .         

From graph In figure 2, we obtain the following:

• Basic cycles of odd length.
Co = {cicle(r, s, t), cicle(q, r, s)}.

• Basic cycles of even length.
Ce = {cicle(p, q, r, s)}.

• The basic cycles of odd length are not indepen-
dent
De = {{q, s, }, {r, t}}.

• The set of even length cycles that intersect with
odd-length cycles, is:
Ce = {cicle(p, q, r, s)}
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From previous sets, consider the following clauses:

• A1 = (q ∨ s) ∧ (∼ q∨ ∼ s)

• A2 = (r ∨ t) ∧ (∼ r∨ ∼ t)

• B1 = (∼ r∨ ∼ s)

• E1 = (∼ p∨ ∼ s)

Therefore, FG is defined as:

FG = A1 ∧ A2 ∧ B1 ∧ E1

The values that satisfy FG are p = F, q = V, r = F, t = V.
Hence the nodes with the color R are: q and t. Once
colored, these nodes are removed from the main graph.
The remaining subgraph is bipartite and then, it can
be colored with just two colors. For example, p and
r are assigned the color G, and s is colored with the
color B, as it is shown in figure 3.

  .         

Let G = (V, E) be a simple connected graph with
n = |V | and m = |E|. A depth-first search over G is of
order O(m + n) and it builds an equivalent depth-first
graph G. The set of basic cycles C = Co ∪ Ce is built
during the depth-first search. As every cycle has no
more than n nodes, then to determine the size of the
cycle during the depth-first search involves O(n ∗ m)
basic operations.

If the number of basic cycles in TG is not big, e.g.,
it is upper bounded by a polynomial function on n or
m then the Boolean formula FG is formed with a time
complexity of order O(poly(n,m)), poly being a polyno-
mial function.

Otherwise, it is possible to consider topological
graphs where their number of basic cycles grow as an
exponential function over n, e.g., the class of graphs
Kn (the complete graphs with n nodes), and for this
class of graphs, both the set of basic cycles C and
the Boolean formula FG are built in exponential time
complexity on n.

Let nc = |C| be the number of basic cycles of the in-
put graph. The time required to determine if there are

intersecting cycles in a graph is of order O(nc2) since it
consists of the following loop:
for all C ∈ C, for all C ∈ C, C  C, test C∩C  ∅, ∩ being
the intersection operation between the set of edges of
both cycles. If C ∩C  ∅ then both cycles C and C are
intersected cycles.

Then, following the algorithm, we must verify that
the graph meets all the requirements for determining
the 3 − coloring, which can be checked in polynomial
time, and the construction of the 2-CF FG is relative
to |FG |(number of clauses in the formula).

Furthermore, to determine the satisfiability of
FG can be solved in polynomial time in the order
O(poly(nc)). Therefore, considering the worst case, the
entire algorithm can be considered with a time com-
plexity of order O(poly(nc)). Thus, our procedure has
a polynomial time complexity on the the number of
basic cycles nc of the graph.

 

In figure 4, we show a graph which satisfies the previ-
ous conditions in order to apply the 3-coloring proce-
dure.

  .        

Applying the exposed method, we obtain the fol-
lowing 2-CF:

(p∨ r)∧ (∼ p∨ ∼ r)∧ (p∨ v)∧ (∼ p∨ ∼ v)∧ (r∨ t)∧ (∼ r∨ ∼
t)∧(t∨v)∨(∼ t∨ ∼ v)∧(q∨u)∧(∼ q∨ ∼ u)∧(∼ q∨ ∼ p)∧(∼ q∨ ∼
r)∧(∼ u∨ ∼ t)∧(∼ u∨ ∼ v)∧(∼ r∨ ∼ s)∧(∼ s∨ ∼ t)∧(∼ q∨ ∼ u).
This 2-CF is not satisfiable. Althouh, the graph is
3-colorable. Figure 5 shows one of its possible 3-
colorings.

  .     
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We determine some basic patterns based on the ba-
sic cycles of a graph in order to determine the 3-
colorability of the graph. We have designed an algo-
rithm for the 3-coloring of a graph based on the same
set of basic cycles of the input graph.

In our proposal, it is possible that for certain types
of graphs, we can not find a model for the 2-CF asso-
ciated to the graph although the input graph could be
3-coloreable. Since the 2-SAT problem is polynomially
time solvable, then to search for reductions between
the 3-coloring and the 2-SAT problem, would be very
helpful in order to reduce the complexity time of the
3-coloring problem.



           
       

            
   

         O(1.3289n)  
    

       O(n3/14)   
     

           
      

          
  

          
  

         
       

          
         
  


