
Vol. 22 (NE-1), ENC Marzo 2012 35

U n i v e r s i d a d d e G u a n a j u a t o

 ∗

During the last decades there have been several paradigms to compute with the real numbers. Among them
we can cite floating point number arithmetic [16], interval analysis [15], algebraic manipulation [20], exact real
number computation [21], etc.

The exact real number computation paradigm has several advantages compared to the others, for example,
it avoids the rounding off errors that occurs in floating point arithmetic. Like interval analysis, it bounds the
result, however it guarantees the computation of a smaller interval at each step of the computation which
do not occur in interval analysis. Algebraic manipulations can be used in exact real number computation
however, when no further reduction can be done a exact method is used to compute the solution compared to
algebraic manipulation which has to turn to floating point arithmetic or interval analysis.

There have been several theoretical proposals to exact real number com-
putations [19, 5, 10]. Most of them have succeeded to prove that the theory
is sound and complete. However, when they have been implemented, none of
them has achieved to be efficient and straightforward to translate from the the-
ory to the practice. On the other hand, implementations such as IRRAM [16],
MPFR [6] and RealLib [8] have been developed in C and C++, however, in order
to run faster, they have lost the elegancy of functional programming and also,

∗

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 36

they have slightly deviated from the theory. Although
we consider that faster implementations is what is
required in practice, we believe that there is increased
confidence in the correctness of an implementation
the closer it is to the original theory.

A pair of implementations which have a close har-
mony between theory and practice are Era [2] and a
corecursive sign digit representation [3], implemented
in Objective Caml and Coq respectively. However, Era,
as said by the authors, is slower than IRRAM since
C++ generally compiles to more efficient code than
Objetive Caml. Respect to the corecursive implemen-
tation, although an excellent theory is presented, the
efficiency is never mentioned.

A further well established theory for exact real
number computation is LRT (Language for Redundant
Test) [10]. It has been proved that any computable
first order function can be defined in LRT [13]. More-
over, an implementation of LRT in Haskell has been
presented on Marcial et. al [11]. However, its efficiency
compared to a sign digit representation [18] was very
poor. In Marcial et. al [12] an implementation of a
basic calculator based on LRT and programmed using
FC++ and GMP was presented. It was shown that the
execution time improved compared to other Haskell
implementations.

In this paper, we present the results of an exten-
sion of the basic calculator to a scientific calculator,
showing that the time also improved in trigonomet-
ric functions as well as other operations. FC++ is an
extension of C++ which allows to translate functional
programs in almost an straightforward way, mean-
ing that the effects of functional programing are there.
Since the types of FC++ are the standard of C++ (which
implies that numbers are truncated or rounded), we
use instead the types of GMP. GMP is a well known
library which computes arithmetic operations faster
than many other implementations. Additionally, GMP
allows to compute to any required precision.

The paper is divided as follows, in Section The LRT
Language, the language LRT is defined. In Section The
Scientific Calculator a brief explanation of the trigono-
metric implementations is presented. Finally the con-
clusions and further work is discussed.

We introduce the LRT language, which is a variant of
Real PCF [5]. This is a call-by-name language.

The language LRT is an extension of PCF (Program-
ming Computable Functions) [17] with a ground type
for real numbers and suitable primitive functions for
real-number computation. Its raw syntax is given by

x ∈ Variable,

t ::= nat | bool | I | t → t,

P ::= x | n | true | false | (+1)(P) | (−1)(P) |
(= 0)(P) | if P then P else P | cons[a,a](P) |
tail[a,a](P) | rtestl,r(P) | λx : t.P | PP | YP,

where Variable is a set of variables, t represents a set
of types, in this case the language has three ground
types, the natural numbers type (represented by nat),
the booleans (represented by bool) and the unit real
number type (represented by I which denotes the set
of intervals in [−1, 1], as it was shown in [9] the com-
plete computable real line can be easily represented
in this language, even more the implementation pre-
sented here considers the complete real line). The type
t → t denotes higher order types. The constructs of the
language (represented by P) are the variables (repre-
sented by x), the constants for natural numbers and
booleans (represented by n, true and false), the succe-
sor, predecesor and equal test for zero operations for
naturals numbers ((+1), (-1) and (=0)), the classical if
operator; three operation for exact real number com-
putation (cons, tail and rtest) where the subscripts
of the constructs cons and tail are rational intervals
(sometime written as a or [a, a]) and those of rtest are
rational numbers. The last three constructors of the
languages are those of the lambda calculus (λx : t.P, PP
and YP) where the first denotes abstraction, the sec-
ond application and the third recursion.

Because the intention of this paper is not to
present the denotational semantics of the language
which is based on powerdomains [10], we just present
the mathematical objects which describe the cons, tail

and rtest constructors. The others are the well known
PCF constructors and can be consulted at [7, 17] .

Let D ⊆ [−1, 1], the function consa : D → D is the
unique increasing affine map with image the interval
a, i.e.,

cons[a,a]([x, x]) =

a − a

2
x +

a + a
2
,

a − a
2

x +
a + a

2

That is, rescale and translate the interval [−1, 1] so
that it becomes [a, a], and define cons[a,a]([x, x]) to be the
interval which results from applying the same rescal-
ing and translation to [x, x]. In order to keep the no-
tation simple, when the context permits we use x to

Vol. 22 (NE-1), ENC Marzo 2012 37

U n i v e r s i d a d d e G u a n a j u a t o

represent [x, x], meaning that the same operation is
applied to both end points of the interval obtained, for
example the cons function can be written as:

cons[a,a](x) =
a − a

2
x +

a + a
2

(1)

The function tail[a,a](x) : D → D is a left inverse, i.e.

taila(consa(x)) = x.

More precisely, the following left inverse is taken,
where κa is a − a and τa is a + a:

tail[a,a](x) = max(−1,min((2x − τa)/κa, 1)).

This definition guarantees that the range of the
tail function is in the interval [-1,1]. The details of
why this is a convenient definition can be consulted
in [5]. It is worthy to mention that an infinite shrinking
sequence of cons intervals represent a real number in
the interval [−1, 1], the operational semantics defined
below gives a rule for constructing a real number.

The definition of the function rtestl,r : D →
{true, false}, where l < r are rational numbers, can
be formulated as

rtestl,r(x) =

true, if x ⊆ (−∞, l],
true or false, if x ⊆ (l, r),
false, if x ⊆ [r,∞).

(2)

The function rtestl,r is operationally computable be-
cause, for any argument x given intensionally as a
shrinking sequence of cons intervals, the computa-
tional rules systematically establish one of the semide-
cidable conditions l < x and x < r where l, r are rational
numbers.

We consider a small-step style operational semantics
for our language. We define the one-step reduction
relation → to be the least relation containing the one-
step reduction rules for evaluation of PCF [17] together
with those given below.

We first need some preliminaries. For intervals a
and b in [−1, 1], we define

ab = consa(b),

where cons is the function defined previously. This op-
eration is associative, and has the interval [−1, 1] (de-
noted by ⊥) as its neutral element [5]:

(ab)c = a(bc), a⊥ = ⊥a = a.

In the interval domain literature [1], a b iff b ⊆ a.
Moreover,

a b ⇐⇒ ∃c ∈ D. ac = b,

and this c is unique if a has non-zero length. In this
case we denote c by

b \ a.

For intervals a and b, we define

a ≤ b ⇐⇒ a ≤ b

and
a ↑ b ⇐⇒ ∃c. a ≤ c and b ≤ c.

With this notation, the rules for Real PCF as defined
in [5] are:

(1) consa(consb M) → consab M

(2) consa M → consa M

(3) taila(consb M) → Ycons[−1,0] if b ≤ a

(4) taila(consb M) → Ycons[0,1] if b ≥ a

(5) taila(consb M) → consb\a M if a b and a b

(6) taila(M) → taila(M)

(7) if true M N → M

(8) if false M N → N

(9) if M N1 N2 → if M N1 N2

For our language LRT , we add:

(10) rtestl,r(consa M) → true if a < r

(11) rtestl,r(consa M) → false if l < a

(12) rtestl,r M → rtestl,r M

if M → M

.

1. Rule (1) plays a crucial role and amounts to the
associativity law. The idea is that both a and
b give partial information about a real number,
and ab is the result of gluing the partial infor-
mation together in an incremental way. See [5]
for a further discussion including a geometrical
interpretation.

2. Rules (2), (6), (9) and (12) are applied whenever
any of the other rules are matched.

3. Rule (3) represents the fact that we already know
that the rest of the real number we are looking
for is an infinite sequence of the interval [−1, 0],
i.e.

Ycons[−1,0] = cons[−1,0](cons[−1,0](. . .))

4. Rule (4) is similar to rule (3).

5. Rule (5) is applied when the partial information
accumulated at some point contains the interval
of the next input.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 38

6. Rules (7) and (8) are the classical conditional
rules.

7. Notice that if the interval a is contained in the
interval [l, r], rules (10) and (11) can be applied.

8. Rules (10)-(12) cannot be made deterministic
given the particular computational adequacy
formulation which is proved in [10].

9. In practice, one would like to avoid divergent
computations by considering a strategy for ap-
plication of the rules. In [10] total correctness of
basic algorithms and in [14] total correctness of
first order functions are shown, hence any im-
plementation of any strategy will be correct.

For a deeper discussion of the relation between the
operational and denotational semantics of LRT, the
reader is referred to [10, 14].

The scientific calculator consists of basic operations
(addition, subtraction, multiplication and division),
trigonometric function (sin, cosine, tangent, cotan-
gent, etc.) and additional function like xy,

√
x, π,

among others.

In order to describe how an algorithm in LRT works
we present a particular example. The average function
defined by:

x ⊕ y =
x + y

2

can be implemented in LRT as follows:

faverage(x, y) =

if rtestl,c (x)
then

if rtestl,c (y)
then ConsL(faverage(TailLx, TailLy))
else

if rtestc,r (y)
then ConsC1 (faverage(TailLx, TailCy)
else ConsC(faverage(TailLx, TailRy))

else

if rtestc,r (x)
then

if rtestl,c (y)
then ConsC11(faverage(TailCx, TailCy))
else

if rtestc,r (y)
then ConsC(faverage(TailCx, TailCy))
else ConsC2 (faverage(TailCx, TailRy))

else

if rtestl,c (y)

then ConsC(faverage(TailRx, TailLy))
else

if rtestc,r (y)
then ConsC2 (faverage(TailRx, TailCy))
else ConsR(faverage(TailRx, TailRy))

where

l = −1/2, c = 0, r = 1/2,
L = [−1, 0], C = [−1/2, 1/2],
R = [0, 1], C1 = [−3/4, 1/4], C2[−1/4, 3/4].

The intuition behind this program is the following.
If both x and y are in the interval L, then we know
that x ⊕ y is in the interval L, if both x and y are in the
interval R, then we know that x ⊕ y is in the interval R,
and so on. The boundary cases are taken care of by
the rtest conditional.

What is interesting is that, despite the use of the
multi-valued construction rtest, the overall result of
the computation is single valued. In other words, dif-
ferent computation paths will give different shrinking
sequences of intervals, but all of them will shrink to
the same number. A proof of this fact and of correct-
ness of the program is provided in [9]. This can be
seen as follows: an unfolding of 1/2 ⊕ 1/2 gives the
expresion ConsR(faverage(0 ⊕ 0)). This means that the
result of the operation is in the interval R = [0, 1]. A
second unfolding gives ConsRConsC(faverage(1 ⊕ 1)), due
to it is a call by need language, the first two conses
are reduced using Equation 1 . This means that the
result is in the interval [1/3, 2/3]. A repeated unfolding
gives the required result 1/2.

We present and explain a pair of GMP-FC++ im-
plementations of the operational semantics described
in the previous section. The idea is to illustrate
the straightforward translation of the algorithms pre-
sented in [10] to our framework and present an imple-
mentation of the trigonometric functions comparing
its efficiency with previous functional programming
implementations [18, 11].

Example 1 An easy example is the representation of
the real number 1 which can be coded as follows:

struct InfiniteListOne :
public CFunType<List<Intervalo>> {
List<Intervalo> const {
Interval i1;
mpf_init_set_ui(i1.lower,0);
mpf_init_set_ui(i1.upper,1);
return cons(i1,curry(InfiniteListOne));
}

} listainfinita;

Vol. 22 (NE-1), ENC Marzo 2012 39

U n i v e r s i d a d d e G u a n a j u a t o

An unfolding of the program gives the interval cons(0, 1).
Since the procedure calls itself, a second unfolding
gives the intervals cons(0, 1)cons(0, 1). This procedure
does not have a basic case, so a potential infinite list of
intervals of the form cons(0, 1) is generated. Since FC++
can be used as a call-by-need language, a call to the
procedure InfiniteListOne returns the reduction of inter-
vals from left to right to the required precision applying
Equation 1 .

The cons operation presented in Equation 1 is im-
plemented as follows:

struct Conz :
public CFunType<Interval,Interval,Interval>{
Interval operator()(Interval a, Interval x)
const {

mpf_t aux;
mpf_init2(aux, Prec);
mpf_init2(iC.lower, Prec);
mpf_init2(iC.upper, Prec);
mpf_sub(aux, a.upper, a.lower);
mpf_div_ui(aux, aux, 2);
mpf_mul(iC.upper, aux, x.upper);
mpf_mul(iC.lower, aux, x.lower);
mpf_add(aux, a.upper, a.lower);
mpf_div_ui(aux, aux, 2);
mpf_add(iC.lower, iC.lower, aux);
mpf_add(iC.upper, iC.upper, aux);
mpf_clear(aux);

return iC;
}

} conz;

According to Equation 1 cons is a lineal func-
tion which takes two intervals as inputs an re-
turns a single interval as output stated in the
code by < Interval, Interval, Interval >. The ini-
tialization of variables in GMP is done by the
function mpf_init2. This function takes two ar-
guments, the variable to be initialized and its
precision in terms of bits. In this case an auxil-
iary temporal variable and a global interval vari-
able, in which the result is returned, are initial-
ized. Basic operations like addition, subtraction,
etc. are computed in GMP with especial pro-
cedures. These operations begin with the word
mpf_. The comments included in the code, indi-
cate which operation is performed. The reader
can compare the operations against Equation 1.
Finally, the procedure mpf_clear, free dynamic
memory allocation used by GMP, in this proce-
dure the unique local variable is aux. A similar

implementation is coded for the tail function.

To approximate a real number, the first rule
of the operational semantics is applied to the
elements on the mantissa as many times as pre-
cision is required. If the first rule is not applied,
a further evaluation of the input list should be
done.

It is worth to note that the implementation of
the operational semantics only works with real
numbers in the interval [−1, 1]. The final result
to the desired precision is calculated multiplying
both interval end points at the head of the man-
tissa by 2 to the power of the exponent.

We hope that the discussion of the previous
codes allows the reader to understand the imple-
mentation.

In order to define the trigonometric functions an
algorithm which compute the limit of Cauchy
sequences is defined. The trigonometric func-
tions can be defined as the limits of such se-
quences. The algorithm which compute the limit
of Cauchy sequence was first presented in [18].

To define the limits function, an auxiliary
function which takes three real number (x, y, z)
as input (in the form of infinite lists) is defined.
The numbers have the properties that x ≤ y ≤ z.
The function examine x and z and generates a
stream of conses whose range contains all possi-
ble values of y and then uses y directly to return
the reminder of the output such that the whole
output represent the number y. Importantly,
this function determines information about y
from the bounds of x and z before examining y
itself.

This methods seems weird since y is an in-
put of the function, however the real number y
is passed as a pointer to other functions which
computes its value, hence it is better to use x
and z to compute the value of y before examining
y. To compute limits it is required that this func-
tion has the property that if x and z are closer

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 40

than some finite amount a cons is
generated, and that if x and z are
equal, y is not examined at all.

The function may be used to convert a
real number represented as a stream
of nested intervals into a single stream
of conses. The function tries to find
common digits from the first interval
in the stream of nested intervals when
possible, end then uses the remaining
intervals to determine the rest of the
conses in the stream.
Because the nested intervals converge
to a single value, we can get arbitrar-
ily many output conses by examining
a finite number of intervals. In or-
der to compute the limit of a given
Cauchy sequence, we can express the
sequence as a stream of nested lower
and upper bounds of the limit. Many
useful functions can be defined as the
limits of Cauchy sequences.
Suppose we have a stream of
nested intervals represented as
(x1, z1), (x2, z2), (x1, z1), . . . with the follow-
ing properties:

[x1, z1] ⊇ [x2, z2] ⊇ [x3, z3] ⊇ · · ·

Let f to be the function that takes
the infinite representation of three
real numbers x, y, z as input and out-
puts the stream y by examining x
and z. We can compute the stream
y by the stream of nested intervals
(x1, z1), (x2, z2), (x1, z1), . . . as the result of:

y = lim[(x1, z1), (x2, z2), (x1, z1), . . .]

= f (x1, lim[(x2, z2), (x1, z1), . . .], z1)

Computing trigonometric functions is
performed as follows: suppose we wish
to compute the value fo f (x), if we find
a series in terms of x which either
tends towards a lim f (x) with a known
rate of convergence or converges to but
oscillates round the lim f (x). Once we
have this series we can generate a se-
quence of upper and lower bounds on
this limit at each term of the origi-
nal sequence. We know that the se-
quence converges so we cab use this
fact to generate an infinite and strictly
nested stream of intervals containing
the limit.

For example, the sine function can be defined using the following series:

sin(x) =
∞

n=1

(−1)n−1 x2n−1

(2n − 1)

Using this sum, we can easily construct a sequence S (x) such that
S n(x) → sin(x) as n → ∞. In other words

lim
n→∞

S n(x) = sin(x)

which is equivalent to compute the limit of the nested intervals
(S 0, S 1), (S 1, S 2), The FC++ code to compute this function can be
consulted at http://fi.uaemex.mx/rmacial/FC++.

 .

 1E − 5

20
i=1

i
2i + 1

15.99987s 1.41s

50
i=1

i
3i + 1

30.4s 3.39s

16
i=1

i
2i + 1

111.8s 36.8s

j = 1
3

f or i = 2 to 20 1583.99s 786.81s
j = j div i

2i+1

sin(1/3 + cos(7/9))/cos(1/3 + sin(7/11)) 12.54s 0.716s
e(tan(3/11)−tan(2/13)) 9.27s 1.048s
π ∗ arctan(1/3) + (cos(2/3) ∗ tan(13/15)) 23.97s 0.556s
cos(1/2) + tangente(1/4) 5.3s 0.06s
sin(3/11 + e(1/3)) ∗ sin(4/13 − e(2/3)) 27.109s 0.564s
arctan(1/3) + π 12.8s 0.7s
(sin(1/3) + π)/(cos(1/3 + sin(7/11)) 35.8s 12.4s
π ∗ arctan(1/3) + (cos(2/3) ∗ tan(2/3)) 43.2s 6.15s

The Haskell implementation we use in our comparison was presented at
Marcial et al. [11]. We will not discuss the implementation in this paper,
instead we refer the interested reader to the cited reference. We can say,
however, that this implementation is more efficient than the Haskell in
each operation. These results are showed at Table 1.

We have presented an implementation of LRT in the FC++ programming
language using the GMP library.

Vol. 22 (NE-1), ENC Marzo 2012 41

U n i v e r s i d a d d e G u a n a j u a t o

Although C++ is an imperative language, FC++ is a
functional C++ implementation, meaning that it al-
lows a call by need evaluation and the definition of
infinite lists. The algorithms presented in [11] were
straightforward translated to this setting and the time
reported is considerably improved compared to an im-
plementation based on a pure functional program-
ming language. In order to show that this implementa-
tion is faster, we used the logistic map which is caotic
function. However, our implementation is still slower
than at least another C++ implementation called iR-
RAM. A first further work is the implementation of
trigonometric functions using Taylor series, e.g. the
limit function has to be defined. A second further work
is the improvement of the efficiency of the implemen-
tations in order to be as competitive as the C++ based.

