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Abstract

Wireless sensor networks (WSNs) is a technology with important developments in recent

years. Its incursion in areas such as healthcare, industry and services has been steadily

increasing, mainly due to the miniaturization of electronics and the growing acceptance of

cyber-physical systems. However, a very important subject of research continues to be the

development of estimators with the robustness needed for the harsh conditions associated

with the WSNs applications. Moreover, such estimators should comply with the unique

characteristics imposed by the WSNs like scalability, energy saving and redundancy, while

maintaining a consensus on the network. A very popular algorithm for optimal estimation

is the Kalman filter (KF). Many works have implemented it as a sensor fusion technique

in WSNs, due to its optimality. However it has been proven that it can not guarantee the

robustness needed in real life implementations. In this work we developed a set of robust

estimators based on unbiased finite impulse response (UFIR) filters to address the lack of

robustness of the popular KF. The developed filters are adequate to be implemented in

WSNs. The algorithms have been tested against similar filters based on KF with simulated

and real data, showing better results in terms estimation error reduction, where the smallest

improvement was of 1.4 percent in terms of the root mean squared error (RMSE). We

even produce accurate results in applications where KF could not be implemented. The

developed filters attained better robustness against miss-model errors, unknown statistics

and missing measurements.
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Chapter 1

Introduction

1.1 Background

1.1.1 Optimum and Robust Estimators

The estimation problem is the process of inferring a determined value of interest, making

use of indirect, inaccurate and uncertain observations [7]. The value of interest may be

a parameter (a time invariant quantity) or the state of a dynamic system which is time-

dependent. A block diagram that illustrates the estimation process is depicted in Fig. 1.1

where the system and measurement errors are inherent of the dynamical and measurement

systems, which are caused by mechanical imperfections or environment alterations. Given

the stochastic nature of these errors, they are often treated as process and measurement

noise, therefore the objective of an estimator would be to filter out the noise. This is the

reason why an estimator is often referred to as a filter.

Dynamic
system

State/parameter
estimator

System
error

Measurement
error

Unknown parameters

State estimate

Prior
information

Measurement
Measurement

system

System
state/parameter

Figure 1.1: Illustration of the estimation process.
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Many estimators may be developed depending on very specific criteria, however if an

estimator is the best at accomplishing such criteria then it is referred to as an optimal

estimator, nonetheless some fundamental problems may arise. Given that the optimal es-

timator is the best, the resulting algorithm may present a high complexity which could

render it unsuitable to be implemented in real world applications [8]. Moreover, optimal

estimators may require to meet very specific conditions in order to produce optimal re-

sults, if such requirements are not guaranteed, errors in the estimates may be too large

or even diverge. For these reasons, robustness does not always go along with optimality

[9, 10], therefore the need arises to develop estimators that present a desired level of perfor-

mance against possible system uncertainties, even though optimality is sacrificed. These

estimators are called robust estimators.

A technology whose applications require robust state estimators are wireless sensor

networks (WSNs) [11]. In recent years, WSN technology has permeated into modern

society in a variety of applications in industry, heatlhcare and services [12, 13, 14]. The

unique characteristics of WSNs allows for large scale nodes deployments, where redundant

measurements of a physical quantity of interest are available and the state estimators must

be capable of fusing the collected information, in order to reduce the noise in real time.

The best noise reduction is typically achieved in WSNs using optimal estimation and fusion

techniques [15, 11, 16, 17], which remain in the developments for diverse WSN structures

[18, 19, 20, 21].

Wireless sensor networks may be present in three different topologies: centralized,

decentralized or distributed. The latter is the most robust and flexible [22, 23, 24], however

a consensus protocol is mandatory in order to fully exploit its robustness. Olfati-Saber

introduced the concept of average consensus in [25] and implemented it in a Kalman

filter for consensus on estimates (CE) and consensus on measurements (CM) in [26, 27]

respectively and in [28, 29], the consensus on information (CI) was introduced.

The KF is most popular in the design of fusion algorithms [30, 31] mainly due to

simplicity, optimality, and low computational burden. In Fig 1.2 the iterative processes of

the KF is illustrated, nonetheless it falls behind in terms of robustness due to assumptions

in the state model. For the KF to produce optimal results, the following conditions must
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be met:

1. Compute Kalman gain
2. Estimate the predicted state
3. Estimate the error covariance

Correction

1. State Prediction
2. Error covariance prediction

Prediction

Initial state and error covariance

Figure 1.2: Kalman filter iterative process.

• Noise must be white Gaussian.

• The initial conditions are to be known.

• The exact knowledge of the noise statistics is mandatory.

Not guaranteeing any of these conditions causes large errors in the estimates or even

divergence of the algorithm. As an example, in Fig 1.3 we illustrate the estimation error

of a state variable with and without properly tunning. As expected, the estimation error

for the case when optimal conditions are not guaranteed increases.

The restrictions imposed on the Kalman filter makes it unreliable for real life implemen-

tations, where accurate system models are not always available. Moreover, the statistical

nature of the noise process is often disregarded by the engineers making the fine tuning of

the KF a difficult task. For this reason, filters that can handle modeling errors an noise

uncertainty were developed. Such is the case of the H∞ filter[9].

In [9], Simon introduced a Kalman-like algorithm for H∞ filter based on game theory.

As the H∞ structure is similar to the KF, its implementation is straight forward, except for
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Figure 1.3: Effects of a badly tunned KF.

the user defined parameter θ in the error covariance prediction. If θ is fine tuned, the H∞

filter presents a more robust behavior than KF. However, if the parameter is not adequate,

the error of H∞ increases considerably. In the example of Fig. 1.4, both behaviors of the

H∞ filter are sketched where a completely unacceptable behavior is observed for choosing

a wrong value of θ.

Although the H∞ filter shows better robustness than KF, the dependency on the appro-

priate value of θ makes it still an unreliable choice for real life situations. In the previous

example the difference between an acceptable and unacceptable behavior in the H∞ filter

is of 0.0505.

Both KF an H∞ filter present an infinite impulse response (IIR) structure, where past

information and errors are used indefinitely for present estimates. This behavior is the

principal cause for the lack of robustness in IIR filters. On the other hand, finite im-

pulse response (FIR) filters use limited memory over the most recent time interval [32],

which translates in their inherent stability and robustness against temporary uncertainties

[33, 34]. The first FIR estimators presented several drawbacks that made it difficult to be
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Figure 1.4: Effects of a badly tunned H∞.

implemented in real life systems. Firstly, in order to obtain optimal estimates, the noise

statistics were to be known and also be Gaussian. Secondly, the lack of a recursive form

and limited memory electronics complicated the implementation in real-time systems. Re-

garding this issues, in [35] an optimal UFIR filter was proposed that did not required the

knowledge of noise statistics. The investigation was furthered in [36] to include a polyno-

mial model of the process and in [37] a recursive form, suitable for real-time systems, was

presented.

Although the UFIR filter is not optimum, its advantages in terms of robustness, the

fact that is completely blind to noise statistics [38] and that the only tuning parameter is

its horizon, N ; makes of UFIR filter an attractive alternative to KF and H∞. The example

in Fig 1.5 corroborates this statement. We observe large errors at the initial estimates due

to the horizon, because UFIR filter requires at least N valid measurements. However, after

N + 1 valid measurements, the filter becomes stable and we observe that the error barely

changes in the scenario where KF and H∞ present large errors, therefore a more robust

behavior is achieved by the UFIR filter.
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Figure 1.5: Better robustness of UFIR filter.

1.1.2 Multisensor Fusion

In resent years, muiltisensor fusion has found great acceptance in ubiquitous applications

such as industrial machinery monitoring, medical diagnosis, robotics, industrial farming

and smart cities [39, 40]. The appeal to this technology comes from the possibility to

combine data from multiple sensors and related information form databases in order to

improve robustness and achieve better accuracy than using a single sensor. For this reason,

multisensor fusion (MF) has become an essential part of applications regarding WSNs.

The most straight forward implementation is to centralize the fusion and digital signal

processing to a powerful computer (fusion center), so the sensors are only in charge of

gathering data and relying it to the fusion center. However, this topology makes the

network completely dependent on a single device (the fusion center).

As an alternative to a centralized structure, a distributed approach has been taken. In a

distributed estimation scheme, the fusion center is no longer needed, as the entire network

performs the estimation and data fusion while reaching a consensus. The consensus term

was first used in [41, 26]. Since then, many researchers have proposed new consensus
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schemes, which can be classified into four groups: Consensus on estimates, consensus on

measurements, consensus on information and H∞ consensus.

The consensus on measurements was introduced in [26] by implementing a micro-KF

instead of a centralized filter. The data and error covariance matrices of the neighboring

sensors passed through a low pass and band pass consensus filters respectively. The down-

side of this approach is that the stability can be ensured only when a sufficiently large

number of consensus steps are carried out during each sampling interval, so that the local

information provided by the innovation pairs has time to spread throughout the whole

network. Also, the observation matrices should be equal, however this equality restriction

was surpassed in [1] by implementing two High gain high-pass consensus filters. In Fig.

1.6 one can observe how the estimates reach a consensus as the time steps increases.

Figure 1.6: Consensus on measurements from [1]

In consensus on estimates, the average of the individual estimates is used to reach a

consensus. This implies that the nodes must communicate with it neighbors their respective

estimates. This could become an issue if the node must wait for everyone of its neighbors

to send their respective estimate. In [1] a Kalman filter based on this type of consensus

was proposed. The main idea was to use a two stage KF, one for individual estimations

and the other to fuse the individual estimates. Fig. 1.7 shows a better behavior than Fig.

1.6 regarding the consensus.

Consensus on Information was first introduced in [28]. In this work, the authors propose

an average of the Kullback-Leibler divergence between the local probability desity function

(PDF) of the information matrix and information vectors of the neighbors. By assuming

that the PDFs belong to the same parametric family, the average minimizes the sum of

the information gains. A PDF that produces an information gain as small as possibly is
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Figure 1.7: Consensus on estimates from [1]

the one than best represents the current state of knowledge. Implementing the consensus

on information is straight forward for the information version of the KF [26]. In [2] an

unscented KF with consensus on Information is proposed to overcome issues associated to

sensor saturations. Partial results are sketched in Fig. 1.8

Figure 1.8: Consensus on Information from [2]

As previously discussed, the optimality of KF does not guarantee the robustness needed

for real life applications, therefore, H∞ consensus was proposed. In [3] the first H∞ dis-

tributed consensus was developed to quantify bounded consensus regarding the filtering

errors (agreements) over a finite horizon. Partial results can be observed in Fig. 1.9.

Although H∞ algorithms do prove to be more robust than KF, the lack of a standard

methodology to define the tuning parameters, puts them a at disadvantage in real life

applications, as the designed filter may not remain suitable for unpredicted scenarios, such
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as a changing topology due to activation/de-activation of sleeping sensors.

Figure 1.9: H∞ consensus results from [3]

1.2 Hypothesis

Estimation algorithms based on UFIR filters present less estimation error against miss-

model errors, unknown noise statistics and unpredicted model behavior than infinite im-

pulse response filters such as Kalman filter and H∞ filter. Therefore, UFIR filters with

average consensus are better suited for wireless sensor networks in real life applications.

1.3 Motivation

In recent years, wireless sensor networks have been used in many areas, such as environ-

mental and industrial monitoring, localization and tracking and health care. A WSN can

be deployed over different regions for a diversity of applications, such as environmental

variables monitoring, forest fire detection, carbon monoxide monitoring in urban areas,
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unmanned vehicle navigation, among others. Smart sensors, the main units on a WSN,

can also be wearable so vital signs can be monitored for health care reasons. Al of these

applications present unique challenges but, as common ground, the algorithms in charge of

state estimation must be sufficiently robust against unexpected model behavior, unknown

noise distributions, unexpected alterations in the network, loss of sensor nodes, etc.

It remains a fact that KF is one of the most popular choices for multisensor fusion,

mainly because of its easy implementation and optimality. For these reasons, the consensus

schemes discussed in the previous section have been mainly developed for KF. There is even

an approach based on game theory to develop an H∞ filter with a FIR structure similar to

KF [9]. Despite the wide acceptance of KF, it has been demonstrated that its performance

falls behind other technologies in terms of robustness, primarily due to its inherent FIR

structure.

Real world applications of WSNs dictates that state estimators must be robust, scalable,

energy efficient and fault tolerant [11]. These requirements are not achieved by the KF

because, in real world applications, the optimality for the KF is not guaranteed [42, 43].

There are even applications where information about model an sensor noise is unavailable,

making the implementation of KF non-viable[38]. Although much effort has been made

in the robustification of the KF[44, 45], better robustness is inherent to structures that

operates on finite data [46, 47]. In [48] a distributed filter based on a moving horizon

approach is presented. In [3], the consensus filtering problem over a finite-horizon for

sensor networks with multiple missing measurements is studied and furthered for non-

linear systems in [49, 50].

Solutions based on FIR filtering offers several fast algorithms which may efficiently

be used in WSNs. A receding horizon (RH) Kalman FIR filter designed in [33] operates

similarly to KF on finite horizons. For deterministic time-invariant control systems, a

fast recursion-based algorithm was developed in [51]. An iterative p-shift UFIR algorithm

proposed in [52] completely ignores the noise statistics and initial values while reducing the

output noise variance as a reciprocal of the horizon length. The p-shift UFIR estimator

provides filtering with p = 0, RH filtering with p = 1, |p|-lag smoothing with p < 0, and

p-step prediction with p > 0 [53]. An important feature of the UFIR estimate is that
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optimality can be practically achieved on large horizons. Besides, the performance of the

UFIR filter can be improved by adapting the generalized noise power gain (GNPG) to

operation conditions [54]. Fast optimal FIR algorithms were also designed [47, 55] and

some other developments on FIR filtering can be found in [56, 57, 58, 59]. Hence, methods

of FIR filtering can be used in design of robust WSNs. However, solutions still have not

been addressed to practitioners, making this the motivation for this work.

1.4 Objectives

The principal objective of this thesis is to develop robust distributed unbiased finite impulse

response filters, that address the restrictions imposed by the WSNs.

The specific objectives are as follows:

• To develop a fast and memory efficient UFIR filter for its implementation in smart

sensors.

• To develop a fast distributed UFIR filter with consensus on measurements.

• To develop a fast distributed UFIR filter with consensus on estimates.

• To demonstrate that the proposed filters are a more robust alternative to the widely

used Kalman Filter.

1.5 Scope

In Chapter 2, we present the basics of WSNs and lay down the problem statement. In

Chapter 3, a fast recursive Unbiased Finite Impulse Response filter is developed. This

filter is suitable to be implemented on a smart sensor given its fast operation and small

matrix complexity. The filter is tested with real data of Carbon-monoxide concentration

and temperature. In Chapter 4, we engage in a more challenging scenario by consider-

ing the unique characteristics of WSNs and developed a UFIR filter with consensus on

measurements, which proves better robustness against a similar Kalman filter. In Chapter

5, a consensus on estimates approach was taken to develop a UFIR filter that improves
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the RMSE and its robustness against miss-model errors and time varying statistics. In

Chapter 6, we further the research presented in Chapter 5 to develop a predictive UFIR

filter capable of performing robust estimations against missing data. Finally, in Chapter 7,

conclusions are made, along with discussion of future perspectives of the research project.



Chapter 2

Foundations

2.1 Smart Sensors

Advances in micro-electromechanical systems (MEMS) and semiconductor devices have led

to the development of low cost transducers and more powerful and smaller micro-processors

in such a way that nowadays is possible to find integrated systems called smart sensors

[60]. The key idea of a smart sensor, is to perform the processing of the signals directly in

the sensors, therefore avoiding the need of an external processing unit.

According to the standard IEEE 1451.2 a smart sensor is a device ”that provides func-

tions beyond those necessary for generating a correct representation of a sensed or controlled

quantity. This function typically simplifies the integration of the transducer into applica-

tions in a networked environment” [61, 62]. Under this definition, a smart sensor must be

capable of sensing a physical quantity of interest and establish a communication channel

with other devises in order to perform a desired action. Despite the specific application

for which the smart sensor is to be used, every sensor presents four main components:

power unit, sensing unit, communications unit and processing unit as sketched in Fig. 2.1

[63, 11]. Next, we will briefly describe the role of each unit.

2.1.1 Power unit

As shown in Fig. 2.1, the power unit is, without a doubt, the most important part of a

smart sensor, since all the other units are dependent on the amount of energy supplied

13
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Transmitter
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Power unit

Figure 2.1: Basic representation of a smart sensor.

by this unit. Applications such as environment monitoring require that the smart sensors

work as stand alone devices. For this reason, is common practice to equip the sensors with

batteries and energy harvesting systems [64]. None the less, once the battery is depleted,

the sensor is no longer functional and is disposed off. Depending on the application, the

lifetime of a sensor could be from several days to several years, therefore the first and most

important design challenge is energy efficiency [65].

2.1.2 Sensing unit

Two of the most important parts of the sensing unit are the transducer and the analog-

to-digital converter (ADC). Due to advancement in MEMS and semiconductor technology,

nowadays exists transducers capable of transforming a variety of physical quantities into

electrical signals which, in turn, will be sampled, discretized, quantized and coded by the

ADC. This process is important since it will determine the quality of the measurements.

Depending on the transducer, the measurements could present drift, bias, noise, or even

non-linearities.

2.1.3 Processing unit

The processing unit is where the intelligence of the sensor resides. This unit is in charge of

the signal processing according to the specific needs of the application. Nowadays, task such
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as decision-making, signal conditioning, noise reduction or even communications among

different devices can be carried out by either a microcontroller unit (MCU), digital signal

processor (DSP), application-specific integrated circuit (ASIC) or filed-programmable gate

array (FPGA). The technology to implement is entirely imposed by the application itself.

If the sensor can use different transducers, the modularity offer by an MCU woudl be

best, on the other hand if time is an issue, then DSP, FPGA or ASIC will be better

suited. Regardless of the technology used, the processing unit must ensure an optimal use

of resources, as it will play a key role in the energy consumption of the device.

2.1.4 Communication unit

A smart sensor must be capable of delivering information to other sensors or a decision

center. This is done through the communication unit, which includes the transceiver units

adequate to the communications channel to be used. Normally, the communication is

perform via short-range radio frequencies due to the advantages of an omni-directional

transmission and non line of sight (NLOS). However, the radio frequency (RF) technology

presents well-known challenges such as saturation of the radio channel, interference, fading,

among others which may translate in information loss. The wireless medium is very likely

to be shared by multiple network devices, therefore a mechanism is required to control the

access to the medium [65]. A key feature of any wireless sensing node is to minimize the

power consumption, as the radio subsystem requires the largest amount of power, specially

if the sensor has to communicate over long distances[66].

2.2 Wireless Sensor Network

2.2.1 Definition

Wireless Sensor Network is a technology that has been regarded as one of the most impor-

tant technologies in this century [63]. A WSN consists on a large number of nodes (smart

sensors) sharing information through wireless channels about a phenomenon of interest.

The rapid grow of WSN is mainly driven by the mass production of cheap and small smart
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sensors. The low cost of smart sensors and its small size, makes it possible for a large scale

and ubiquitous deployment, which makes them adequate to a large range of challenging

tasks from surveillance to health-care [15]. However, the same characteristics that makes

them a powerful technology, impose very aggressive constraints that opens up a handful of

opportunities for scientific research. The unique characteristics and constraints of WSNs

are listed below [63, 15, 67].

• Large scale deployment. The low cost of the sensors makes it possible to implement

a very dense network with redundancy on wireless connections and measurements

which is and advantage in several ways. If for some unpredicted reasons a link is

lost, another can be established relatively easy; with redundant measurements, the

estimation of the observed phenomenon improves; also by having more nodes per

area, the communication distances between nodes will be shorter, implying that the

communications unit of the sensor will draw less power from the power unit. How-

ever, the larger the network, the more complex its managements. The information

may pass through several nodes which would result in unwanted delays and complex

routing protocols.

• Battery-powered nodes. Several applications require the deployment of nodes in harsh

environments where a continuous energy supply is unavailable. For this reason, the

implementation of batteries is an adequate solution. However, the restrictions im-

posed by size and cost will make it unlikely to implement large batteries, affecting

directly the life span of the sensor. The limited power supply will automatically

demand an efficient power management of all the units in the sensor, therefore the

algorithms, communications protocols, and sensing capabilities must take in consid-

eration energy efficiency for once the battery is depleted, the sensor becomes useless.

• Self-configurable. Depending on the application, the sensor nodes can be deployed

randomly or with prior planning. In a random implementation, the network must

establish itself through autonomous configuration of the nodes. In real world appli-

cations the network is subject to topology changes due to node addition or failure

(node destruction, energy depletion, communication malfunction, etc). For this rea-
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son the network must be capable of reconfiguring itself with adequate links in order

to keep the communication with all the nodes.

• No global identification. The large density of the network makes it impossible for

a global addressing scheme, for this would require a very large overhead. This is

a challenging issue for event detection applications, where localizing the triggering

event is the main purpose of the network.

• Application specific. The WSN is designed with an application specific in mind. This

implies that for different applications different WSN must be used. Recent MEMS

technology makes it possible to have modular sensors which could measure different

physical variables, although the burden put on the microprocessor will increase.

2.2.2 Topologies

By definition, a wireless sensor networks consist on several node performing sensing tasks

and sending information to a base station or a data sink. Depending on the application,

the sink may be a simple gateway to relay information to outside networks or may take a

more active approach by sending queries or commands to sensor nodes, perform network

management tasks or even apply sensor fusion technics to improve estimates. The way in

which the nodes and te sink interact mainly define by the topology of the network. As any

other network, the WSN can be found in different topologies, however, due to the their

unique characteristics, we can group them in three topologies: star, tree and mesh, which

we will discuss below.

Star topology

This topology, depicted in Fig. 2.2, is the less preferred configuration for WSN networks.

Non the less if, the number of nodes is small, the network is stable and the nodes present

unlimited power supply, the star topology presents unique advantages.

With all nodes sharing their data with the sink, there is no need for routing protocols

as the sink will ask for the measurements of the sensors when needed and perform the

adequate processing of the data also, with an unlimited power supply, the communication
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Sink

Figure 2.2: WSN presenting a star topology.

distance will only be limited by the transceiver characteristics and the sensing data will be

available at all times for the sink to receive it.

It can be seen that the sink must be a very powerful, therefore expensive, device with

processing capabilities that outperforms those of the sensor nodes and that the network is

completely dependent on this device. Malfunction in the sink will result in the failure of

the network. Also, if the number of nodes grows, the sink may be unable of performing

all the tasks needed, therefore scalability may not be guarantied. Lastly, if the nodes are

powered with batteries, then the entire network will be useless as the nodes would deplete

their batteries in a short amount of time due to long distance communication.

Tree topology

In this topology, the nodes are organized into clusters. Where a cluster head (CH) gathers

the data of the cluster members. The CH may perform as a simple gateway to relay the

information of the cluster members or may perform data processing such as sensor fusion.

The main idea behind this topology is to keep the optimum number of cluster members,

therefore the clusters may change depending on the total number of sensors in the network,
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Figure 2.3: WSN presenting a tree topology.

solving the issue of scalability.

None the less, other issues arise. The cluster organization and CH selection are now

a mayor concern. Several strategies have been discussed to address this problem [63].

Routing is now an issue, specially when not all the CH are directly connected to the sink

as delays may increase, specially in large networks. The CH becomes a very important

element. If the CH fails, the entire cluster is compromised, unless a sensor node becomes

a new CH.

Mesh topology

A mesh topology is the most robust of the three regarding connectivity. Due to the

large and redundant connections, even if some nodes stop functioning it is possible to find

other routes to the sink. Also, due to redundancy in the measurements, the estimates

will benefit from sensor fusion techniques. However, the lack of special nodes to perform

network management or sensor fusion, implies that these functions must be performed by

the sensors, meaning that the number of operations for each node increases.

Routing is a mayor problem with this topology as the information could take several
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Sink

Figure 2.4: WSN presenting a mesh topology.

routes before arriving to the sink node. Furthermore, exist the risk of routing loops for-

mations, resulting in the data never reaching its destiny. One way of avoiding the issues

regarding routing is by ensuring that every node in the network reaches a consensus on

the estimation of the physical variables. By doing so, the sink will obtain the exact same

data regardless of the node. Of course this is only viable for those applications where every

node is measuring the same state variables, for example, environmental monitoring.

2.3 Distributed consensus estimation on WSNs

We can identify two main reasons for implementing consensus estimation [16]. The first is

due to the lack of a fusion center, which is the case for mesh networks. In this scenario, a

consensus protocol will perform the sensor fusion, which in turn will maintain and adequate

consensus on the network. The second reason is robustness. The reduced cost of the nodes

imply that the sensors are cheap and not very reliable in terms of noise. With consensus

estimation, not only a sensor fusion is performed, but also, by reaching a consensus, the

overall estimation is improved. Also, the robustness of the network increases given the
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possibility that a consensus estimation will be available at every node.

2.3.1 Algebraic graph theory

A WSN can be modeled as an undirected graph G(V , E) where each vertex v(i) ∈ V is a

node for i ∈ I = {1, . . . , n} and n = |V|. Each link is considered an edge ij ∈ E . The set

of neighbors of node v(i) is denoted by J (i) = {j : ij ∈ E} and deg(v(i)) = |J (i)| is called

the degree of node v(i), which is the total number of first order neighbors for node v(i).

The Laplacian of graph G is

L = A−∆ , (2.1)

where ∆ = ∆(G) = diag(deg(v(i))) is an n × n diagonal matrix called degree matrix and

A is the adjacency matrix. The Laplacian potencial is defined in [68] as

ψ(x) =
1

2
xTLx (2.2)

considering x = (x1, . . . , xn) as the state vector of the graph G, which satisfies the following

identity

xTLx =
∑
ij

(xi − xj)2 . (2.3)

From 2.3 one can infer that if xi = xj ∀i, j then ψ(x) = 0, in oder words if and only if

the value of all the nodes is equal, then the graph potential will be zero. As a result, the

Laplacian potential represents the total disagreement of the network, therefore minimizing

ψ(x) is the objective of a consensus protocol.

2.3.2 Average consensus protocol

As stated in [25], nodes v(i) and v(j) reach an agreement if and only if the states are related

as x(i) = x(j), {i, j} ∈ I, i 6= j. If so, the WSN reaches a consensus with a common value

called the group decision value. As stated in [69], the most common consensus algorithm

for an undirected and strongly connected graph is

ψ(x) = −∆ψ(x) = −Lx, (2.4)
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with a stable solution x∗, then Lx∗ = 0. By the properties of the Laplacian matrix, x∗ is

the eigenvector associated to the eigenvalue λ = 0 of L. Since the sum of the row elements

in L is zero, it follows that x∗ = [a, . . . , a]T , implying that all the nodes in the network

reached a common value.

The group decision value is determined by the consensus protocol. In this work, we

follow the linear consensus protocol introduced in [68] and formulated as

u(i) =
J∑
j

(x(j) − x(i)) , (2.5)

where J = |J (i) ∪ i| is the number of inclusive neighbors. When u(i) = 0 an agreement

is reached, resulting in x(i) = x(j) = a = 1
J

∑J
j x

(j) which is the average of the neighbors

initial values [70]. This implies that the network will reach a consensus regardless of the

value of the node.



Chapter 3

Design of UFIR Filter for Smart

Sensors

As discussed in Chapter 2, the size-cost restrictions of the WSN impose to use cheap and

unreliable transducers in the manufacture of smart sensors, causing noisy measurements

and data loss. In order to minimize the noise and improve the reliability of the mea-

surements, filtering processes are to be implemented in the sensors. In this chapter, we

propose a UFIR filter with prediction capabilities that complies with the unique restrictions

of WSNs.

3.1 Introduction

Introduced in [60], the concept of “smart sensor” has been developed and implemented

during the following decades [71] to result finally in the IEEE Standard 1451 [62, 72]. A

smart sensor is defined as a transducer that generates an electrical signal proportional to

a physical, biological, or chemical time-variant quantity Q(t) [62]. In a modern view,

a smart sensor is the integration of an analog or digital sensor element, a processing

unit, and a communication interface [73, 74]. It is organized as a hardware device with a

compact sensing element or actuator. The device typically comprises a microcontroller and

communication controller and is supplied with the software to provide signal conditioning,

communication, control, calibration, and diagnosis [62].

23
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Figure 3.1: Main body of a smart sensor that is responsible for sensing, signal condi-

tioning, ADC, and signal processing. The complete architecture may comprise a DAC,

communication units, control units, and an ID tag.

The main body of a smart sensor is responsible for sensing (or multisensing) [75], signal

conditioning [76], analog-to-digital conversion (ADC), and signal processing, as shown in

Fig. 3.1. A sensitive element converts Q(t) to an electrical signal, signal conditioning

is provided to bring an electrical signal into the desired form [77], ADC converts the

continuous-time signal into discrete form, and the signal processing unit extracts useful

information about Q(t). The complete architecture consists of a digital-to-analog converter

(DAC), network communication units, and may be combined with a control (calibration)

unit and identification (ID) tag.

Digital signal (information) processing is organized in smart sensors to provide mea-

sured data reduction, filtering, signal representation and compression, dynamic error cor-

rection, etc. [78, 79]. For a digital filter (estimator) to be practically useful, it must

demonstrate [71, 78, 79, 80]:

• Real-time operation to avoid delayed data.

• Unbiasedness (or optimality) with minimum random errors in order to obtain high

precision and accuracy.

• Robustness against mismodeling, temporary model errors, and errors in the noise

statistics.

• Blind operation to provide processing with no prior (minimum) information.

• Predictive features to estimate quantities with missing data.



Chapter 3: Design of UFIR Filter for Smart Sensors 25

Most efficiently, such filters are implemented in state space. Accordingly, we meet

several algorithms developed for smart sensors in past decades using the Kalman filter

(KF). To cancel the torque ripples in harmonic drive systems, the KF was embedded in [81]

to the built-in smart sensor. An intelligent tracking system using KF was designed in [82]

by combining several sensors. In [83], the KF was incorporated into a smart sensor in order

to estimate the plant state, avoid previous data losses, and substitute the measurement

with the KF estimate. The KF was also used in [84] for measurement noise reduction in a

multi sensor system. A general structure of a controlled smart sensor has been discussed in

[85] to incorporate the KF as a main estimation tool. A low complexity KF based on the

differential state equation is used in [86] to provide substantial performance improvements

of a smart sensor. A novel architecture was proposed in [87] for a smart micro-electro-

mechanical system (MEMS) sensors intended to WiFi fingerprinting by utilizing a KF and

an extended KF (EKF). Weighted average and KF were combined in [88] to design voting

algorithms for smart sensors.

It has to be remarked now that the KF does not satisfies all the requirements for digital

filters in smart sensors. Optimality of the KF does not always go along with robustness,

scalability, and fault tolerance. Besides, robustness of the KF becomes particularly poor

under the imprecisely defined noise statistics [9, 37]. Furthermore, the optimal KF requires

all information about the process and measured data and is thus not a blind estimator.

Beyond the KF, several other approaches have attracted researcher’s attention. A block

recursive adaptive lattice filter was employed in [89] to extract features of the steady-state

deviation, frequency, and degree of damping of a power system. The least squares and

genetic algorithms were used in [90] to improve dynamic characteristics of smart sensors.

An artificial neural network was incorporated in [91] to adapt a capacitive pressure smart

sensor to environmental conditions and, in [92], to design an intelligent sensor system for

discrimination of material type. Although these methods demonstrate definitive improve-

ments, it has been noticed in [34] that better performance is peculiar to the finite impulse

response (FIR) filters [93] operating with most recent data.

Methods of data processing over finite horizons of N data points have attracted atten-

tion of designers of wireless sensor networks (WSN) [16, 80] in recent years. In [48], the
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concept of moving average was employed to design an estimator under weak observability

conditions. A consensus finite-horizon H∞ filtering algorithm was proposed in [3] for net-

works with multiple missing measurements. An extension of the finite horizon approach to

distributed H∞-consensus filtering for time-varying nonlinear networks is given in [49, 50].

In [94], a two-stage recursive structure with norm-bounded parameter uncertainty was de-

signed to force the robust KF to operate on finite horizons similarly to the finite memory

approach. In [58], a hybrid particle/FIR filtering structure has been designed to improving

reliability of particle filter-based localization in wireless sensor networks.

Let us notice that optimal FIR filtering offers several other fast algorithms which may

efficiently be used in smart sensors. A receding horizon (RH) Kalman FIR filter designed

in [33] operates similarly to KF. For deterministic time-invariant control systems, a fast

recursion-based algorithm was developed in [51]. An iterative p-shift unbiased FIR (UFIR)

algorithm proposed in [95, 37] completely ignores the noise statistics and initial values while

reducing the output noise variance as a reciprocal of N . This algorithm provides filtering

with p = 0, RH filtering with p = 1, |p|-lag smoothing with p < 0, and p-step prediction

with p > 0. Note that the latter case can be employed to process data with missing

measurements [53]. Fast Kalman-like algorithms were designed for optimal UFIR filtering

in [47] and for bias-constrained optimal FIR filtering in [55]. An important feature of a

simple UFIR filter is that it is blind given N and its estimate becomes practically optimal

when the optimal horizon occurs to be large. Besides, the performance of the UFIR

filter can be improved by adapting the generalized noise power gain (GNPG) to operation

conditions [54]. Hence, methods of fast FIR filtering may open new opportunities in design

of smart sensors. However, still no one of these solutions was addresses to designers.

An objective of this chapter is to develop a blind predictive UFIR filtering algorithm

operating in smarts sensors under missing data with better robustness than in the KF.

3.2 Measured Quantity and Problem Formulation

Let us consider some environment with a quantity Q(t) (temperature, pressure, location,

etc.). Dynamics ofQ(t) is represented with a K-state vector xk ∈ RK and can be controlled
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by a signal uk ∈ RK . A sensing element provides measurements of Q(t) and, if necessary,

the conditioning unit obtains a linearization. Introducing a new filtering technique, we

will think that a smart sensor is designed to have a single sensing element, which measures

Q(t) represented with the first state of xk as a scalar value yk. We also suppose that

measurements can be corrected with a signal ek to provide calibration or remove some

regular trends. Accordingly, the state-space equations for Q(t) become

xk = Akxk−1 + uk +Bkwk , (3.1)

ỹk = Hk(Akxk−1 + uk) , (3.2)

yk = αk(Hkxk + vk) + (1− αk)ỹk + ek , (3.3)

zk = yk − ek , (3.4)

where Ak ∈ RK×K is the process matrix, Bk ∈ RK×M is the process noise matrix, Hk ∈

R1×K is the sensor matrix, wk ∈ RM is the quantity noise, and vk is the scalar sensor

noise. The mutually independent and uncorrelated noise vectors wk and vk have zero

mean, E{wk} = 0 and E{vk} = 0, not well-known covariances, Qk = E{wkwTk } and

Rk = E{vkvTk }, and uncertain distributions (not obligatorily Gaussian) that is typical for

industrial applications [96]. It is assumed that the ADC is tested for signal quality with a

binary output: good (αk = 1) or bad (αk = 0). When αk = 0, the predicted measurement

ỹk (3.2) is used, in which the known initial xk−1 can be substituted with the estimate.

In what follows, x̂k|r is an estimate of xk at time index k via measurements from

past up to and including at time-index r. We will also employ the following variables:

x̂−k , x̂k|k−1 is the a priori state estimate, P−k , Pk|k−1 = E{(xk − x̂−k )(xk − x̂−k )T}

is the a priori estimate covariance, x̂k , x̂k|k is the a posteriori state estimate, and

Pk , Pk|k = E{(xk − x̂k)(xk − x̂k)T} is the a posteriori error covariance matrix.

Our purpose now is to design a blind predictive Kalman-like UFIR filtering algorithm

for (3.1)–(3.4) and show, both analytically and experimentally, that the UFIR filter has

higher robustness than the KF. We also wish to test the algorithm proposed by applications

implying missing data and under the conditions when the KF cannot be used.
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3.3 UFIR Filtering Algorithm

Higher robustness of the UFIR filter [37, 97] is due to its ability to ignore the noise statis-

tics, initial error statistics, and initial values at some (practically insignificant) expanse in

accuracy. The only tuning parameter required by the UFIR filter is the optimal horizon

length of Nopt points, which is applied to minimizes the mean square error (MSE) [98, 59].

An important specific of smart sensors is that an average value is typically required over

fixed time-intervals (one-hour, one-day, one-week, etc.). For such cases, the UFIR filter

provides blind estimation.

The UFIR filter [37, 99] operates with N measured data on a horizon [m, k], from

m = k−N + 1 to k. Unlike the KF that minimizes the MSE, the UFIR filter satisfies the

unbiasedness condition

E{x̂k} = E{xk} (3.5)

to make the average of the estimate equal to that of the state. The noise variance is reduced

here by averaging as a reciprocal of N . Note that filters obeying (3.5) may produce more

accuracy than the KF under uncertain conditions [37].

In the discrete convolution form, the UFIR estimate can be found on [m, k] for αk = 1

as [100, 52]

x̂k = Hm,k(Zm,k − Lm,kUm,k) + Sm,kUm,k , (3.6)

where Um,k = [uTm uTm+1 . . . u
T
k ]T and the homogenous UFIR filter gain is

Hm,k = (CT
m,kCm,k)

−1CT
m,k , (3.7a)

= GkC
T
m,k , (3.7b)

where Gk = (CT
m,kCm,k)

−1 is called the generalized noise power gain (GNPG) [37]. The
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extended observation vector Zm,k and mapping matrix Cm,k can be written as

Zm,k = [ ym − ek ym+1 − em+1 . . . yk − ek ]T , (3.8)

Cm,k =



Hm(Fm+1
k )−1

Hm+1(Fm+2
k )−1

...

Hk−1A
−1
k

Hk


, (3.9)

where the product of system matrices is defined by

F rk =


AkAk−1...Ar, r < k + 1

I r = k + 1

0 r > k + 1

, (3.10)

and auxiliary matrices are given by

Sm,k =
[
Fm+1
k Fm+2

k . . . Ak I︸ ︷︷ ︸
N

]
, (3.11)

Lm,k = C̄m,kSm,k , (3.12)

C̄m,k = diag
(
Hm Hm+1 . . . Hk︸ ︷︷ ︸

N

)
. (3.13)

The batch form (3.7a) may not be suitable for smart sensors in view of the computa-

tional complexity. Therefore, we next proceed with the fast predictive iterative algorithm.

3.3.1 Predictive Iterative UFIR Filtering Algorithm

Following the UFIR filter strategy [37], the estimate at k can be obtained iteratively using

an auxiliary variable l beginning with l = m+K and ending when l = k. To run iterations,

the initial estimate at l = m + K − 1 can be found using (3.7b) in a short batch form on

a horizon [m,m+K − 1], because the inverse in (3.7a) does not exist otherwise.

Provided Gm+K−1 and x̂m+K−1, the estimate x̂k is obtained iteratively for l increasing
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from m+K to l = k as

Gl = [HT
l Hl + (AlGl−1A

T
l )−1]−1 , (3.14)

Kl = GlH
T
l , (3.15)

x̂−l = Alx̂l−1 + uk , (3.16)

yl =

 yl, αl = 1

Hlx̂
−
l , αl = 0

, (3.17)

x̂l = x̂−l +Kl(yl − ek −Hlx̂
−
l ) . (3.18)

A pseudo code of this algorithm is given as Algorithm 1. The algorithm readily simplifies

Algorithm 1: Predictive Iterative UFIR Algorithm

Data: yk, ek, uk, αk

Result: x̂k

1 begin

2 for k = N − 1 :∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gs = (CT
m,sCm,s)

−1;

5 if αk = 0 then

6 yk = Hk(Akx̂k−1 + uk);

7 end if

8 x̃s = GsC
T
m,sZm,s;

9 for l = s+ 1 : k do

10 Gl = [HT
l Hl + (AlGl−1A

T
l )−1]−1;

11 x̃−l = Alx̃l−1 + ul x̃l = x̃−l +GlH
T
l (yl − el −Hlx̃

−
l );

12 end for

13 x̂k = x̃k;

14 end for

15 end

16 † First data y0, y1,..., yN−1 must be available.

to the homogenous case, by setting uk = 0 and ek = 0. As can be seen, Algorithm 1 does
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not require neither the noise statistics nor the initial values that is an important advantage

against the KF.

Only one variable Nopt is required by the UFIR filter that can be found at a test stage

by minimizing the trace of the estimation error Pk as

Nopt = arg min
N

{trPk(N)} , (3.19)

by utilizing observations with no reference as shown in [98], or utilizing an advanced tech-

nique [59]. Provided N , the UFIR filter becomes a blind estimator.

An important feature of Algorithm 1 is an ability to produce suboptimal estimates

under temporary missing measurement data [53]. Such a situation may occur when a

sensing element temporary responds to Q(t) with incorrect values and a signal conditioning

unit is unable to adjust data that is indicated with α = 0. If so, Algorithm 1 (lines 5–7)

bridges a gap over temporary lost data by predicting yk via prior estimate, as in (3.17).

To take advantage of the prediction mode, yk must be available on a horizon of N initial

points. Otherwise, the estimate x̂N−1 must be provided.

3.4 Robustness of UFIR Filter and KF

The trade-off in robustness between the UFIR filter and KF (Algorithm 2) can be learned

if to trace effect of model errors and disturbances on the GNPG Gk and Kalman gain Kk.

Kalman filtering suggests that an estimator will produce more random errors if the bias

correction gain exceeds an optimal value and more bias errors otherwise. In what follows,

we will refer to this rule.

3.4.1 Imprecisely Defined Noise Statistics

Let us suppose that the noise covariances, Qk andRk, are defined imprecisely and substitute

Qk ← α2Qk and Rk ← β2Rk, where α = 1 and β = 1 stand for completely known noise.

The UFIR filter ignores noise, thus α and β do not affect its performance. To learn effect

of α and β on the KF, we consider a stationary mode, set Pk−1 ∼= P−k in line 4 of Algorithm
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Algorithm 2: Recursive KF Algorithm

Data: x̂0, P0, Qk, Rk

Result: x̂k, Pk

1 begin

2 for k = 1, 2, · · · do

3 x̂−k = Akx̂k−1 + uk ;

4 P−k = AkPk−1A
T
k +BkQkB

T
k ;

5 Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)

−1 ;

6 x̂k = x̂−k +Kk(yk − ek −Hkx̂
−
k ) ;

7 Pk = (I −KkHk)P
−
k ;

8 end for

9 end

2, and transform it to the discrete-time algebraic Lyapunov equation [101]

P−k − AkP
−
k A

T
k = α2BkQkB

T
k , (3.20)

which solution is known to be an infinite sum [102],

P−k = α2

∞∑
i=0

AikBkQkB
T
k (Aik)

T = α2Σk . (3.21)

We next substitute (3.19) into line 5 of Algorithm 2 and write the Kalman gain as

K̄k = α2ΣkH
T
k (Hkα

2ΣkH
T
k + β2Rk)

−1

= ΣkH
T
k

(
HkΣkH

T
k +

β2

α2
Rk

)−1
. (3.22)

The optimal value K̄k = Kk is guaranteed by α = β = 1 [in (3.21), the optimality is

also achieved with α = β]. If K̄k > Kk, the random errors dominate and, if K̄k < Kk,

the bias errors grow. That means that 1) random errors will grow if α > 1 and/or β < 1;

2) bias errors will dominate when α < 1 and/or β > 1; and 3) errors may compensate by

(α, β) < 1 or (α, β) > 1.

Thus, the KF is not protected against errors in the noise covariances. The KF will

retain supremacy when α and β are both range close to unity. Otherwise, the UFIR filter

that is robust to changes in α and β may be more accurate.
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3.4.2 Temporary Model Errors

To learn effect of temporary model errors, we allow Ak ← ηAk with η 6= 1 during a short

time and retain Qk ← α2Qk and Rk ← β2Rk. Because η affects both filters, we rewrite Kk

and Gl as

K̄k = ΣkH
T
k

(
HkΣkH

T
k +

β2

α2η2
Rk

)−1
, (3.23)

Ḡl =

[
HT
l Hl +

1

η2
(AlGl−1A

T
l )−1

]−1
. (3.24)

It follows that, by α = β = 1, robustness of both filters to changes in η is near equal.

Otherwise, α and β may dramatically increase errors caused by η in the KF. We do not

see such an effect in the UFIR filter.

3.4.3 Temporary Measurement Errors

To model measurement errors, we substitute Hk with µHk, where µ = 1 denotes accurate

measurements, and retain Qk ← α2Qk and Rk ← β2Rk. We then transform Kk and Gl to

K̄k =
1

µ
ΣkH

T
k

(
HkΣkH

T
k +

β2

α2µ2
Rk

)−1
, (3.25)

Ḡl =
1

µ2

[
HT
l Hl +

1

µ2
(AlGl−1A

T
l )−1

]−1
(3.26)

and infer the following. When the second components dominate in the parentheses of

(3.25) and brackets of (3.26), the UFIR filter has higher robustness, because the gain 1/µ2

is better compensated by the reciprocal of 1/µ2 in (3.26) than 1/µ in (3.25). Moreover, α

and β may dramatically deteriorate the KF performance that also speaks in favor of the

UFIR filter.

An overall conclusion that can be made based on this analysis is that the UFIR filter is

more robust than the KF in real-world applications. One finds evidences of this statement

in many papers [9, 34, 33, 47, 55, 103, 104, 105].
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3.5 Experimental Verification

Like the KF, the iterative UFIR filter is universal for linear state-space models. In this

section, we give two examples of its practical applications to air pollution monitoring

and temperature measurements. Although different kinds of air pollution components are

of importance for human life, we focus only on carbon monoxide (CO). We base these

examples on measurements provided in [4] and available from [5]. The multi-sensor device

(electronic nose) used in [4] is developed by Pirelli Labs using seven solid-state sensors.

Reference data were provided in [4] using a Conventional air pollution monitoring station.

3.5.1 CO Concentration

CO is colorless, odorless and tasteless gas that is slightly less dense than air [106]. Its

concentration nominal range is 0.1–100 mg/m3. But it is toxic to humans when encountered

in concentrations above about 40 mg/m3 and kills in an hour by 103 mg/m3 [106]. It

is known that an increase in the level of CO reduces the amount of oxygen carried by

hemoglobin around the human body. The amount of oxygen also diminishes in vital organs,

such as the brain, nervous tissues and the heart, and they may not work properly [107].

Therefore, monitoring of CO concentration is desirable in urban and industrial areas.

Incomplete combustion regardless of the fuel used and operation of diverse devices result

in the CO presence in the air. Therefore, sensors of CO can also be used as indicators

of possible fire. Figure 3.2 illustrates two sources of increased CO concentration in air:

industrial pollution and car pollution.

State-Space Representation

In order to demonstrate efficiency of Algorithm 1, we employ a 20-days part of long-term

CO concentration measurements provided in an urban area [5]. Each point is obtained

here by one-hour averaging with no missing data. To convert the sensor output zk to the

reference scale, we use a linear regression and represent converted measurement yk via

actual one zk as yk = −5.8 + 6.5× 10−3zk. The output yk (Sensor) and reference (Ref) are

shown in Fig. 3.3. As can be seen, the sensor is almost as accurate as the reference source.
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CO sources

Industrial pollution

Car pollution

Figure 3.2: Two sources of increased carbon monoxide concentration in air: industrial

pollution and car pollution.

It can also be observed in Fig. 3.3 that the CO concentration has 24-hours periodicity

and can be considered to be a stochastic and quasi stationary process on a long baseline.

The concentration of the day demonstrates two maxima associated with peak hours, a deep

minimum corresponding to night time, and a minimum at the middle of the day. We thus

represent measurement yk on a horizon of N points with the second-order Fourier series as

yk = a0k + a1k cos

(
2π

24
k + φ1

)
+ a2k cos

(
4π

24
k + φ2

)
+ vk , (3.27)

where vk is the zero mean measurement noise and a0k, a1k, and a2k are time-varying spectral

features of CO concentration to be estimated by a smart sensor. Measurements in Fig. 3.3

also suggest that φ1 = π/5.21 and φ2 = 2φ1. Note that φk can be set to zero by removing

some initial data points.

In view of quasi stationarity of CO concentration and completely unknown process

noise, we assign the state vector xk = [ a0k a1k a2k ]T , allow xk = xk−1 by Ak = I, ignore

noise by wk = 0 and Qk = 0, and represent yk with

yk = Hkxk + vk , (3.28)

where

Hk =
[

1 cos
(
2π
24
k + φ1

)
cos
(
4π
24
k + φ2

) ]
. (3.29)
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Figure 3.3: 20 days reference (Ref) and real (Sensor) measurements of carbon monoxide

concentration in part of mg/m3 [4, 5].

2-

0

2

4

6

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time, days

C
O

co
nc

en
tr

at
io

n,
in

 m
g/

m
3

Sensor

UFIR filter

N = 12

Figure 3.4: CO concentration measured by a sensor (Sensor) and estimated using Algorithm

1 (UFIR filter) on a horizon of N = 12 points. Data at each point are one-hour averaged.

For Qk = 0, the KF cannot be used. To exploit the UFIR Algorithm 1, we define an

extended matrix Cm,s as

Cm,s =


1 cos (ψ2 + φ1) cos (2ψ2 + φ2)

1 cos (ψ1 + φ1) cos (2ψ1 + φ2)

1 cos (ψ0 + φ1) cos (2ψ0 + φ2)

 . (3.30)

where ψ0 = 2πs
24

, ψ1 = 2π(s−1)
24

, and ψ2 = 2π(s−2)
24

.

Using Algorithm 1, we first estimate CO concentration as shown in Fig. 3.4, by sub-

stituting spectral features in (3.27) with their estimates â0k, â1k, and â2k. Observing this

figure, one may conclude that a half-day horizon, N = 12, allows for some noise reduc-

tion and smoothing regular daily variations. We next extract spectral features of CO
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Figure 3.5: Spectral features of CO concentration estimated using Algorithm 1 withN = 12

and N = 24: (a) a0k, (b) a1k, and (c) a2k.

concentration and analyze their functions in more detail.

Spectral Features of CO Concentration

Values of a0k, a1k, and a2k can be estimated by Algorithm 1 straightforwardly via x̂k =

[ â0k â1k â2k ]. Figure 3.5 sketches the relevant estimates obtained on horizons of N = 12

and N = 24. It follows that a half-day horizon, N = 12, is more suitable for the estimation

of fast variations, while N = 24 gives well-smoothed estimates. When CO concentration is

low, then N = 24 can be applied to avoid false alarm. Otherwise, N = 12 must be applied.

The choice of N is definitely a matter of optimization in view of the fact that high CO

concentration can be dangerous only if it is accumulated during some time. Thus, short-
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(a)

(b)

Figure 3.6: CO concentration measured by a sensor (Sensor) and estimated using the

prediction feature of Algorithm 1.The horizon (a) N = 12 and (b) N = 24 are used for 0,

1, 3 and 6 consecutive deleted measurements.

time excursions may not produce essential effect and can be smoothed, while long-time

ones must be detected.

Missing Measurement Data

In order to establish the error performance algorithm 1, part of the data from day 15 to 16

was intentionally deleted. Fig. 3.6a and b shows the behavior of the UFIR algorithm with

N = 12 and N = 24 respectively, for one, three and six consecutive missing measurements.

In Fig. 3.6a, it can be seen that for an small amount of lost data (less than three deleted

measurements), the difference between the measured and estimated CO concentration is

relatively small. A larger difference becomes apparent as the amount of missing data

increases. On the other hand, for the horizon N = 24 (Fig. 3.6b), the estimates are less
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Figure 3.7: Estimated spectral features of CO concentration using the predictive charac-

teristic of Algorithm 1 for N = 12 and N = 24; (a) a0k, (b) a1k and (c) a2k.

affected for the same amount of missing data, as can be appreciated on. This is further

corroborated by the root mean squared error, calculated over the time span of analysis,

and sketched in Fig. 3.7. A growing tendency for both horizons can be appreciated,

being N = 24 considerably less affected than N = 12, however is important to take into

consideration that N = 24 is less sensitive to changes than N = 12.

Once that we have asserted the robust behavior of Algorithm 1 against missing data,

we proceed to implement the filter with real data, available from [5], containing multiple

missing measurements. Fig. 3.8 sketches estimates of spectral features of CO concentration

in the time span of 20–40 days. In this database, 3 discrete points (one-hour averaged)

are lost at about 22nd hour and 24 points are lost in a span from about 29 to 30 hours.

The lost data are indicated with α = 0 in Algorithm 1. As can be seen, prediction

organized in Algorithm 1 with lines 5–7 allows getting quite accurate estimates, while the

basic algorithm (lines 5–7 removed) demonstrates extensive excursions, which values can

be unacceptable.

3.5.2 Temperature Estimation with Missing Data

It is known that sensor accuracy is affected in many cased by the environment and interfer-

ence from common industrial noise sources [108]. Therefore, averaging is often applied to

improve accuracy. However, simple averaging that is typically invoked in such cases may
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Figure 3.8: Spectral features of CO concentration with missing data for N = 24: (a)

a0k, (b) a1k, and (c) a2k. “Predictive UFIR” is by Algorithm 1 and “Basic UFIR” is by

Algorithm 1 with lines 5–7 removed.

produce unacceptably large bias. The UFIR filter minimizes the bias errors.

In the second example, we consider measurements of temperature available from [5].

The archive contains missing data, which we set to zero. Referring to practical needs [4], we

proceed with one-week averaging. To find UFIR estimates, we suppose that temperature

changes linearly on an averaging horizon and specify the state-space model with uk = 0,

ek = 0, Hk = [ 1 0 ], and

Ak =

 1 τ

0 1

 ,
where τ = tk − tk−1 is the sampling time. The noise components wk and vk are supposed

to be zero mean. Other noise statistics and distributions are not known exactly and we

ignore them. We finally specify matrix Cm,s given by (3.8) as

Cm,s =

 1 −τ

1 0


and run Algorithm 1.
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The estimation errors can be watched in Fig. 3.9 for N = 24×7 = 168 that corresponds

to a one-week horizon. Traditionally, we employ two options. The “Predictive UFIR”

estimate is produced by Algorithm 1. To find the “Basic UFIR” estimate, we remove lines

5–7 from Algorithm 1 or suppose that α = 1 over all measurements. As can be seen, the

basic estimates are accompanied with large excursions in response to missing data, similarly

to Fig. 3.8. On the contrary and in an agreement with Fig. 3.8, no excursions are observed

at the output of the predictive UFIR filter. To emphasize the difference between the basic

and predictive estimates, in Fig. 3.9b we show a five-week zoomed part of Fig. 3.9a. This

figure suggests that the bridge made by Algorithm 1 over the uncertainty gap can be very

efficient.
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Chapter 4

Design of UFIR Filter with

Consensus on Measurements for

WSNs

In the previous chapter we introduced a fast iterative UFIR filter with prediction capabili-

ties, suitable to be implemented in a smart sensor. In this chapter we further our research

by developing an average consensus estimator with consensus on measurements. The algo-

rithm takes advantages of the unbiased finite impulse response filter technology to achieve

superior performance against the popular Kalman filter under noise uncertainties.

4.1 Introduction

In industrial applications, wireless sensor networks (WSNs) are used to provide environ-

mental sensing, condition monitoring, and process automation [109, 110]. Each node in

the WSN interacts with a few neighbors, estimates the desired quantity Q (temperature,

velocity, pressure, etc.), and cooperatively passes data through other nodes to a central

station [111]. Because Q is typically measured over a big number of nodes in the presence

of noise, optimal estimators are often used [17, 16, 11]. To make it possible to estimate Q

in real time with low computational complexity, distributed filtering has been introduced

[22, 23] based on consensus on measurements [26, 112], on estimates [41], and on informa-

43
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tion [29]. For a scalar quantity Q(t), the consensus-based approach has been developed

in [113, 26, 41, 114, 25]. For vector deterministic quantity ~Q(t), the consensus was found

in [23] assuming noisy links in Ad Hoc WSNs, in [115] for the estimation and smoothing

of vector random quantities, and in [116, 117] for random links. Kalman filtering is most

widely used in design of consensus-based estimators [16, 11, 118]. However, optimality of

the Kalman filter (KF) does not always go along with robustness, scalability, and fault

tolerance required by the WSNs [42, 43]. Therefore, great efforts were made to improve

the KF performance [16, 45, 44]. But what practice suggests is that robustification of the

KF typically does not lead to essential progress [119, 34]. Better robustness demonstrate

filters operating with finite data [120, 47].

Methods of data processing over finite data have attracted attention of designers of

WSNs in recent years. In [48], a moving average estimator was designed for weak ob-

servability. A consensus finite-horizon H∞ approach was developed in [3] under missing

measurements and extended in [49, 50] to time-varying nonlinear networks. In [94], a two-

stage recursive structure with norm-bounded parameter uncertainty was designed for the

robust KF to operate on finite horizons similarly to the finite memory approach [34].

Beyond these solutions, FIR filtering offers several other fast algorithms which may

efficiently be used in WSNs. A receding horizon (RH) Kalman FIR filter designed in [33]

operates similarly to KF on finite horizons. For deterministic time-invariant control sys-

tems, a fast recursion-based algorithm was developed in [51]. An iterative p-shift unbiased

FIR (UFIR) algorithm proposed in [43] completely ignores the noise statistics and initial

values while reducing the output noise variance as a reciprocal of the horizon length. The

p-shift UFIR estimator provides filtering with p = 0, RH filtering with p = 1, |p|-lag

smoothing with p < 0, and p-step prediction with p > 0 [53]. An important feature of the

UFIR estimate is an ability to becomes practically optimal on large horizons. Besides, the

performance of the UFIR filter can be improved by adapting the generalized noise power

gain (GNPG) to operation conditions [54]. Fast optimal FIR algorithms were also designed

[47, 55] and some other developments on FIR filtering can be found in [56, 57, 58, 59].

Hence, methods of FIR filtering can be used in design of robust WSNs.

Despite the scientific research on the subject, solutions still have not been addressed
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to practitioners. For this reason, an objective of this research is to design a distributed

UFIR filter based on supporting data-fusion average consensus on measurements and to

show that it is more robust than the distributed KF. Because we introduce a new technique

for WSNs, we do it only for a single quantity Q(t). In order to stress a link between the

distributed UFIR filter and the distributed KF, we mostly save notations adopted in [26].

4.2 Model and Problem Formulation

We consider a manufacturing environment with quantity Q(t) of interest, whose dynamics

is represented with a K-state vector xk ∈ RK . We assume that the environment is covered

with a WSN consisting of n nodes. Each ith, i ∈ [1, n], node provides linear measurements

of Q(t) as y
(i)
k = H

(i)
k xk + v

(i)
k ∈ Rp, where H

(i)
k ∈ Rp×K , p 6 K is the number of the

measured states, and v
(i)
k is the measurement noise. In discrete time index k, the state-

space model is

xk = Akxk−1 +Bkwk , (4.1)

yk = Hkxk + vk , (4.2)

where yk = [ y
(1)
k

T
. . . y

(n)
k

T
]T ∈ Rnp is the measurement vector, Ak ∈ RK×K , Hk =

[H
(1)
k

T
. . . H

(n)
k

T
]T ∈ Rnp×K , and Bk has proper dimensions. The zero mean mutually

uncorrelated white Gaussian noise vectors, wk and vk = [ v
(1)
k

T
. . . v

(n)
k

T
]T ∈ Rnp, have

the covariances Qk and Rk = diag[R
(1)
k

T
. . . R

(n)
k

T
]T ∈ Rnp×np, respectively. We assign

x̂k|r to be an estimate of xk at k via measurements up to and including at time-index r.

We also employ the following variables: x̂−k , x̂k|k−1 is the prior state estimate, P−k =

E{(xk− x̂−k )(xk− x̂−k )T} is the prior estimate covariance, x̂k is the posterior state estimate,

and Pk = E{(xk − x̂k)(xk − x̂k)T} is the posterior error covariance.

In centralized WSNs, measurements pass to a central station, where the estimation of
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Q can be provided using the centralized KF (cKF) [26],

P−k = AkPk−1A
T
k +BkQkB

T
k , (4.3)

Pk = [(P−k )−1 +HT
k R
−1
k Hk]

−1 , (4.4)

Kk = PkH
T
k R
−1
k , (4.5)

x̂−k = Akx̂k−1 , (4.6)

x̂k = x̂−k +Kk(yk −Hkx̂
−
k ) . (4.7)

Provided P0, x0, Qk, and Rk, the cKF optimally estimates state x̂k of Q(tk) that has two

disadvantages. Communication must be organized between the central station and each of

the nodes. Real-time estimation may be an issue in view of the computational complexity

when Hk acquires large dimensions.

To reduce the computational complexity, the cKF estimate (4.7) can be represented

using (4.5) as

x̂k = x̂−k +Kk(yk −Hkx̂
−
k )

= x̂−k + Pk(H
T
k R
−1
k yk −HT

k R
−1
k Hkx̂

−
k ) . (4.8)

By introducing two aggregate quantities: a vector zk ∈ RK of fused average-consensus

sensor data and a fused average-consensus inverse covariance matrix Sk ∈ RK×K ,

zk =
1

n

n∑
i=1

z
(i)
k =

1

n

n∑
i=1

H
(i)
k

T
R

(i)
k

−1
y
(i)
k , (4.9)

Sk =
1

n
HT
k R
−1
k Hk =

1

n

n∑
i=1

H
(i)
k

T
R

(i)
k

−1
H

(i)
k , (4.10)

and obtaining zk by a low-pass consensus filter and Sk by a band-pass consensus filter [26],

the micro-KF (µKF) can be formulated as [26]

P−µk = AkPµ(k−1)A
T
k +BkQµkB

T
k , (4.11)

Pµk = [(P−µk)
−1 + Sk]

−1 , (4.12)

x̂−k = Akx̂k−1 , (4.13)

x̂k = x̂−k + Pµk(zk − Skx̂−k ) , (4.14)
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where Pµk = nPk is the µKF gain, which is also the µKF error covariance, and Qµk = nQk.

The µKF operates n-times faster than the centralized Kalman filter (cKF) while producing

equal estimates by “ideal” consensus.

The problem now formulates as follows. Given a WSN represented with (4.1) and (4.2),

we would like to design a micro-UFIR (µUFIR) filter for average consensus on measure-

ments and show that the µUFIR filter is more robust than the µKF against modeling

errors in not well specified noise environments. We also wish to investigate the trade-off

between the µKF and µUFIR algorithms under harsh operation conditions based on the

WSN simulation.

4.3 Distributed UFIR Filtering

Many issues of poor performance of the KF in WSNs are due to insufficient information

about the initial values, x0 and P0, and noise statistics, Qk and Rk [121]. The iterative

UFIR filter [43, 97] operates with N data points on a horizon [m, k], from m = k−N+1 to

k, and ignores x0, P0, Qk, and Rk at some (practically insignificant) expanse in accuracy.

The only tuning parameter required by the UFIR filter to minimize the mean squared error

(MSE) is the optimal averaging horizon of Nopt points [43].

The batch UFIR estimate is given by [43]

x̂k = K̄m,kYm,k (4.15a)

= (CT
m,kCm,k)

−1CT
m,kYm,k , (4.15b)

where the extended observation vector Ym,k and mapping matrix Cm,k are represented as

Ym,k =
[
yTm yTm+1 . . . yTk

]T
, (4.16)

Cm,k =



Hm(Fm+1
k )−1

Hm+1(Fm+2
k )−1

...

Hk−1A
−1
k

Hk


, (4.17)
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and the product of system matrices is defined by

F rk =


AkAk−1...Ar, r < k + 1

I r = k + 1

0 r > k + 1

. (4.18)

The UFIR filter gain K̄m,k is given by the product

K̄m,k = GkC
T
m,k , (4.19)

in which the GNPG Gk is computed by [52]

Gk = K̄m,kK̄
T
m,k = (CT

m,kCm,k)
−1 . (4.20)

Below, we provide fast forms of (4.15b) for centralized UFIR (cUFIR) and micro UFIR

(µUFIR) filtering in WSNs.

4.3.1 Centralized UFIR Filter

In the Kalman-like UFIR filtering [43], the estimate at k is obtained iteratively using an

auxiliary variable l beginning with l = m+K and ending when l = k. The initial estimate

at l = m+K−1 is obtained using (4.15b) in a short batch form on a horizon [m,m+K−1].

Provided Gm+K−1 by (4.20) and x̂m+K−1 by (4.15b), the estimate x̂k is computed iteratively

as listed in Algorithm 3. The optimal horizon Nopt for the cUFIR filter can be found at

the test stage by minimizing the trace of the estimation error Pk as

Nopt = arg min
N

{trPk(N)} (4.21)

or by utilizing observations with no reference as shown in [43]. Note that iterations will

require about Nopt times more computation time than for the cKF.

The MSE matrix Pk can be found for the cUFIR filter as in [97]. Given the initial value

Pl−1, the MSE matrix Pl can be updated with l changing from k −N +K + 1 to k as

P−l = AlPl−1A
T
l +BlQlB

T
l , (4.22)

Pl = (I −KlHl)P
−
l (I −KlHl)

T +KlRlK
T
l , (4.23)

to take the true value when l = k.
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Algorithm 3: Centralized UFIR Filtering Algorithm

Data: yk, N

Result: x̂k

1 begin

2 for k = N − 1 :∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gs = (CT
m,sCm,s)

−1;

5 x̃s = GsC
T
m,sYm,s;

6 for l = s+ 1 : k do

7 Gl = [HT
l Hl + (AlGl−1A

T
l )−1]−1;

8 x̃l = Alx̃l−1 +GlH
T
l (yl −HlAlx̃l−1);

9 end for

10 x̂k = x̃k;

11 end for

12 end

4.3.2 Micro-UFIR Filter

The consensus approach can now be applied to Algorithm 3. That can be done if to write

the cUFIR estimate as

x̂l = x̂−l +Kl(yl −Hlx̂
−
l )

= x̂−l +Gl(H
T
l yl −HT

l Hlx̂
−
l )

= x̂−l +Gµl(sl − Llx̂−l ) , (4.24)

where Gµl = nGl is the micro-UFIR filter GNPG and

sl =
1

n

n∑
i=1

s
(i)
l =

1

n

n∑
i=1

H
(i)
l

T
y
(i)
l , (4.25)

Ll =
1

n
HT
l Hl =

1

n

n∑
i=1

H
(i)
l

T
H

(i)
l . (4.26)

In contrast to (4.10), matrix (4.26) does not involve the inverse measurement noise covari-

ance. Therefore, the µUFIR filter will require only one consensus filter.
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The micro-UFIR filter (µUFIR) can then be designed similarly to the µKF as

Gµl = [Ll + (AlGµ(l−1)A
T
l )−1]−1 , (4.27)

x̂−l = Alx̂l−1 , (4.28)

x̂l = x̂−l +Gµl(sl − Llx̂−l ) , (4.29)

where the bias correction gain Gµl is also the GNPG.

Fast computation of the initial values Gµ(l−1) and x̂l−1 can be provided using the filtered

consensus values of Lk and sk as in the following.

Transform the inverse of Gs using (4.18) to

G−1s = CT
m,sCm,s

= n
K−1∑
j=0

(Fm+1+j
s )−TLm+j(Fm+1+j

s )−1 (4.30)

that yields

Gµs = nGs =

[
K−1∑
j=0

(Fm+1+j
s )−TLm+j(Fm+1+j

s )−1

]−1
. (4.31)

Also, transform the initial state x̂s as

x̃s = GsC
T
m,sYm,s =

1

n
GµsC

T
m,sYm,s

= Gµs

K−1∑
j=0

(Fm+1+j
s )−T sm+j . (4.32)

The number K of the process states is typically small in WSNs that makes the sums

short in (4.31) and (4.32). In particular, if a quantity Q is represented with two states,

K = 2, then the initial values can be computed as

Gµs = (A−Tm+1LmA
−1
m+1 + Lm+1)

−1 , (4.33)

x̃s = Gµs(A
−T
m+1sm + sm+1) . (4.34)

What can now be observed is that the µUFIR filter is a blind given Nopt and robust

alternative to the µKF as it does not require any information about the processes. A

pseudo code of the µUFIR algorithm is given as Algorithm 4. To specify the MSE matrix
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Algorithm 4: Micro-UFIR Filtering Algorithm

Data: sk, Lk, N

Result: x̂k

1 begin

2 for k = N − 1 :∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gµs =

[
K−1∑
j=0

(Fm+1+j
s )−TLm+j(Fm+1+j

s )−1

]−1
;

5 x̃s = Gµs

K−1∑
j=0

Fm+1+j
s

−T
sm+j;

6 for l = s+ 1 : k do

7 Gµl = [Ll + (AlGµ(l−1)A
T
l )−1]−1;

8 x̃l = Alx̃l−1 +Gµl(sl − LlAlx̃l−1);

9 end for

10 x̂k = x̃k;

11 end for

12 end

Pµk, transform εl = xl − x̂l using (4.1) and (4.29) to

εl = Alεl−1 +Blwl −Gµlsl +GµlLlAlx̂l−1

= (I −GµlLl)(Alεl−1 +Blwl)

+Gµl
1

n

n∑
i=1

H
(i)
l v

(i)
l (4.35)

and write Pl = E{εlεTl } as

Pl = (I −GµlLl)(AlPl−1A
T
l +BlQlB

T
l )(I −GµlLl)

T

+
1

n
GµlSlG

T
µl , (4.36)

where Sl is given by (4.10). Now involve Pµl = nPl and Qµl = nQl from the µKF and

arrive at

Pµl = (I −GµlLl)(AlPµ(l−1)A
T
l +BlQµlB

T
l )

×(I −GµlLl)
T +GµlSlG

T
µl . (4.37)
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By changing l from k −N +K + 1 to k, matrix Pµl can now be updated iteratively at k.

4.4 Robustness of micro-Filters

In this section, we are going to show that the µUFIR filter has better robustness than the

µKF.

4.4.1 Imprecisely Defined Noise Statistics

Exact knowledge about the noise covariances Qµk and Rµk is typically unavailable in WSNs.

We model errors in Qµk and Rµk by the correction coefficients p and q as Qµk ← p2Qµk and

Rk ← q2Rk. The µUFIR filter does not require the noise statistics and is thus protected

against such errors. To ascertain effect of {p, q} 6= 1 on µKF, we consider a stationary

mode implying P−µk
∼= Pµ(k) ∼= Pµ(k−1) and transform (4.12) to the discrete-time algebraic

Lyapunov equation [101]

P−µk − AkP
−
µkA

T
k = p2BkQµkB

T
k , (4.38)

which solution is known to be an infinite sum [102]

P−µk = p2
∞∑
v=0

AvkBkQµkB
T
k (Avk)

T = p2Σk . (4.39)

By substituting Sk ← 1
q2
Sk, the bias correction gain (4.12) can be rewritten as

Pµk =

(
1

p2
Σ−1k +

1

q2
Sk

)−1
(4.40)

and, by zk ← 1
q2
zk, we have

x̂k = x̂−k + Pµk(zk − Skx̂−k )

= x̂−k +

(
Σ−1k
p2

+
Sk
q2

)−1(
zk
q2
− Sk
q2
x̂−k

)
= x̂−k + P̄µk(p, q)

(
zk − Skx̂−k

)
, (4.41)

where the estimation error covariance (bias correction gain) affected by p and q is

P̄µk(p, q) =

(
q2

p2
Σ−1k + Sk

)−1
. (4.42)
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Relation (4.42) suggests that the optimal value P̄µk = Pµk is achieved when p = q = 1.

Otherwise, random errors will dominate if P̄µk > Pµk and the bias errors will grow if

P̄µk < Pµk. One thus may conclude that the µKF is less robust than the µUFIR filter

against errors in the noise covariances. The µKF will retain supremacy when both p and

q are near unity. Otherwise, the µUFIR filter may produce more accuracy.

4.4.2 Temporary Model Errors

Any estimator produces extra errors when the WSN undergoes unpredictable impacts. We

model such errors by scaling the system matrix during a short time as Ak ← αAk. We

also allow Qµk ← p2Qµk and Rµk ← q2Rµk. For the µKF and µUFIR filter, we thus have,

respectively,

Pµk =

[
(α2AkPµ(k−1)A

T
k + p2BkQµkB

T
k )−1 +

1

q2
Sk

]−1
, (4.43)

Gµl = [(α2AlGµ(l−1)A
T
l )−1 + Ll]

−1 , (4.44)

and observe that the less robust µKF will produce more bias errors if p < 1 and/or q > 1.

4.4.3 Temporary Measurement Errors

To model short-time measurement errors, we substitute Hk with βHk, where β = 1 cor-

responds to accurate measurements. By letting Sk ← β2Sk, zk ← βzk, Lk ← β2Lk, and

sk ← βsk, we transform the µKF and µUFIR estimates to

x̂k = x̂−k + β[(AkPµ(k−1)A
T
k +BkQµkB

T
k )−1

+β2Sk]
−1(zk − βSkx̂−k ) , (4.45)

x̂l = x̂−l + β[(AlGµ(l−1)A
T
l )−1 + β2Ll]

−1

×(sl − βLlx̂−l ) . (4.46)

As can be seen, effect of β 6= 1 can be gained in the µKF by errors in the noise statistics

and the µKF is thus less robust than µUFIR to node errors.
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Figure 4.1: Simulated WSN with 50 nodes randomly placed in coordinates of −40 m 6

x 6 40 m and −30 m 6 y 6 30 m: 145 links are due to the node range of 14 m.

4.5 Example of Applications

In this section, we compare errors produced by nodes with the cKF, cUFIR filter, µKF

and µUFIR filter under diverse operation conditions. A WSN is organized to cover a

territory of −40 m 6 x 6 40 m and −30 m 6 y 6 30 m. The nodes are placed randomly

with coordinates uniformly distributed along axes x and y. The Laplace matrix of the

WSN graph has 50 × 50 dimensions and the network is shown in Fig. 4.1. Each node

communicates with neighbors within a range of 14 m. Table 4.1 sorts the nodes by the

number of links.

As can be observed, the maximum number of the links is 13 (node 12) and most

frequently repeated numbers are 3 (six nodes), 6 (seven nodes), 7 (seven nodes), 8 (six

nodes), 9 (eight nodes), and 10 (five nodes). It is supposed that data can be transferred

cooperatively to a central station.

We consider a vehicle traveling circularly on a ground space limited with coordinates

covered by the WSN. The two-state vector xk unites the coordinate x as the first state
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Table 4.1: Nodes Sorted by the Number of Links with Neighbors

Number of links Nodes

1 1,50

2 48,49

3 13,19,42,44,45,46,47

4 15,34,43

5 28

6 52,3,8,9,16,25,33

7 5,7,14,26,36,40,41

8 4,20,23,24,35,38

9 6,10,17,18,21,32,37,39

10 11,22,27,29,31

11 30

12 –

13 12

x1k and the coordinate y as the second state x2k. The vehicle dynamics (4.1) is governed

starting with x0 = [−10 m 10 m ]T by the time-invariant system matrix

A =

 a −b

b a

 ,

where a = 0.999 and b = 0.04, and B identity. The noise components in vector wk =

[w1k w2k ]T have the variance σ2
w = 0.01 m2 and the covariance is Q = diag[ σ2

w σ
2
w ]. Prac-

tice suggests that Q is typically not known exactly and vehicle dynamics may undergo

temporary unpredictable changes caused by some external force. We take it into account

by letting p2Q and substituting a in A with a+δk, where δk is an amendment to be specified

latter. It is assumed that each node is equipped to measure the vehicle coordinate x (first

state x1k) with H(i) = [ 1 0 ] and is linked with n neighbors as specified in (4.2). Each noise

component v
(i)
k has the variance σ2

v = 25 m2 and thus R(i) = [σ2
v ]. Because noise statistics

are not available for each individual sensor and a set of sensors is typically specified in
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Figure 4.2: Vehicle traveling circularly on a ground space starting with x0 = −10m and

y0 = 10m at k = 0. Unpredictably, an external force affects the movement from k = 350

to k = 370.

the worst case, we scale R(i) as q2R(i), where q represents an error. At the test stage, the

optimal horizon was found to be Nopt = 88.

A simulated trajectory of a moving vehicle is shown in Fig. 4.2 for δk = 0.03 when

350 6 k 6 370 and δk = 0 otherwise. As can be seen, an external force changes the

trajectory in a time span of 350 6 k 6 370 that subsequently results in a larger radius.

4.5.1 Tracking Under Incomplete Information About Noise

In the first scenario, we suppose that the noise covariances are not known exactly, set

p = 0.5 and q = 2, substitute Qk ← p2Qk, Qµk ← p2Qµk, Rk ← q2Rk, and Rµk ← q2Rµk,

and investigate abilities of the filters to track the vehicle trajectory shown in Fig. 4.2.

Note that p and q may take much larger values if no information is available about noise.

Estimation errors produced by the nodes with different numbers of the links (Table 4.1)

are shown in Fig. 4.3 that leads to several important conclusions:
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Figure 4.3: Estimation errors produced by nodes with micro-filters along the coordinate

x: (a) µKF with the µUFIR filter (1 link) as a benchmark and (b) µUFIR filter with the

µKF (1 link) as a benchmark.

• When no disturbance affects the trajectory (0 6 k < 350), both the µKF and µUFIR

filter produce similar estimates, which are almost invariant to the number of the links.

• The µKF responds to the disturbance δk = 0.03, 350 6 k 6 370, with larger excur-

sions and oscillating transients, while the transient in the µUFIR filter is finished at

k = 458, after Nopt = 88 points. Thus, the µUFIR filter is more robust.

• An increase in the number of the links improves the µKF performance but does not

affect essentially the µUFIR filter. Even with one link, the µUFIR filter produces

more accuracy than the µKF with 13 links.

The root MSEs (RMSEs) sketched in Fig. 4.4 give a more precise picture. For the
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Figure 4.4: RMSEs produced by the nodes with micro filters as functions of the number

of the links along the coordinate x: (a) δk = 0 and (b) δk 6= 0.

undisturbed movement, δk = 0, both filters increase an accuracy at about 12 cm as the

number of the links grows from 1 to 13 (Fig. 4.4a). In the disturbed case (Fig. 4.4b), the

µUFIR filter becomes invariant to the number of the links while the µKF keeps reducing

errors as the number of the links grows. Again we notice that, in both cases, the µUFIR

filter demonstrates better robustness, because the µKF performance is highly affected by

p and q.



Chapter 4: Design of UFIR Filter with Consensus on Measurements for WSNs 59

N
o
is

e
, 
m

(a)

200 400 600 800

100-

100

n

0

µUFIR

(b)

200 400 600 800

10-

10

n

1 link

0

E
s
ti
m

a
ti
o

n
 e

rr
o

r,
 m

µKF

E
s
ti
m

a
ti
o
n
 e

rr
o
r,

 m

µKF

(c)

200

400

600 800

10-

10

n

13 links

0

µUFIR

Figure 4.5: Effect of the impulsive measurement noise on estimation errors: (a) impulsive

noise, (b) 1-link node, and (c) 13-links node.

4.5.2 Effect of Unspecified Impulsive Noise

In the second scenario, a vehicle travels with no external impact, δk = 0, but the WSN

is attacked by impulsive noise caused, for example, by stamping. We simulate this noise

as a Gaussian process, whose variance experiences an increase at two points, k = 300 and

k = 600, as shown in Fig. 4.5a. We set Rk ← q2Rk and Rµk ← q2Rµk with q = 2 and

p = 2. The estimation errors are sketched in Fig. 4.5b and Fig. 4.5c. The results reveal

that both filters respond to the noise splashes with excursions and transients such that the

produced errors become almost equal for one link (Fig. 4.5b). However, an increase of the

number of the links makes the µKF less accurate at k = 300 and k = 600 (Fig. 4.5c).

One may arrive at similar conclusions by observing the RMSEs sketched for q = 1 and

diverse values of p in Fig. 4.6. As can be seen, the µUFIR filter is more accurate here
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Figure 4.6: RMSEs produced by nodes with the µKF and µUFIR filter under the unspec-

ified impulsive measurement noise with q = 1 and p > 1.

for any number of the links. On the contrary, an increase in the number of the links and

growing p result in larger errors produced by the µKF.



Chapter 5

Design of UFIR Filter With

Consensus on Estimates for WSNs

In the previous chapter we developed a UFIR filter with consensus on measurements where

a low-pass and a band-pass filter were implemented on the measurements and transition

matrices before the µUFIR filter. The pre-filtering process reduces considerably the execu-

tion time of the algorithm, however the results are exactly the same as a centralized UFIR

filter so, in essence, the consensus on estimates strategy implemented on the UFIR filter

will only reduce its implementation time. For this reason, in this chapter, we propose a

UFIR filter with consensus on estimates that compensates a centralized filter with an opti-

mal factor and a consensus protocol, obtaining better performance in terms of robustness

and lower root mean squared error.

5.1 Introduction

In recent decades, wireless sensor networks (WSNs) have gone through intensive devel-

opments due to remarkable technological advances and cost reduction achieved in smart

sensing. Accordingly, many ubiquitous and large scale solutions were proposed for WSN

applications in industry, healthcare, and services [12, 13, 14]. Generally, large scale nodes

deployment allows organizing WSNs with a redundant number of measurements of a de-

sired quantity Q. Further processing of data corrupted by noise makes it possible to reduce

61
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the estimation error reciprocally to the number of the nodes. This rule allows exploiting a

massive number of low-cost sensors with a proper balance between the desirable accuracy

and cost. The best noise reduction is typically achieved in WSNs using optimal estimation

and fusion techniques [15, 11, 16, 17], which remain in the developments for diverse WSN

structures [18, 19, 20, 21].

Although WSNs can be organized to be either centralized, decentralized, or distributed

[11], the latter manifested themselves as most powerful and flexible [22, 23, 24]. In such

structures, nodes do not transmit information over long distances that improves battery life.

Also, distributed filtering can be organized using different kinds of consensus in the WSN

that increases estimation accuracy. Consensus can be found between the measurements

[26], estimates [1], information matrices [40], and other dynamic features of the WSN

[122, 123]. It also improves the network fault tolerance by providing an access to estimates

of more than one node. This especially matters for WSNs involved in monitoring vast

environmental areas, such as crop fields and forests.

An idea of consensus on measurements was originally formulated by Olfati-Saber in [26]

and then developed by other authors [112, 21]. The algorithms employ the Kalman filter

(KF) as an estimation platform to process data with known error covariances. The flaws

are that 1) all sensors are supposed to have the same model and 2) the KF-based schemes

demonstrate an ability to diverge under errors in the noise statistics. The consensus on

estimates was also originally proposed by Olfati-Saber [1] and then developed in [118, 124,

125] using the KF. Although higher accuracy was reported, the approach did not take

advantage of useful information, which can be extracted from the noise statistics. To

improve the convergence, a consensus on information was later considered by Li [40]. It

was however noticed that the accuracy may degrade due to an adopted fusion rule [40].

The KF is most popular in the design of fusion algorithms [30, 31] owing to simplicity,

optimality, and low computational burden. For example, the KF-based structure developed

in [1] requires each node to locally aggregate an estimate and the covariance matrix together

with those provided by neighbors and then find a consensus on estimates [118, 124]. In [125],

an extended KF was used to estimate a position of a static target under specific operation

conditions. Due to a lack of prior knowledge of the noise statistics, the pedestrian position
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was first roughly estimated in [126] by an artificial neural network and then improved using

the KF.

Real world dictates that WSNs and state estimators must be robust, scalable, energy

efficient, and fault tolerant [11]. The KF does always meet these needs in view of often

incomplete information of the process and environment [42, 43]. Better robustness is

inherent to finite impulse response (FIR) structures [46, 47] and H∞ filters [9]. For WSNs,

a moving average FIR estimator was designed in [48] assuming a weak observability, a

consensus finite-horizon H∞ filter developed in [3] for missing data, and an unbiased FIR

(UFIR) filter proposed for consensus on measurements in [21] and for measurements with

delayed and missing data in [127]. In [128, 129], a solution was found for WSNs using a

linear optimal weights-based fusion technique assuming correlated noise. First attempts

to design fast UFIR algorithms for WSNs with consensus on estimates were made in [130],

where the design was provided only for autonomous WSNs and requires information about

noise. The necessity to have a more general and robust solution motivates our present

work.

In this chapter, we design a distributed UFIR (dUFIR) filtering algorithm for WSNs

with consensus on estimates and show its better performance against the distributed KF

(dKF) and distributed H∞ (dH∞) filter. We admit that nodes in industrial applications

do not necessarily measure the same states and can be tuned either individually or to some

specifications. We also notice that fast, optimal, and low-memory algorithms are of a top

priority for smart sensors and follow this line.

5.2 Model and Problem Formulation

Let us view a WSN as an undirected graph G(V , E) where each vertex v(i) ∈ V is a node

and each link is an edge of set E , for i ∈ I = {1, . . . , n} and n = |V|. As stated in [25],

nodes v(i) and v(j) reach an agreement if and only if the states are related as x(i) = x(j),

{i, j} ∈ I, i 6= j. If so, the WSN reaches a consensus with a common value called the

group decision value. Because a perfect consensus is unavailable due to process noise, a

consensus protocol is required to minimize a total disagreement in the WSN. It is provided
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by minimizing the Laplacian potential of graph Ψ = 1
2
xTLx, where L is the Laplacian

matrix. A linear distributed protocol for minimizing the total disagreement is formulated

as

u(i) =
J∑
j

[x(j) − x(i)] .

In a general scenario of distributed WSNs, we will suppose that dynamics of a quantity

Q is represented with K states and controlled at each discrete time index k. We will also

assume that J , Jk nodes measure Q at each k and data are available during finite time

due to limited resources. Accordingly, we represent Q with linear state and observation

equations as

xk = Fkxk−1 + Ekuk +Bkwk , (5.1)

yk = Hkxk + vk , (5.2)

y
(i)
k = H

(i)
k xk + v

(i)
k , (5.3)

where xk ∈ RK , uk ∈ RM , Fk ∈ RK×K , Ek ∈ RK×M , and Bk ∈ RK×L. The ith,

i ∈ [1, J ], node measures xk by y
(i)
k ∈ Rp, p 6 K, with H

(i)
k ∈ Rp×K and each node

has J inclusive neighbors. Local data y
(i)
k are united in the observation vector yk =

[ y
(i)
k

T
. . . y

(J)
k

T
]T ∈ RJp with Hk = [H

(i)
k

T
. . . H

(J)
k

T
]T ∈ RJp×K . Noise vectors wk ∈ RL

and vk = [ v
(1)
k

T
. . . v

(J)
k

T
]T ∈ RJp are zero mean, not obligatorily white Gaussian, uncor-

related, and with the covariances Qk = E{wkwTk } ∈ RL×L, Rk = diag[R
(1)
k

T
. . . R

(J)
k

T
]T ∈

RJp×Jp, and R
(i)
k = E{v(i)k v

(i)T

k }.

To apply FIR filtering, we extend (5.1)–(5.3) on a horizon [m, k] of N points, from

m = k −N + 1 to k as [10]

Xm,k = Am,kxm + Sm,kUm,k +Dm,kWm,k , (5.4)

Ym,k = Cm,kxm + Lm,kUm,k +Mm,kWm,k + Vm,k , (5.5)

whereXm,k =
[
xTm xTm+1 . . . xTk

]T
, Ym,k =

[
yTm yTm+1 . . . yTk

]T
, Um,k =

[
uTmu

T
m+1 . . . u

T
k

]T
,

Wm,k =
[
wTm wTm+1 . . . wTk

]T
, and Vm,k =

[
vTm vTm+1 . . . vTk

]T
. The extended matrices

are

Am,k = [ I F T
m+1 . . . (Fm+1

k )T ]T , (5.6)
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Sm,k =



Em 0 . . . 0 0

Fm+1Em Em+1 . . . 0 0
...

...
. . .

...
...

Fm+1
k−1 Em Fm+2

k−1 Em+1 . . . Ek−1 0

Fm+1
k Em Fm+2

k Em+1 . . . FkEk−1 Ek


, (5.7)

Cm,k = C̄m,kAm,k, Lm,k = C̄m,kSm,k, and Mm,k = C̄m,kDm,k, where

C̄m,k = diag(Hm Hm+1 . . . Hk ) , (5.8)

Fgr =


FrFr−1 . . . Fg , g < r + 1

I , g = r + 1

0 , g > r + 1

, (5.9)

and Dm,k is defined by substituting Ek with Bk in (5.7). The local extended vector

Y
(i)
m,k =

[
y
(i)T

m y
(i)T

m+1 . . . y
(i)T

k

]T
is defined via (5.4), where Cm,k, Lm,k, Mm,k, and Vm,k

are substituted with C
(i)
m,k, L

(i)
m,k, M

(i)
m,k and V

(i)
m,k.

The problem can now be formulated as follows. Given model (5.4)–(5.5), we would

like to design a batch dUFIR filter with optimal consensus on estimates by minimizing

the mean square error (MSE). We also wish to represent the batch dUFIR filter with a

computationally efficient iterative form using recursions, test by simulations and real data,

and compare to the dKF and dH∞ filter.

5.3 dUFIR Filter with Consensus on Estimates

It follows from [10] that the distributed FIR estimate for model (5.4)–(5.5) with control

signal Um,k can be written as

x̂k = Θm,kYm,k + (S̄m,k −Θm,kLm,k)Um,k , (5.10)

where

S̄m,k =
[
Fm+1
k Em Fm+2

k Em+1 . . . FkEk−1 Ek
]

is the last row vector in Sm,k and Θm,k is the FIR filter gain. The ith, i ∈ [1, J ], node

provides a local estimate over Y
(i)
m,k as x̂

(i)
k . Then, referring to [1], the consensus between
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local estimates can be found by introducing a vector

Σk =
J∑
j

[x̂
(j)
k − x̂

(i)
k ] ,

combine it with (5.10), and write the estimate as

x̂ck = Θm,kYm,k + (S̄m,k −Θm,kLm,k)Um,k + λkΣk , (5.11)

where λk is a scaling factor to be optimized in the MSE sense.

Because we are concerned of dUFIR filtering, we claim that the filter obeys only the

unbiasedness condition of

E{x̂ck} = E{x̂(i)k } = E{xk} (5.12)

to guarantee that the average estimate is equal to that of the model specified by the last

Nth row vector in (5.4) as

xk = Fm+1
k xm + S̄m,kUm,k + D̄m,kWm,k , (5.13)

where D̄m,k is the last row vector in Dm,k.

By defining the error as εk = xk−x̂ck and considering the error covariance Pk = E{εkεTk },

the optimal factor λoptk can further be found using (5.11) by minimizing the MSE as

λoptk = arg min
λk

{trPk} . (5.14)

Referring to (5.10)–(5.14), the dUFIR filter can now be designed as in the following.

5.3.1 Batch dUFIR Filter

Given (5.4) and (5.5), the estimate (5.11) can be rewritten as

x̂ck =(I + Jλk)[Θm,k(Ym,k − Lm,kUm,k) + S̄m,kUm,k]

− Jλk[Θ(i)
m,k(Y

(i)
m,k − L

(i)
m,kUm,k) + S̄m,kUm,k] , (5.15)

where gains Θm,k and Θ
(i)
m,k will obey the unbiasedness condition (5.12) if we follow [10]

and find

Θm,k = (I + Jλk)GkHT
m,k , (5.16)

Θ
(i)
m,k = G

(i)
k H

(i)T

m,k , (5.17)
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where

Hm,k =



Hm(Fm+1
k )−1

Hm+1(Fm+2
k )−1

...

Hk−1F
−1
k

Hk


, (5.18)

Gk = (HT
m,kHm,k)

−1
is the generalized noise power gain (GNPG) [52], H(i)

m,k is defined by

(5.18) by substituting Hl, l ∈ [m, k], with H
(i)
l , and G

(i)
k = (H(i)T

m,kH
(i)
m,k)

−1
is the GNPG of

the ith filter.

As can be seen, information required to compute Θm,k and Θ
(i)T

m,k is entirely provided by

the K-state space model, which can be preloaded on the nodes. Thus, only measurement

data will be sent by the nodes. This implies a reduction of the number of exchange messages

and improves battery life.

5.3.2 Optimum Consensus Factor λoptk

The optimum factor λoptk can be found by solving the optimization problem (5.14). In

doing so, we refer to (5.11) and (5.13), recall that noise is uncorrelated, and write the error

covariance

Pk = E{εkεTk } = E{(xk − x̂(c)k )(xk − x̂(c)k )T} , (5.19)

as function of λk and by solving the optimization problem (see Appendix A) we obtain the

expression

λoptk = − 1

J
(Θ̃m,kR̄m,kΘ̃

T
m,k −GkG

(i)−1

k Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k )×

(Θ̃m,kR̄m,kΘ̃
T
m,k − 2GkG

(i)−1

k Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k + Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k )−1 . (5.20)

Let us now notice that the implementation of (5.15) with (5.20) may cause a compu-

tational problem due to large matrix dimensions and limited resources of smart sensors.

Therefore, we will next derive computationally efficient and low-memory iterative forms

for (5.15) and (5.20) using recursions and show that the computational cost can be greatly

reduced.
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5.3.3 Iterative dUFIR Algorithm Using Recursions

It follows that the batch dUFIR filter (5.15) with optimal factor λoptk (5.20) requires only

the data noise covariances, while the dKF also requires the initial values and system noise

covariance. Since (5.15) and (5.20) are computationally inefficient due to large matrix

dimensions with N � 1, recursions are required for both (5.15) and (5.20).

Recursions for dUFIR Filter

To compute (5.15) iteratively, we represent x̂ck defined by (5.11) as a combination of the

centralized estimate x̂k given by (5.10) and ith local estimate x̂
(i)
k , which has the same

structure as (5.10),

x̂ck = (I + Jλk)x̂k − Jλkx̂(i)k . (5.21)

Iterative forms for x̂k and x̂
(i)
k can be found using recursions given in [10, 21]. Namely,

for x̂k, one can employ

Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1 , (5.22)

x̂−l = Flx̂l−1 + Elul , (5.23)

x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l ) , (5.24)

where l is an iterative variable ranging from s = k −N +K to k. Iterations (5.22)–(5.24)

can be initialized with Gl−1 = Gs and x̂l−1 = x̂s in short batch forms of

Gs = (HT
m,sHm,s)

−1 , (5.25)

x̂s = GsHT
m,s(Ym,s − Lm,sUm,s) + S̄m,sUm,s . (5.26)

Reasoning similarly, x̂
(i)
k can be obtained via (5.22)–(5.26) by substituting each matrix

(or vector) X with X(i).

Recursions for λoptk

An iterative computation of factor λoptk can be provided if to represent (5.20) as

λoptk = − 1

J
(αk −GkG

(i)−1

k βk)(αk − 2GkG
(i)−1

k βk + βk)
−1 , (5.27)
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where αk = Θ̃m,kR̄m,kΘ̃
T
m,k and βk = Θ

(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k , and use the recursions derived in

Appendix B and Appendix C,

αk = Gk(H
T
k RkHk + F−Tk G−1k−1αk−1G

−1
k−1F

−1
k )Gk (5.28)

βk = G
(i)
k (H

(i)T

k R
(i)
k H

(i)
k + F−Tk G

(i)−1

k−1 βk−1G
(i)−1

k−1 F
−1
k )G

(i)
k , (5.29)

with initial values αk−1 and βk−1 computed in short batch forms as

αs = GsHT
m,sR̄m,sHm,sG

T
s , (5.30)

βs = G(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T

s . (5.31)

Iterative dUFIR Algorithm

A pseudo code of the designed iterative dUFIR algorithm with consensus on estimates

is listed as Algorithm 5. Given N , Algorithm 5 starts computing the initial values at

s = m+K−1 and then updates the results beginning at s+ 1 until the iterative variable l

reaches k. It then computes λoptk and finishes with the output estimate x̂ck. Of importance

is that for time-invariant systems factor λoptk is constant and thus can be preloaded in a

smart sensor to reduce the number of operations in Algorithm 5.

5.4 A Comparison of dUFIR and dKF Algorithms

To show a definitive advantage of the dUFIR filter, we bring along the dKF Algorithm 6

as designed in [1]. The following differences can be indicated:

• Factor λoptk (5.20) of the dUFIR filter is affected by the data noise covariance Rk, but

is invariant to system noise covariance Qk, which is typically less known. In contrast,

the dKF is affected by both these matrices.

• For equal sensors, Gk = 1
J
G

(i)
k and HT

m,sR̄m,sHm,s = JH(i)T

m,s R̄
(i)
m,sH(i)

m,s make λoptk = 0

and the dUFIR estimate becomes invariant to noise, while the dKF still depends on

both Rk and Qk.
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Algorithm 5: Iterative dUFIR Filtering Algorithm

Data: yk, R
(i)
k , Rk, N

Result: x̂k

1 begin

2 for k = N − 1 :∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gs = (HT
m,sHm,s)

−1;

5 G
(i)
s = (H(i)T

m,sH(i)
m,s)−1;

6 x̃s = GsHT
m,s(Ym,s − Lm,sUm,s) + S̄m,sUm,s;

7 x̃
(i)
s = G

(i)
s H(i)T

m,s (Y
(i)
m,s − L(i)

m,sUm,s) + S̄m,sUm,s;

8 αs = GsHT
m,sR̄m,sHm,sG

T
s ;

9 βs = G
(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T

s ;

10 for l = s+ 1 : k do

11 x̂−l = Flx̂l−1 + Elul;

12 x̂
(i)−

l = Flx̂
(i)
l−1 + Elul;

13 Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1;

14 G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1;

15 x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l );

16 x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l );

17 αl = Gl(H
T
l RlHl + F−Tl G−1l−1αl−1G

−1
l−1F

−1
l )Gl;

18 βl = G
(i)
l (H

(i)T

l R
(i)
l H

(i)
l + F−Tl G

(i)−1

l−1 βl−1G
(i)−1

l−1 F−1l )G
(i)
l ;

19 end for

20 λoptk = − 1
J

(αk −GkG
(i)−1

k βk)×

21 (αk − 2GkG
(i)−1

k βk + βk)
−1; x̂ck = (I + Jλk)x̃k − Jλkx̃(i)k ;

22 end for

23 end
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Algorithm 6: Iterative dKF Algorithm

Data: P
(i)
0 ,Qk,R

(j)
k ,x̄

(j)
k ,y

(j)
k ,x̄

(i)
0 = x0

Result: x̂
(i)
k

1 begin

2 for k = 0 :∞ do

3 z
(j)
k = H

(j)T

k R
(j)−1

k y
(j)
k , ∀j ∈ J ;

4 s
(i)
k =

∑
j∈J z

(j)
k ;

5 Z
(j)
k = H

(j)T

k R
(j)−1

k H
(j)
k , ∀j ∈ J ;

6 S
(i)
k =

∑
j∈J Z

(j)
k = HT

k R
−1
k Hk;

7 M
(i)
k = (P

(i)−1

k + S
(i)
k )−1;

8 x̂
(i)
k = x̄

(i)
k +M

(i)
k (s

(i)
k − S

(i)
k x̄

(i)
k ) + εM

(i)
k

∑
j∈J(x̄

(j)
k − x̄

(i)
k );

9 P
(i)
k ← FkM

(i)
k F T

k +BkQkB
T
k ;

10 x̄
(i)
k ← Fkx̂

(i)
k ;

11 end for

12 end

• For different sensors, one may assume that H
(i)
k = H

(j)
k and R

(i)
k = p(i)R∗k, where R∗k

is an average covariance and p(i) is an error factor of the ith sensor, and write

λoptk = − 1

J

P̄ − p(i)

P̄ + (J − 2)p(i)
I (5.32)

where P = [p(i)
T
. . . p(J)

T
]T ∈ RJ and P̄ is an average of P . It then follows that an

increase in J diminishes λoptk , as well as the effect of errors on λoptk . We do not observe

such an effect in the dKF.

Overall, it follows that the dKF is affected by both Rk and Qk, while the dUFIR filter

only by the difference between R
(i)
k of individual sensors. When this difference approaches

zero, the dUFIR filter becomes noise-invariant and thus more robust than the dKF.
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Table 5.1: Nodes Sorted by the Number of Available Links with Neighbors

Number of links Nodes

1 33

2 42

3 13,16,18,25,29,49

4 4,10,11,21,31,34,37,44

5 3,5,8,9,17,28,41

6 6,7,14,24,27,32,43,47,48

7 2,12,15,22,36

8 1,19,23,38,39,40,45

9 26,30,35,46,50

10 20

5.5 Examples of Applications

In this section, we will test the dUFIR Algorithm 5 along with the dKF algorithm described

in [1]. A numerical example will be given for tracking of a circularly travelling and rapidly

maneuvering object. Experimental verification will be provided for robot localization with

known ground truth.

5.5.1 Maneuvering Object Tracking

It has been shown in [21] that the dUFIR filter is more robust than the dKF for consensus

on measurements. We will now consider a similar example, but for consensus on estimates.

A trajectory is simulated at 700 discrete points of an object moving circularly and maneu-

vering suddenly in a time span of 350 6 k 6 370. The WSN is organized to cover an area

of −40 m 6 (x, y) 6 40 m with 50 randomly placed nodes, each with a range of 14 m (Fig.

5.1). The links available for each node as listed in Table 5.1.

The model is specified with F =

 a b

−b a

, a = 0.9996, b = 0.03, and B = I. A part

of the trajectory of 350 6 k 6 370 is simulated by substituting a with a+ 0.03. Gaussian
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Figure 5.1: Simulated WSN with 50 nodes in the area of −40 m 6 (x, y) 6 40 m and 144

links (dashed) due to the nodes range of 14 m. The object trajectory (solid) is circular

with a sudden maneuver changing the radius.

wk = [w1k w2k]
T is generated to have the standard deviation σw = 0.1 m and the covariance

Q = diag(σ2
w σ

2
w ). Each sensor is assumed to measure either the first or second state and

we thus set H(i) = [ 1 0 ] for coordinate x and H(i) = [ 0 1 ] for y. Gaussian vk has the

covariance R
(i)
k = E{v(i)k v

(i)T

k } = (σv + φ)2, where σv = 5 m and φ is uniformly distributed

on [−1, 1]. An optimal horizon Nopt = 88 was found for the dUFIR filter at a test stage.

Effect of uncertainties in λk

To learn the effect of tuning factors αk and βk on λoptk (5.27) via Rk and R
(i)
k , we allow

R
(i)
k ← q2R

(i)
k with q taking values from {1, 1.2, 1.4, 1.8, 2}. The results show that the
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dUFIR output is affected negligibly by 1 6 q 6 2 and an increase in the number of links

decreases the dUFIR filter errors, as expected.

Errors in the noise covariances

To show that the dUFIR filter outperforms the dKF [1] under errors in the noise covari-

ances, we allow Qk ← p2Qk and R
(i)
k ← q2R

(i)
k with p = 0.5 and q = 2. The H∞ filter is

generally more robust than the KF, but still not developed for consensus on estimates. To

find out how the H∞ filter [9] measures up to the dFIR filter, we modify the dKF algorithm

to be the dH∞ algorithm. We do it following [131] by substituting M
(i)
k in Algorithm 6

with M
(i)
k = (P

(i)−1

k + θI + S
(i)
k )−1, where θ is a small positive scalar factor.

Comparative results sketched in Fig. 5.2 suggest that the dUFIR filter responses to

uncertainties faster (during N points) than the dKF, which demonstrates lasting and os-

cillating transients with larger excursions. The dH∞ filter outperforms the dUFIR filter

with θ1 = 0.80768 valid for 10 links in a time span of 350 6 k 6 370 and diverges beginning

at k = 650. It is important that even an insignificant deviation from θ1 to θ2 = 0.80766

turns the dH∞ filter to divergence when an object starts maneuvering. Thus, the dH∞

filter cannot be considered as a good candidate for real life WSN scenarios, at least in our

case.

Figure 5.3 reveals that the dUFIR filter produces smaller errors with an increase in the

number of the links that also speaks in favor of its higher robustness. From Fig. 5.4, one

infers that large errors in the noise covariances make the dKF highly inaccurate, while the

dUFIR filter is almost insensitive to such errors. Even the required Rk does not affect the

dUFIR filter as much as the dKF.

5.5.2 UVG Localization over WSN for Measured Ground Truth

We next employ a trajectory of an unmanned ground vehicle (UVG) (robot) measured at

3000 points with a time step of τ = 0.01 s and available for free use from the MagPIE

dataset [6]. To localize the UVG, we simulate a WSN with 8 nodes deployed to cover the

trajectory as shown in Fig. 5.5. A distance ρ
(i)
k is measured by an ith time-of-flight (ToF)

ranging sensor VL53L0X, which resolution is limited with ∆ρ
(i)
k = 4.8 cm. An angular
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Figure 5.2: Estimation errors along axis x produced by dKF under errors in Qk and R
(i)
k .

The dUFIR filter errors for 1 link are shown as a benchmark. The dH∞ estimates are

shown for two tuning factors θ1 = 0.80768 and θ2 = 0.80766 with an extremely small

difference.

position φ
(i)
k with respect to a basic line is provided by the ith vibration rejecting rate gyro

data sheet ADXRS649 with a resolution of ∆φ
(i)
k = 0.47◦.

Each node has a range of 2 m and can communicate over 5 m. When the UVG travels

within the node range, both ρ
(i)
k and φ

(i)
k are measured, while the altitude is ignored. For

data ρ
(i)
k = ρ̄

(i)
k + ∆ρ

(i)
k and φ

(i)
k = φ̄

(i)
k + ∆φ

(i)
k , where ρ̄

(i)
k and φ̄

(i)
k are average values

and ∆ρ
(i)
k and ∆φ

(i)
k are white Gaussian and uncorrelated with the standard deviations

σρk = |∆ρ(i)k |/3 and σφk = |∆φ(i)
k |/3, we represent the UVG Cartesian coordinates as
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Figure 5.3: Estimation errors along axis x produced by the dUFIR filter under errors in

Qk and R
(i)
k . The dKF errors for 1 link are shown as a benchmark.

x
(i)
k = ρ

(i)
k cosφ

(i)
k = x̄

(i)
k + ∆x

(i)
k and y

(i)
k = ρ

(i)
k sinφ

(i)
k = ȳ

(i)
k + ∆y

(i)
k and approximate with

x
(i)
k = (ρ̄

(i)
k + ∆ρ

(i)
k ) cos(φ̄

(i)
k + ∆φ

(i)
k ) ,

∼= ρ̄
(i)
k cos φ̄

(i)
k + ∆ρ

(i)
k cos φ̄

(i)
k

−∆φ
(i)
k ρ̄

(i)
k sin φ̄

(i)
k , (5.33)

y
(i)
k = (ρ̄

(i)
k + ∆ρ

(i)
k ) sin(φ̄

(i)
k + ∆φ

(i)
k ) ,

∼= ρ̄
(i)
k sin φ̄

(i)
k + ∆ρ

(i)
k sin φ̄

(i)
k

+∆φ
(i)
k ρ̄

(i)
k cos φ̄

(i)
k , (5.34)

where x̄
(i)
k = ρ̄

(i)
k cos φ̄

(i)
k , ȳ

(i)
k = ρ̄

(i)
k sin φ̄

(i)
k , ∆x

(i)
k = ∆ρ

(i)
k cos φ̄

(i)
k − ∆φ

(i)
k ρ̄

(i)
k sin φ̄

(i)
k , and

∆y
(i)
k = ∆ρ

(i)
k sin φ̄

(i)
k + ∆φ

(i)
k ρ̄

(i)
k cos φ̄

(i)
k .

We next define the measurement noise variances as σ
(i)2

xk = E{∆x(i)
2

k } and σ
(i)2

yk =
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Figure 5.4: Root MSE (RMSEs) as functions of the number of links produced by the

dUFIR filter and dKF under p 6= 1 and q 6= 1. Factor λoptk of the dUFIR filter is affected

by q = {1, 1.2, 1.4, 1.8, 2}.

E{∆y(i)
2

k }, ignore products of small and uncorrelated ∆ρ
(i)
k and ∆φ

(i)
k , provide

σ
(i)
xk

2
= σ2

ρk cos2 φ̄k + σ2
φkρ̄

2
k sin2 φ̄k (5.35)

=
(∆ρ

(i)
k )2

9
cos2 φ̄k +

(∆φ
(i)
k )2

9
ρ̄2k sin2 φ̄k

σ
(i)
yk

2
= σ2

ρk sin2 φ̄k + σ2
φkρ̄

2
k cos2 φ̄k

=
(∆ρ

(i)
k )2

9
sin2 φ̄k +

(∆φ
(i)
k )2

9
ρ̄2k cos2 φ̄k , (5.36)

and specify the measurement noise covariance with

R
(i)
k =

 σ
(i)
xk

2
0

0 σ
(i)
yk

2

 .
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Figure 5.5: A WSN covering a part of the UGV ground truth trajectory (dashed).

Next, we represent the UVG dynamics in state space with

A =


1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1

 , H(i) =

 1 0 0 0

0 0 1 0

 ,

B =


τ/2 0

1 0

0 τ/2

0 1

 , Q =

 σ2
w2 0

0 σ2
w4

 ,

where σ2
w2 and σ2

w4 are variances in the second and fourth states (velocities along x and y,

respectively). For the average UVG velocity of 5.4 km/hour in the ground truth, we accept

errors of 20 %, which gives σ2
w2 = σ2

w4 = 0.09 m2/s2, and find Nopt = 22. Nodes available

for the UVG at each time index k due to limited range are listed in Table 5.2.

Trajectory estimation via the WSN (Fig. 5.6) is obtained by combining estimates by

nodes 8, 3, 5, 4, 6 and 2 (bolded in Table 5.2), which communicate with nearest neighbors

(not bolded in Table 5.2). To test the algorithms, we consider several possible scenarios

with a purpose of tuning filters as accurately as possible. To this end, we learn effects of

deviations from the values ∆ρk = 4.8 cm and ∆φk = 0.47◦ specified in the maximum sense

on the filter performance via (5.35) and (5.36). In the first four scenarios, the dUFIR filter

is tuned for Nopt = 22. In the remaining ones, Nopt is set individually to each filter. The

scenarios are the following:
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Table 5.2: Nodes Available in Different Time Intervals of Index k

Time index k Node index

1-300 8

301-378 3,8

379-437 3

438-674 3,5

675-731 5

732-810 4,5

811-856 4

857-859 4,7

860-901 4,7

902-2154 1,4,6,7

2155-2179 1,2,4,6,7

2180-2254 1,2,6,7

2255-2319 1,2,6

2320-2387 2,6

2388-3000 2

1. SC-1: Set ∆ρ
(i)
k = 4.8 cm and ∆φ

(i)
k = 0.47◦.

2. SC-2: Reduce ∆ρ
(i)
k and ∆φ

(i)
k by the factor of 3 to be closer to actual sensor noise.

3. SC-3: Distribute sensor errors uniformly as ∆ρ
(i)
k ∼ U(3.6, 4.8), in cm, and ∆φ

(i)
k ∼

U(0.1173◦, 0.47◦), but set ∆ρ
(i)
k = 4.8 cm and ∆φ

(i)
k = 0.47◦.

4. SC-4: Reduce ∆ρ
(i)
k ∼ U(3.6, 4.8), in cm, and ∆φ

(i)
k ∼ U(0.1173◦, 0.47◦) by the factor

of 3 and set ∆ρ
(i)
k = 4.8 cm and ∆φ

(i)
k = 0.47◦.

5. SC-5: Set ∆ρ
(i)
k randomly taken from U(3.6, 4.8), in cm, and ∆φ

(i)
k from U(0.1173◦, 0.47◦).

Set N
(i)
opt individually to each sensor.

6. SC-6: Consider SC-5 for Q← p2Qk with p = 3.
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The absolute estimation errors are sketched in Fig. 5.6 along the coordinate x and one

can easily trace the differences. It follows that the dUFIR filter generally outperforms the
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Figure 5.6: Absolute estimation errors along the coordinate x produced by the dKF and

dUFIR filter for six scenarios, (SC-1)–(SC-6).

dKF in each of the above scenarios. To support this inference, the RMSEs computed by the

root square of the sum of the MSEs along coordinates x and y are listed in Table 5.3, where

the minimum values are bolded. It is also seen that errors in both filters become minimal
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Table 5.3: RMSEs Produced by dKF and dUFIR Filter

Scenario dKF dUFIR

SC1 0.0077 0.0059

SC2 0.0092 0.0052

SC3 0.0063 0.0052

SC4 0.0076 0.0052

SC5 0.0065 0.0052

SC6 0.0065 0.0050

when the UGV moves very slowly (1000 6 k 6 2000) and grow otherwise. Furthermore,

any change in the speed results in excursions, as at the beginning part of the trajectory,

0 6 k 6 900.

A less favorable case for the dUFIR filter is when the UGV crosses straight lines con-

necting nodes 3 and 8 when 301 6 k 6 378 and 1, 2, and 6 when 2255 6 k 6 2319. Here,

the dUFIR filter produces larger errors owing to the viewing angle ϕ of about π. For such

an unilateral nodes deployments, the optimal ϕ is known to be π/2 [132] and errors grow

essentially when ϕ→ 0 and ϕ→ π [133]. Surprisingly, the dKF is less sensitive to ϕ in this

area that needs further investigations. However, this case can easily be avoided in WSNs

with bilateral nodes deployment.

We finally measure the computation time required by the batch and iterative algorithms

as shown in Fig. 5.7 for a WSN organized with one dummy node and 1-9 neighbors. We

provide it using Matlab R2016a operating on Intel Core i5 CPU(2.5 GHz) with 4.00 GB

RAM under a macOS HighSierra ver. 10.13.6. As can be seen, Algorithm 5 operates faster

than others and is almost invariant to the number of neighbors.
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Figure 5.7: Measured computation time consumed by Algorithm 5 and batch filters (5.15)

and (5.20) on different horizons N .



Chapter 6

Design of UFIR Filter With

Consensus on Estimates for unstable

WSNs

As demonstrated in the previous chapter, the consensus and optimization factor λk allows

us to reduce the RMSE of the estimation while showing better robustness than KF against

unexpected model errors, noise uncertainties and time-varying noise statistics. Despite

the good results, the algorithm was tested assuming stable WSNs. In a real life scenario,

WSNs are subject to many external factors that will cause missing data. In this chapter,

we further our research by implementing a prediction feature on the dUFIR filter which

allows to obtain robust estimates against missing measurements.

6.1 Introduction

Target tracking of moving objects is an application that benefits from unique advantages

of wireless sensor networks (WSNs) [134, 135, 136] such as a massive nodes deployment,

capacity of distributed processing, and ubiquitous integration with the environment. An

example of indoor target tracking is shown in Fig. 6.1, where a WSN covers the moving

object trajectory. A specific is that, due to the WSN restrictions, algorithms capable of

estimating the position of a mobile object must comply with a sufficient accuracy and

83
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Figure 6.1: An example of a WSN composed of 150 nodes with 687 links (dotted). The

WSN covers the moving object trajectory (solid) with the number of the links limited with

the nodes ranges.

robustness required to provide tracking in the presence of model errors, missing data, and

not completely known noise statistics. Therefore, optimal estimators and fusion techniques

taking advantages of redundant and distributed measurements are often used to provide

best noise reduction for WSN structures [15, 11, 16, 17, 18, 19, 20, 21].

For target tracking, the WSNs can be organized to have either a centralized, decen-

tralized, or distributed structure [11]. The latter is known to be most powerful, flexible,

and energy efficient [22, 23, 24]. Furthermore, it may provide even better estimates if to

take advantage of different kinds of consensuses such as on measurements [26], estimates

[1], information matrices [40], or other dynamic features [122, 123].

Among possible fusion techniques, the Kalman filter (KF)-based estimator remain most

popular due to simplicity, optimality, and low computational burden [30, 31, 126, 137].

However, it is known that the optimality does not always go along with the robustness and

fault tolerance required by the WSN operation conditions. The problem is that optimal

estimators require all information about an object and its measurement, which is typically
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unavailable in practice [42, 43].

Another issue is that measurements via WSNs are often accompanied with missing data

due to external factors such as electromagnetic interference, unstable links, faulty behavior

of the sensors, etc. [138]. Therefore, an algorithm must be capable of providing accurate

estimation under temporary lost data as shown in many papers. For example, the state

error covariance is bounded in [139] by introducing a critical value for the data arrival rate.

In [30], the issue was solved by combining node estimates at the previous and current time

points. The problem complicates by the fact that the KF estimate is affected by model

errors and inappropriate noise behavior. Moreover, errors caused by missed data propagate

along the entire estimation process.

As an alternative to the KF, there was developed a more robust approach employing

properties of finite impulse response (FIR) filtering [43, 10]. Based upon this approach,

the authors of [31] proposed a fusion technique using the optimal unbiased FIR (OUFIR)

filter, which is more robust than the KF. In [21, 130], different types of consensus were

taken into account using advantages of the unbiased FIR (UFIR) filter, which performs

better than the KF under the real world operating conditions. Nevertheless, still no UFIR

solution was addressed to designers of distributed WSNs with missing data that motivates

our present work.

In this chapter, we design a distributed UFIR (dUFIR) filter for object tracking via

WSNs with consensus on estimates under measurements with missing data. We show

that the dUFIR filter outperforms the distributed KF (dKF) in terms of accuracy and

robustness.

6.2 Moving Object Model in Distributed WSNs and

Problem Formulation

In the state-space formulation, dynamics of a moving object can be described in discrete

time index k and K-state space for a general scenario of distributed WSNs with missing
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data using the following equations,

xk = Fkxk−1 +Bkwk , (6.1)

ȳ
(i)
k = H

(i)
k Fkxk−1 , (6.2)

y
(i)
k = γk(H

(i)
k xk + v

(i)
k ) + (1− γk)ȳ(i)k , (6.3)

yk = Hkxx + vk , (6.4)

where xk ∈ RK , Fk ∈ RK×K , and Bk ∈ RK×L. Measurements of Qk are provided at each

k with J , Jk nodes. The ith, i ∈ [1, J ], node measures xk by y
(i)
k ∈ Rp, p 6 K, with

H
(i)
k ∈ Rp×K and each node has J inclusive neighbors. Local data y

(i)
k are united in the

observation vector yk = [ y
(i)
k

T
. . . y

(J)
k

T
]T ∈ RJp with Hk = [H

(i)
k

T
. . . H

(J)
k

T
]T ∈ RJp×K .

Noise vectors wk ∈ RL and vk = [ v
(1)
k

T
. . . v

(n)
k

T
]T ∈ RJp are zero mean, not obligatorily

white Gaussian, uncorrelated, and with the covariances Qk = E{wkwTk } ∈ RL×L, Rk =

diag[R
(1)
k

T
. . . R

(n)
k

T
]T ∈ RJp×Jp, and R

(i)
k = E{v(i)k v

(i)T

k }.

A binary variable γk serves as an indicator of whether data exist (γk = 1) or not

(γk = 0). In the following section, we present the design of a batch dUFIR filter with

optimal consensus on estimates that minimizes the mean square error (MSE) and show

that it outperforms the dKF in terms of the localization robustness for measurements with

missing data.

6.3 Tracking Filtering Algorithms with Consensus on

Estimates

If to regard a WSN as an undirected graph G = (V , E) where each vertex v(i) ∈ V is

a node and each link is an edge of set E , for i ∈ I = {1, . . . , n} and n = |V|. As

stated in [25], nodes v(i) and v(j) reach an agreement if and only if states are related as

x(i) = x(j), {i, j} ∈ I, i 6= j. Under such a condition, the network reaches a consensus with

the common value of all nodes called the group decision value.

For the nodes to reach an agreement, a consensus protocol must minimize the total dis-

agreement in the network by minimizing the Laplacian potential of the graph Ψ = 1
2
xTLx,

where L is the Laplacian matrix. A known linear distributed protocol for minimizing the
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total disagreement is

u(i) =
J∑
j

(x(j) − x(i)). (6.5)

In what follows, we achieve the consensus of estimates by implementing (6.5) in two

different algorithms: one based on the dKF and the other one on the dUFIR filter. The

dKF requires that every first order neighbor shares the estimate of a local KF and that

the ith node implements another KF with the consensus protocol (6.5) to reach the group

decision value. In the dUFIR, the consensus on estimates is achieved using data only of

the inclusive neighbors in (6.5). Details of the designed algorithms follow next.

6.3.1 Distributed KF Algorithm

The dKF with consensus on estimates was proposed in [1]. An idea behind this solution

is to provide individual estimates in each node using the KF and then use another KF

to fuse them. A pseudo code of the dKF algorithm augmented with a prediction option

for temporary lost data is shown as Algorithm 7. Its specific is that, in order to reach a

consensus on estimate when some data are temporary lost, an unavailable measurement

at k is predicted (lines 3–5) via the available estimate x̄
(j)
k at k − 1 in each of the nodes.

Because all data are needed from all of the neighbors, the dKF algorithm must ensure that

the prediction is available from all of the neighbors.

6.3.2 Distributed UFIR Filter Algorithm

Unlike the dKF, which operates from one point to another using optimal recursions, the

UFIR filter operates on finite horizons of N points and therefore exists in the convolution-

based batch form and fast iterative form using recursions. Below, we show both these

forms.
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Algorithm 7: Iterative dKF Algorithm

Data: P
(i)
0 ,Qk,R

(j)
k ,x̄

(j)
k ,y

(j)
k ,x̄

(i)
0 = x0

Result: x̂
(i)
k

1 begin

2 for k = 0 :∞ do

3 if γk = 0 then

4 y
(j)
k = H

(j)
k Fkx̂

(j)
k−1;

5 end if

6 z
(j)
k = H

(j)T

k R
(j)−1

k y
(j)
k , ∀j ∈ J ;

7 s
(i)
k =

∑
j∈J z

(j)
k ;

8 Z
(j)
k = H

(j)T

k R
(j)−1

k H
(j)
k , ∀j ∈ J ;

9 S
(i)
k =

∑
j∈J Z

(j)
k ;

10 M
(i)
k = (P

(i)−1

k + S
(i)
k )−1;

11 x̂
(i)
k = x̄

(i)
k +M

(i)
k (s

(i)
k − S

(i)
k x̄

(i)
k ) + εM

(i)
k

∑
j∈J(x̄

(j)
k − x̄

(i)
k );

12 P
(i)
k ← FkM

(i)
k F T

k +BkQkB
T
k ;

13 x̄
(i)
k ← Fkx̂

(i)
k ;

14 end for

15 end

Extended State-Space Model

To apply FIR filtering, model (6.1)–(6.4) for γk = 1 must be extended on a horizon [m, k]

of N points, from m = k −N + 1 to k, as in the following [10],

Xm,k = Am,kxm +Dm,kWm,k , (6.6)

Ym,k = Cm,kxm +Mm,kWm,k + Vm,k , (6.7)

Y
(i)
m,k = C

(i)
m,kxm +M

(i)
m,kWm,k + V

(i)
m,k , (6.8)

whereXm,k =
[
xTm xTm+1 . . . xTk

]T
, Ym,k =

[
yTm yTm+1 . . . yTk

]T
, Wm,k =

[
wTm wTm+1 . . . wTk

]T
,

Vm,k =
[
vTm vTm+1 . . . vTk

]T
, Y

(i)
m,k =

[
y
(i)T

m y
(i)T

m+1 . . . y
(i)T

k

]T
, V

(i)
m,k =

[
v
(i)T

m v
(i)T

m+1 . . . v
(i)T

k

]T
,

and the extended matrices are

Am,k = [ I F T
m+1 . . . (Fm+1

k−1 )T ]T , (6.9)
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Dm,k =



Bm 0 . . . 0 0

Fm+1Bm Bm+1 . . . 0 0
...

...
. . .

...
...

Fm+1
k−1 Bm Fm+2

k−1 Bm+1 . . . Bk−1 0

Fm+1
k Bm Fm+2

k Bm+1 . . . FkBk−1 Bk


, , (6.10)

Cm,k = C̄m,kAm,k, Mm,k = C̄m,kDm,k, C
(i)
m,k = C̄

(i)
m,kAm,k, M

(i)
m,k = C̄

(i)
m,kDm,k, where

C̄m,k = diag(Hm Hm+1 . . . Hk ) , (6.11)

C̄
(i)
m,k = diag(H(i)

m H
(i)
m+1 . . . H

(i)
k ) , (6.12)

Fgr =


FrFr−1 . . . Fg , g < r + 1

I , g = r + 1

0 , g > r + 1

. (6.13)

Based on model (6.6)–(6.8), the batch dUFIR filter can be designed as shown below.

Batch dUFIR Filter

The FIR estimate for model (6.6)–(6.8) can be obtained as

x̂k = Θm,kYm,k , (6.14)

where Θm,k is the FIR filter gain (impulse response) obeying some cost function [10]. To

obtain the dUFIR filter, let us suppose that the ith node provides a local estimate over

data (6.8) as x̂
(i)
k . Then, referring to [1], the consensus between the local estimates can be

found if to introduce a vector Σk =
∑J

j [x̂
(j)
k − x̂

(i)
k ], combine it with (6.14), and write the

estimate as

x̂ck = Θm,kYm,k + λkΣk , (6.15)

where λk is a scaling factor to be optimized in the MSE sense.

For the dUFIR filter, gain Θm,k must be found to obey the unbiased condition

E{x̂ck} = E{x̂(i)k } = E{xk}

and the dUFIR estimate will thus be robust against errors in the noise statistics and initial

values [10].
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Referring to (6.6)–(6.8), estimate (6.15) can be rewritten as

x̂ck = Θm,kYm,k + JλkΘm,kYm,k − JλkΘ(i)
m,kY

(i)
m,k , (6.16)

where gains Θm,k and Θ
(i)
m,k, which obey the unbiasedness condition [10], are represented

with

Θm,k = (I + Jλk)(HT
m,kHm,k)

−1HT
m,k , (6.17a)

= (I + Jλk)GkHT
m,k , (6.17b)

Θ
(i)
m,k = (H(i)T

m,kH
(i)
m,k)

−1
H(i)T

m,k , (6.18a)

= G
(i)
k H

(i)T

m,k , (6.18b)

where G
(i)
k = (H(i)T

m,kH
(i)
m,k)

−1
is the generalized noise power gain (GNPG) [52], and

Hm,k =



Hm(Fm+1
k )−1

Hm+1(Fm+2
k )−1

...

Hk−1F
−1
k

Hk


, (6.19)

H(i)
m,k =



H
(i)
m (Fm+1

k )−1

H
(i)
m+1(Fm+2

k )−1

...

H
(i)
k−1F

−1
k

H
(i)
k


. (6.20)

As can be seen, information required to compute Θm,k and Θ
(i)T

m,k is entirely provided by

the K-state space model, which can be preloaded on the nodes. Thus, only measurement

data will be sent by the node, unlike the dKF case implying that each node must wait for

the individual estimate of its neighbors. This reduces the number of exchange messages

and improves battery life.
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The optimal scaling factor λoptk can be obtained by solving the optimization problem

λoptk = arg min
λk

{trPk(λk)} ,

where Pk = E{εkεTk } is the error covariance matrix and εk = xk − x̂ck is the estimation

error. By solving the optimization problem, λoptk can be shown to be (see Appendix A)

λoptk = − 1

J
(Θ̃m,kR̄m,kΘ̃

T
m,k −GkG

(i)−1

k Θ
(i)
m,k

×R̄(i)
m,kΘ

(i)T

m,k )(Θ̃m,kR̄m,kΘ̃
T
m,k − 2GkG

(i)−1

k

×Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k + Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k )−1 . (6.21)

where Θ̃m,k = GkHT
m,k and

R̄m,k = E{vm,kvTm,k} = diag(Rm . . . Rk) , (6.22)

R̄
(i)
m,k = E{v(i)m,kv

(i)T

m,k } = diag(R(i)
m . . . R

(i)
k ) . (6.23)

Although (6.21) is affected by measurement noise, it remains invariant to system noise,

that definitely results in higher robustness of the dUFIR filter.

A flaw of the batch dUFIR filter is that the implementation of (6.15) with (6.21) on a

high-density WSN and large horizons N require a large-dimension matrix operation, which

is not suitable for smart sensors. A fast computation can be provided using an iterative

algorithm, which we will consider next.

Iterative dUFIR Filtering Algorithm

An iterative form of the estimate x̂ck can be obtained if to represent x̂ck with a sum of a

centralized estimate x̂k defined by (6.14) and a local estimate x̂
(i)
k = Θ

(i)
m,kY

(i)
m,k. That allows

writing (6.16) as

x̂ck = (I + Jλk)x̂k − Jλkx̂(i)k , (6.24)

and, following [10, 21], find recursions. Namely, for x̂k, one can employ from [10]

Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1 , (6.25)

x̂−l = Flx̂l−1 , (6.26)

x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l ) , (6.27)
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and

G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1 , (6.28)

x̂
(i)−

l = Flx̂
(i)
l−1 , (6.29)

x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l ) , (6.30)

where l is an iterative variable starting at s = k −N + K, where K is the number of the

states, and ending when l = k.

Iterations using (6.25)–(6.27) can be initialized with Gl−1 = Gs and x̂l−1 = x̂s in short

batch forms of

Gs = (HT
m,sHm,s)

−1 , (6.31)

x̂s = GsHT
m,sYm,s . (6.32)

Following the same strategy, iterations (6.28)–(6.30) for x̂
(i)
k can be initialized with

G(i)
s = (H(i)T

m,sH(i)
m,s)

−1 , (6.33)

x̂(i)s = G(i)
s H(i)T

m,s Y
(i)
m,s . (6.34)

Finally, fast computation of factor λoptk can be provided if to represent (6.21) as

λoptk = − 1

J
(αk −GkG

(i)−1

k βk)(αk − 2GkG
(i)−1

k βk + βk)
−1 , (6.35)

where αk = Θ̃m,kR̄m,kΘ̃
T
m,k and βk = Θ

(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k , and use the recursions (see Appendix

A and Appendix A)

αk = Gk(H
T
k RkHk + F−Tk G−1k−1αk−1G

−1
k−1F

−1
k )Gk (6.36)

βk = G
(i)
k (H

(i)T

k R
(i)
k H

(i)
k + F−Tk G

(i)−1

k−1 βk−1G
(i)−1

k−1 F
−1
k )G

(i)
k , (6.37)

which initial values αk−1 and βk−1 can be computed in short batch forms as

αs = GsHT
m,sR̄m,sHm,sG

T
s , (6.38)

βs = G(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T

s . (6.39)

A pseudo code of the predictive iterative dUFIR algorithm with consensus on estimates

designed for measurements with temporary missing data is listed as Algorithm 8. Given
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Algorithm 8: Iterative dUFIR Filtering Algorithm

Data: yk, R
(i)
k , Rk, N

Result: x̂k

1 begin

2 for k = N − 1 :∞ do

3 m = k −N + 1, s = m+K − 1;

4 Gs = (HT
m,sHm,s)

−1;

5 G
(i)
s = (H(i)T

m,sH(i)
m,s)−1;

6 if γk = 0 then

7 y
(j)
k = H

(j)
k Fkx̂

(j)
k−1;

8 end if

9 x̃s = GsHT
m,sYm,s;

10 x̃
(i)
s = G

(i)
s H(i)T

m,s Y
(i)
m,s;

11 αs = GsHT
m,sR̄m,sHm,sG

T
s ;

12 βs = G
(i)
s H(i)T

m,s R̄
(i)
m,sH(i)

m,sG
(i)T

s ;

13 for l = s+ 1 : k do

14 x̂−l = Flx̂l−1;

15 x̂
(i)−

l = Flx̂
(i)
l−1;

16 Gl = [HT
l Hl + (FlGl−1F

T
l )−1]−1;

17 G
(i)
l = [H

(i)T

l H
(i)
l + (FlG

(i)
l−1F

T
l )−1]−1;

18 x̂l = x̂−l +GlH
T
l (yl −Hlx̂

−
l );

19 x̂
(i)
l = x̂

(i)−

l +G
(i)
l H

(i)T

l (y
(i)
l −H

(i)
l x̂

(i)−

l );

20 αl = Gl(H
T
l RlHl + F−Tl G−1l−1αl−1G

−1
l−1F

−1
l )Gl;

21 βl = G
(i)
l (H

(i)T

l R
(i)
l H

(i)
l + F−Tl G

(i)−1

l−1 βl−1G
(i)−1

l−1 F−1l )G
(i)
l ;

22 end for

23 λk = − 1
J

(αk −GkG
(i)−1

k βk)(αk − 2GkG
(i)−1

k βk + βk)

x̂ck = (I + Jλk)x̃k − Jλkx̃(i)k ;

24 end for

25 end

26 † First data y0, y1,..., yN−1 must be available.
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Table 6.1: Nodes Sorted by the Number of Available Links with Neighbors

Number of links

2 3 4 5 6 7 9

Node 8,12,16 1 4,5,6,13,14,15 18 2,3,17 7,11 9,10

a horizon of N points, Algorithm 8 starts computing the initial values at s = m + K − 1

and then updates the results beginning at s+ 1 until the iterative variable l reaches k. It

then computes the optimal consensus factor λk and finishes with the output estimate x̂ck.

In what follows, we will test Algorithm 8 along with the dKF Algorithm 7 originally

proposed in [1]. A numerical example will be given for tracking of a circularly traveling

and rapidly maneuvering object. Experimental verification will be provided for robot

localization with measured ground truth.

6.4 Maneuvering Object Tracking with Missing Data

To conduct this experiment, we employ the ground truth trajectory available for free from

the MagPIE project dataset [6]. We consider a random WSN composed of 18 nodes whose

connections are sketched in Fig. 6.2 and listed in Table 6.1. Every node is capable of

measuring the object Cartesian coordinates x and y of the location of the mobile robot.

Measurements were simulated by adding white Gaussian noise to the ground truth data in

each of the sensors. Noise was generated to have the variance σ
(i)
v = 0.25 + φ, where φ is

uniformly distributed as φ = U(0.5,−0.5).

Supposing that some data can be lost in communication channels, we remove some

data obeying the binomial distribution with the probability of P = 0.9 as shown in Fig

6.3. Note that each node has different sets of lost data.

The moving object dynamics are given in state space by

A =


1 τ 0 0

0 1 0 0

0 0 1 τ

0 0 0 1

 , H(i) =

 1 0 0 0

0 0 1 0

 ,
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Figure 6.2: WSN over a ground truth trajectory available from the MagPIE project dataset

[6].

B =


τ/2 0

1 0

0 τ/2

0 1

 , Q =

 σ2
w 0

0 σ2
w

 ,

where σw = 0.76 m/s. For dUFIR, the optimal horizon Nopt was found at a test stage to

be 53 in average.

As stated by (6.21), the optimal factor λoptk depends on the appropriate knowledge of

the noise statistics. To analyze the robustness of the algorithms, we let Qk ← (0.1)2Qk

and R
(i)
k ← q(i)

2
R

(i)
k where q(i) = U(1, 2), meaning that each sensor has different errors in

the noise statistics.

As has been shown in [21], the estimation error decreases by an increase in the number

of the links. As follows from Fig. 6.4 sketching the RMSE produced by each node, this also

holds true for the consensus on estimates. In fact, despite the effect of noise uncertainties

in (6.20), the dUFIR filter errors range in Fig. 6.4 much lower than by the dKF. Also, the

dUFIR filter demonstrates lesser variations in the individual RMSEs. The latter means

that the dUFIR filter provided a better consensus than the dKF. Effect of errors in the noise

covariance on the dKF estimate is easily seen in Fig. 6.5. Due to noise uncertainties, dKF

fails to mantain low estimation errors, which is more evident as the number of neighbors
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Figure 6.3: Measurements along coordinate x with missing data for: a) node 10 and b)

node 12.

is small (Fig. 6.5 a). However, even when the number of neighbors increases, dUFIR still

outperforms dKF (Fig. 6.5 b).

6.5 Vehicle Localization over WSN with Missing Data

and Time-Varying Model Noise

In this section we consider a WSN with 30 nodes, which covers a trajectory of an unmanned

ground vehicle (UGV) (robot). The trajectory shown in Fig. 6.6 is available for free use

from the MagPIE dataset [6]. Each node is equipped with a time-of-flight (ToF) ranging

sensor VL53L0X and a MEMS gyro ADXRS649. The measuring distance ρ
(i)
k of the ith

ToF sensor is limited with 2 m and an accuracy of ∆ρ
(i)
k = 4.8 cm. The MEMS gyro has an

angular resolution of ∆φ
(i)
k = 0.47◦ for a measured angle φ

(i)
k . The communication range

of each node is limited with 5 m.

When an UGV enters in the node range, a distance and an angle are measured as
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ρ
(i)
k = ρ̄

(i)
k + ∆ρ

(i)
k and φ

(i)
k = φ̄

(i)
k + ∆φ

(i)
k , respectively, with a sampling time of T =

0.01s, where ρ̄
(i)
k and φ̄

(i)
k are average values and ∆ρ

(i)
k and ∆φ

(i)
k are white Gaussian and

uncorrelated with the standard deviations of σρk = |∆ρ(i)k |/3 and σφk = |∆φ(i)
k |/3. The

UGV altitude is ignored in our experiment. To avoid nonlinearities inherent to polar

coordinates, we represent the UGV Cartesian coordinates as x
(i)
k = ρ

(i)
k cosφ

(i)
k = x̄

(i)
k +∆x

(i)
k

and y
(i)
k = ρ

(i)
k sinφ

(i)
k = ȳ

(i)
k + ∆y

(i)
k and approximate with

x
(i)
k = (ρ̄

(i)
k + ∆ρ

(i)
k ) cos(φ̄

(i)
k + ∆φ

(i)
k ) ,

∼= ρ̄
(i)
k cos φ̄

(i)
k + ∆ρ

(i)
k cos φ̄

(i)
k −∆φ

(i)
k ρ̄

(i)
k sin φ̄

(i)
k ,

(6.40)

y
(i)
k = (ρ̄

(i)
k + ∆ρ

(i)
k ) sin(φ̄

(i)
k + ∆φ

(i)
k ) ,

∼= ρ̄
(i)
k sin φ̄

(i)
k + ∆ρ

(i)
k sin φ̄

(i)
k + ∆φ

(i)
k ρ̄

(i)
k cos φ̄

(i)
k ,

(6.41)

where x̄
(i)
k = ρ̄

(i)
k cos φ̄

(i)
k , ȳ

(i)
k = ρ̄

(i)
k sin φ̄

(i)
k , ∆x

(i)
k = ∆ρ

(i)
k cos φ̄

(i)
k − ∆φ

(i)
k ρ̄

(i)
k sin φ̄

(i)
k , and
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Figure 6.5: Estimation error produced by the dUFIR filter and dKF under error in the

noise covariances: a) node 12 with 2 links and b) node 10 with 9 links.

∆y
(i)
k = ∆ρ

(i)
k sin φ̄

(i)
k + ∆φ

(i)
k ρ̄

(i)
k cos φ̄

(i)
k .

For this model, we define the measurement noise variances as σ
(i)2

xk = E{∆x(i)
2

k } and

σ2
yk = E{∆y(i)

2

k }, ignore products of small and uncorrelated values ∆ρ
(i)
k and ∆φ

(i)
k , provide

σ
(i)
xk = σ2

ρk cos2 φ̄k + σ2
φkρ̄

2
k sin2 φ̄k (6.42)

=
(∆ρ

(i)
k )2

9
cos2 φ̄k +

(∆φ
(i)
k )2

9
ρ̄2k sin2 φ̄k

σ
(i)
yk = σ2

ρk sin2 φ̄k + σ2
φkρ̄

2
k cos2 φ̄k

=
(∆ρ

(i)
k )2

9
sin2 φ̄k +

(∆φ
(i)
k )2

9
ρ̄2k cos2 φ̄k , (6.43)

and describe the time-varying measurement noise covariance matrix as

R
(i)
k =

 σ
(i)
xk 0

0 σ
(i)
yk

 .
The UGV dynamics and the covariance Q are exactly the same as in the previous section.

The nodes available for the UGV at each k due to limited range are listed in Table 6.2.
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Table 6.2: Nodes Available in Different Time Intervals of Index k

Time index k Node index Time index k Node index

1 - 89 17,20,21 1208 -1287 22,26,27

90 - 90 20,21 1287 -1290 22,26

91 - 123 2,20,21 1290 -1324 5,22,26

124 - 165 2,21 1324 -1343 5,22

166 - 277 2 1343 -1404 5,22,30

278 - 300 2,11 1404 -1417 5,30

301 - 324 2,4,11 1417 -1425 5,25,30

325 - 397 4,11 1425 -1467 5,23,25,30

398 - 464 4,10,11 1467 -1476 23,25,30

465 - 481 10,11 1476 -1514 19,23,25,30

482 - 486 7,10,11 1514 -1534 19,23,30

487 - 502 7,10 1534 -1559 19,23

503 - 586 7,10,15 1559 -1602 12,19,23

587 - 624 7,15 1602 -1619 12,19,23,28

625 - 652 7,15,24 1619 -1681 12,19,28

653 - 668 7,24 1681 -1712 12,28

669 - 690 24 1712 -1714 12,14,28

691 - 739 18,24 1714 -1792 14,28

740 - 772 18,24,29 1792 -1817 14

773 - 797 1,18,24,29 1817 -1892 6,14

798 - 836 1,18,29 1892 -1946 6

837 - 898 1,29 1946 -1980 6,13

899 - 931 1,9,29 1980 -2037 13

932 - 962 1,9 2037 -2117 3,13

963 - 1066 9 2117 -2135 3

1067 - 1087 9,27 2135 -2200 3,16

1088 - 1105 27 2200 -2228 16

1106 - 1207 26,27 2228 -2300 8,16
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Figure 6.6: A WSN covering the UGV trajectory available from the MagPIE dataset [6].

The labeled nodes are used in the reconstruction of the trajectory. The dashed circle

exhibits the 2 m range of a ToF sensor.

Estimation of the UGV trajectory via the WSN has been obtained by combining esti-

mates by the nodes labeled in Fig. 6.6 and bolded in Table 6.2, which communicate with

nearest neighbors (not bolded in Table 6.2). To test the algorithms for different available

information about noise, we consider several possible scenarios of filter tuning. In each of

the cases, we evaluate effects of deviations from ∆ρk = 4.8 cm and ∆φk = 0.47◦ specified

in the maximum sense on the filter performance via (6.42) and (6.43).

In the first and second scenarios, measurement data are simulated assuming that the

normally distributed zero mean noise has the same variances of (∆ρ
(i)
k )2 = 4.82 and

(∆φ
(i)
k )2 = 0.472 for i = {1, . . . , 30} in all sensors. In the remaining four scenarios, we

generate different measurement data supposing that the normally distributed zero noise

has different variances in each sensor. In this case, the variances are uniformly distributed

with (∆ρ
(i)
k )2 ∼ U(3.62, 4.82) and (∆φ

(i)
k )2 ∼ U(0.11732, 0.472) for i = {1, . . . , 30}. In the

first four scenarios, the dUFIR filter is tuned to Nopt = 13. In the first five scenarios, the

dKF undergoes the effect of errors in the noise statistics caused by Q← p2Qk with p = 4.

The scenarios are the following:

1. SC-1: Set ∆ρ
(i)
k = 4.8 cm and ∆φ

(i)
k = 0.47◦.

2. SC-2: Reduce ∆ρ
(i)
k and ∆φ

(i)
k by the factor of 3 as an error of the known sensor

noise.

3. SC-3: Distribute sensor errors uniformly as ∆ρ
(i)
k ∼ U(3.6, 4.8), in cm, and ∆φ

(i)
k ∼

U(0.1173◦, 0.47◦), but set ∆ρ
(i)
k = 4.8 cm and ∆φ

(i)
k = 0.47◦.
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Table 6.3: RMSEs Produced by dKF and dUFIR Filter

Scenario dKF dUFIR

SC1 0.0081 0.0077

SC2 0.0097 0.0077

SC3 0.0071 0.0070

SC4 0.0084 0.0070

SC5 0.0073 0.0069

SC6 0.0091 0.0069

4. SC-4: as in SC-3, distribute errors uniformly as ∆ρ
(i)
k ∼ U(3.6, 4.8), in cm, and

∆φ
(i)
k ∼ U(0.1173◦, 0.47◦) and set ∆ρ

(i)
k = 4.8

3
cm and ∆φ

(i)
k = 0.47

3

◦
.

5. SC-5: Set ∆ρ
(i)
k randomly taken from U(3.6, 4.8), in cm, and ∆φ

(i)
k from U(0.1173◦, 0.47◦).

Set N
(i)
opt individually to each sensor.

6. SC-6: Consider SC-5 for Q← p2Qk with p = 0.1.

In terms of the absolute estimation errors, the results are sketched in Fig. 6.7 along

the coordinate x and in Fig. 6.8 along y and one can easily trace the differences. The

first point to notice is that the dUFIR filter in general outperforms the dKF in each of the

above scenarios. To support this inference, the RMSEs computed by the root square of the

sum of the MSEs along coordinates x and y are listed in Table 6.3, where the minimum

values are bolded.

Of a particular interest is the case of SC-6 illustrated in Fig. 6.8. While the dUFIR

estimate remains here unaltered by errors in Q, the dKF reduces the estimation random

errors in specific time intervals, such as 1500 ≤ k ≤ 2000. However, in 1300 ≤ k ≤ 1500

the bias error produced by dKF grows considerably (Fig. 6.9) that speaks in favor of higher

robustness of the dUFIR filter.
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Figure 6.7: Absolute estimation errors along the coordinate x produced by the dKF and

dUFIR filter for six scenarios, (SC-1)–(SC-6).
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Figure 6.8: Absolute estimation errors along the coordinate y produced by the dKF and

dUFIR filter for six scenarios, (SC-1)–(SC-6).
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Figure 6.9: Estimates provided by the dKF and dUFIR filter along the coordinate y for

scenario SC-6.

6.6 Environmental Temperature Monitoring

In this scenario, we consider temperature measurements taken in 2007 at the Grand-St-

Bernard pass at 2400 m. between Switzerland and Italy as part of the Sensorscope project,

which aims to develop a large-scale distributed environmental measurement system cen-

tered on a wireless sensor network. The temperature measurements were recorded individ-

ually by low-cost sensing stations and are available at [140]. In order to test our algorithm

a network must be implemented. In Fig. 6.10 we present the topology used for this study,

which was the result of considering a link distance of 250 m.

The individual, one-hour average, temperature measurements are sketched in Fig. 6.11

and Fig. 6.12. We observe a similar behavior on all the stations, however for unknown and

unpredicted reasons, some sensors present large gaps of information and a very unstable

performance.
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Figure 6.10: Simulated network connections of the sensing stations, given their real loca-

tions.

We defined the following state-space discrete dynamics

A =

 1 τ

0 1

 , H(i) =
[

1 0
]
,

with B = I. An approximation of the individual standard deviation σ
(i)
v , was obtained

from the dataset. We also defined N = 30 as it was the smaller value that maximized the

consensus of estimates.

The results of implementing Algorithm 8 for three sensing stations are shown in Fig.

6.13. We observe a noise reduction in all the stations and a filling of large gaps for station

2 (Fig. 6.13 b)) and 9 (Fig. 6.13 c)).

A key difference between stations 2 and 3 is observable in 540 < k < 780. While in

station 2 measurements are completely lost, on station 9 a false measurement of −1◦C is

recorded. The algorithm, as it is, cannot discern if the measurement is valid. However,

due to the distributive nature of the developed filter, the estimate shows great performance

even under such circumstances.

In Fig. 6.14 a), we show the estimates of all the stations while in Fig. 6.14 b) the

variance of the estimates is taken as an indication of the disagreement between nodes. It can
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Figure 6.11: Temperature measurements of the eleven sensing stations.

be seen that when valid measurements are taken, the estimates present less disagreement.
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Figure 6.12: Temperature measurements of the eleven sensing stations.
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Figure 6.13: Temperature measurements and estimates of: a) station 10, b) station 9 and

c) station 2.
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mates.



Chapter 7

Comparison with KF, H∞ and

Generalizations

7.1 Conclusions

The algorithms developed in this work were motivated by a lacking in robustness of one

of the most common algorithms for sensor fusion, the KF. Although the KF is easy to

implement and its estimations are optimal in the RMSE sense, the lack of robustness

against unpredicted errors and unknown noise statistics renders the KF unreliable for

WSNs applications.

The main reason behind the lack of robustness of KF is because its IIR structure,

because the past errors keep affecting present estimates. It has been demonstrated that

better robustness is attainable trough FIR structures. However, due to limited memory

capacity of the target devices and the need of earlier FIR algorithms to know the correct

statistics of noise, the FIR algorithms were not a plausible solution.

Nowadays, the computing capacity of smart devices and the development of Unbiased

Finite Impulse Response Filters, makes the FIR algorithms a feasible alternative to KF.

However, before this work, the UFIR filter technology was not developed to address the

unique requirements of Wireless Sensor Networks.

In this work, we have developed UFIR filters that performs sensor fusion to estimate

the states of interest in a distributed manner. Next, we will present several conclusions for
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each of the designs presented in this work.

Conclusions: Design of UFIR Filter for Smart Sensors

The iterative UFIR filtering algorithm developed and practically tested in Chapter 3 has

demonstrated several properties, which are essential for smart sensing. The UFIR algo-

rithm is blind on a horizon of N points: unlike the KF, it does not require the noise

statistics, the initial error statistics, and the initial values. It also has better robustness

than the KF. As a special feature, we stress on high accuracy of predictive UFIR filtering

over missing data. In fact, practical applications to measurements of CO concentration

and temperature with missing data gave impressive results. Even with dozens of lost data

points, the UFIR algorithm efficiently bridged the gaps of uncertainties and produced quite

accurate estimates.

An important remark needs to be done. In the test performed in chapter 3, implement-

ing the KF with the data at hand was not possible due to missing information about the

noise process. This poses an excellent example of why KF cannot always be implemented

in real -life applications. Also, like the KF, the UFIR algorithm is a universal estimator.

It can be used in smart sensors to solve diverse problems associated with state estimation

and filtering.

Once the UFIR filter, in its recursive form, was proven to be suitable for smart sensors,

we developed the consensus filters based on the ones developed for KF.

Conclusions: Design of UFIR Filter with Consensus on Measure-

ments for WSNs

In Chapter 4 we developed the micro-UFIR filter for the average consensus on measure-

ments. This filter has demonstrated better robustness than the micro-KF when the WSN

is operated under disturbances in not well specified noise environments. The algorithm

performs a previous low-pass filter on the measurements, as well as a high-pass filter on

the error covariance of the KF. Since UFIR does not need the error covariance, a single

low-pass filter applied to the measurements is enough. Operatively speaking, the low-pass
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filter is an average of the neighbors measurements. The implementation of the such filter

considerably reduces the computing time of UFIR. Better performance of the micro-UFIR

filter was shown analytically and supported by simulations of a vehicle traveling circularly

on a ground space covered by the WSN. We found that, an increment on the number of

links reduces the estimate errors for both, KF and UFIR filter, however, in the latter bet-

ter performance was obtained with fewer sensors. In order to introduce a new challenging

technique, we restricted ourselves only with a homogeneous media and single quantity.

As previously discussed, in [1] the consensus on estimates is an improvement regarding

the number of consensus steps. In this work, we followed the same line of thought and

developed the distributed UFIR filter with consensus on estimates.

Conclusions: Design of UFIR Filter With Consensus on Estimates

for WSNs

The dUFIR filter designed in Chapter 5 for WSNs with consensus on estimates has demon-

strated higher accuracy and robustness than the dKF and dH∞ filter under real world WSN

scenarios. The goal was reached by minimizing the MSE in the dUFIR structure with an

optimal consensus factor λoptk and providing recursions for iterative computation. Although

all filters improve the performance with an increase in the number of nodes, the same im-

provement was obtained in the dUFIR filter with a smaller number of nodes. Simulations

and an experimental example of target tracking have revealed that the dUFIR approach is

more favorable for distributed WSNs with consensus on estimates, especially under diverse

uncertainties. Errors in the dUFIR filter were minimized by finding a the consensus factor

λoptk , which is optimal in the RMSE sense.

Although the calculation of λoptk requires the knowledge of the measurement noise co-

variance, in real life applications this statistics are relatively easy to approximate through

sensor calibration. We also demonstrated by simulating an application where the noise

statistics are time-dependent, that even with an approximation of the real value of R the

performance of dUFIR filter was superior to that of dKF and dH∞.
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Conclusions: Design of UFIR Filter With Consensus on Estimates

for unstable WSNs

As was discussed in Chapter 3, the predictive capacity of the UFIR filter allows the filter

to overcome missing measurements by filling the gaps with predictions. This behavior

increases the robustness of the filter, making the algorithm ready for real life operation,

where due to a very large number of factors, many missing data will be present. The

advantages of a predictive algorithm were exploited in this work by considering real life

data of a very unstable network.

In Chapter 6, the problem of object tracking over distributed WSNs with consensus

on estimates and missing data has been solved by using the designed dUFIR filter. Better

performance of the dUFIR filter-based localization system has been proven with respect to

known ground truth through simulations for measurements with missing data and referring

to real sensor specifications. Extensive experimental investigations have shown that the

dUFIR filter produces smaller errors than the dKF under uncertainties of the noise statistics

and model errors. It was also verified that the dUFIR filter allows reaching a better

consensus in estimates than the dKF in terms of errors in individual estimates. Another

noticeable advantage of the dUFIR filter, which was observed in simulations, is that it

requires a smaller number of nodes to achieve the same performance as in the dKF.

The dUFIR algorithm is limited to linear dynamic processes with an approximate

knowledge of the sensor noise statistics, and the first N valid measurements. If this re-

quirements are met, the promising results of the filter make it possible to be implemented

in applications of indoor tracking where GPS technology is unavailable. For example, in

the tracking of mobile robotic platforms in modern industries, indoor tracking of elderly

people, tracking of robotics assistants, etc.

The predictive dUFIR filter was also tested with data from a real-life experiment, with

large amounts of missing data and where information about system and measurement noise

was unavailable. For these reasons, KF could not be implemented. Regarding dUFIR, by

not requiring information about system noise the only issue was the lack of measurement

noise statistics. In order to overcome this issue, a simple statistical analysis on the mea-

surements was perform, which gave us an approximation of the variance for each sensor.
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The distributed Unbiased Finite Impulse Response filter showed great performance

even with a large number of missing data. This is the result of implementing both, the

prediction stage and the the consensus of estimates. The algorithm is capable of offer-

ing estimates even when several hundreds of missing measurements, far larger than the

predefined horizon, which is an improvement of the filter discussed in Chapter 3, where

after N missing values, the filter started to follow the model, rather than the process. The

robustness against missing data is due to the contribution of the neighboring filters. The

consensus filter fuses estimations and predictions alike.

7.2 Discussion

Wireless sensor networking is a very vast area of research where many disciplines come

together in order to successfully implement such technology in real engineering problems.

As far as we are concerned, no attempts were made to develop UFIR filters with average

consensus to address the issue of the lack of robustness of IIR filters in WSNs, therefore,

in this work we focused only on the estimation problem by ensuring the consensus of the

network through the development of unbiased finite impulse response filters with consensus

on measurements and estimates, with and without missing data, proving that less estima-

tion error is produced by the UFIR filters when the conditions for optimality of KF are

not met.

We also observed that, when properly tuned, H∞ filter may produce more robust es-

timates than UFIR filters, however the latter remains as a more viable solution for real

life applications. A recursive UFIR filter was also developed in order to minimize the

computational burden of the microprocessors, so the filters may be implemented in smart

sensors. In applications where there is absolutely no information about the model noise,

implementing KF is non-viable. However, UFIR filters with consensus on estimates not

only is a viable solution, but produces accurate estimations. An interesting result of this

work is the feasibility to obtain adequate estimates for applications where no noise infor-

mation is available and even more, where a large amount of missing or corrupted data is

present.
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It is an important remark that, if all the conditions for optimality are met, KF will

produce even better results. Moreover, even recursive UFIR filters are fast, it will never

be as fast as KF. This is to be considered when implementing the filter in a real WSN.

7.3 Future Work

From this work, the articles [21, 38, 141, 142] were published in journals indexed in the

Journal Citation Report, along with other conference papers and indexed journals, however,

there is still more research to be done.

A consensus on information with UFIR filters is still under development. Once the

filter is developed and proven, a thorough comparison between all type of consensus can

be performed. Also, it is possible to implement the different types of consensus with other

types of filers, such as particle and H∞ filters. An important issue is to address the delay

in the data or even the duplication of information due to multi-trajectories and of course,

the actual implementation in real low cost sensors.

In all the experiments performed in this work, we were interested in the estimation of

the variable of interest. However, for some applications, it is also necessary to detect a

particular alteration of the model, for example, in forest fire detection. The algorithms

can be modified to address this particular applications.
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[110] V. Çağrı Güngör and G. P. Hancke, Industrial Wireless Sensor Networks:

Applications, Protocols, and Standards (Industrial Electronics). CRC Press, 2017.

[111] Y.-R. Tsai and C.-J. Chang, “Cooperative information aggregation for distributed

estimation in wireless sensor networks,” IEEE Transactions on Signal Processing,

vol. 59, no. 8, pp. 3876–3888, aug 2011.

[112] S. Das and J. M. F. Moura, “Distributed Kalman filtering with dynamic observations

consensus,” IEEE Trans. Signal Process., vol. 63, no. 17, pp. 1458–1473, Sep. 2015.

[113] D. Scherber and H. Papadopoulos, “Distributed computation of averages over ad hoc

networks,” IEEE Journal on Selected Areas in Communications, vol. 23, no. 4, pp.

776–787, apr 2005.

[114] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on

average consensus,” in IPSN 2005. Fourth International Symposium on Information

Processing in Sensor Networks, 2005. IEEE.

[115] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, “Consensus in

ad hoc WSNs with noisy links—part II: Distributed estimation and smoothing of



BIBLIOGRAPHY 128

random signals,” IEEE Transactions on Signal Processing, vol. 56, no. 4, pp. 1650–

1666, apr 2008.

[116] S. Kar and J. Moura, “Sensor networks with random links: Topology design for

distributed consensus,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp.

3315–3326, jul 2008.

[117] ——, “Distributed consensus algorithms in sensor networks with imperfect commu-

nication: Link failures and channel noise,” IEEE Transactions on Signal Processing,

vol. 57, no. 1, pp. 355–369, jan 2009.

[118] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Distributed kalman filtering

based on consensus strategies,” IEEE Journal on Selected Areas in Communications,

vol. 26, no. 4, pp. 622–633, may 2008.

[119] D. J. Simon, “From here to infinity,” Embedded Systems Programming, vol. 14, no. 11,

p. 20, 2001.

[120] W. H. Kwon and S. H. Han, Receding horizon control: model predictive control for

state models. Springer Science & Business Media, 2006.

[121] B. P. Gibbs, Advanced Kalman Filtering, Least-Squares and Modeling. Wiley-

Blackwell, 2011.

[122] N. Rahbari-Asr and M.-Y. Chow, “Cooperative distributed demand management

for community charging of PHEV/PEVs based on KKT conditions and consensus

networks,” IEEE Trans. Ind. Informat., vol. 10, no. 3, pp. 1907–1916, Aug. 2014.

[123] W. Yu, L. Zhou, X. Yu, J. Lu, and R. Lu, “Consensus in multi-agent systems with

second-order dynamics and sampled data,” IEEE Trans. Ind. Informat., vol. 9, no. 4,

pp. 2137–2146, Nov. 2013.
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Appendix A

Derivation of the Consensus Factor

λ
opt
k

Consider the error covariance Pk = E{εkεTk } as function of λk, to be

Pk = (D̄m,k − Θ̃m,kMm,k)Qm,k(D̄m,k − Θ̃m,kMm,k)
T

+ Jλk(Θ̃m,kR̄m,kΘ̃
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m,k −Θ
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m,k )λTk , (A.1)

where Θ̃m,k = GkHT
m,k and

R̄m,k = E{vm,kvTm,k} = diag(Rm . . . Rk) ,

R̄
(i)
m,k = E{v(i)m,kv
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k ) .

We next apply the derivative with respect to λk to the trace of (A.1) by using the

identities ∂
∂X

tr(XTBX) = BX + BTX, and ∂
∂X

tr(XA) = AT . Putting the derivative to

zero yields

λoptk =− 1
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and with the identities
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we obtain the final form of (5.20) and (6.21).



Appendix B

Derivation of the Recursion for αl

Consider αk = Θ̃m,kR̄m,kΘ̃
T
m,k and rewrite it as

αk = GkHm,kR̄m,kHT
m,kGk . (B.1)

Represent the product Hm,kR̄m,kHT
m,k by the sum of
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m,k =

N−1∑
l=0

(Fm+1+l
k )−THT

m+lRm+lHm+l(Fm+1+l
k )−1 (B.2)

= HT
k RkHk + F−Tk

[
N−2∑
l=0

(Fm+1+l
k−1 )−THT

m+lRm+lHm+l(Fm+1+l
k−1 )−1

]
F−1k

(B.3)

= HT
k RkHk + F−Tk Hm,k−1R̄m,k−1HT

m,k−1F
−1
k . (B.4)

Referring to αk−1 = Gk−1Hm,k−1R̄m,k−1HT
m,k−1Gk−1, find

Hm,k−1R̄m,k−1HT
m,k−1 = G−1k−1αk−1G

−1
k−1 . (B.5)

Finally, combine (B.1), (B.4), and (B.5) and end up with the recursion (5.28) and (6.36)

for αk.
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Derivation of the Recursion for βk

Rewrite βk = Θ
(i)
m,kR̄

(i)
m,kΘ

(i)T

m,k as

βk = G
(i)
k H

(i)
m,kR̄

(i)
m,kH

(i)T

m,kG
(i)
k , (C.1)

represent by the sum, and transform as

H(i)
m,kR̄

(i)
m,kH

(i)T

m,k =
N−1∑
l=0

(Fm+1+l
k )−TH

(i)T

m+lR
(i)
m+lH

(i)
m+l(F

m+1+l
k )−1 (C.2)

= H
(i)T

k R
(i)
k H

(i)
k + F−Tk

[
N−2∑
l=0

(Fm+1+l
k−1 )−TH

(i)T

m+lR
(i)
m+lH

(i)
m+l(F

m+1+l
k−1 )−1

]
F−1k

(C.3)

= H
(i)T

k R
(i)
k H

(i)
k + F−Tk H

(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1F
−1
k . (C.4)

From G
(i)
k−1H

(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1G
(i)
k−1 find

H(i)
m,k−1R̄

(i)
m,k−1H

(i)T

m,k−1 = G
(i)−1

k−1 βk−1G
(i)−1

k−1 , (C.5)

combine (C.1), (C.4), and (C.5), and arrive at the recursion (5.29) and (6.37) for βk.
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