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Denoising of brain DW-MR data by single and 
multiple diffusion kernels
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ABSTRACT

Diffusion Weighted Magnetic Resonance Imaging is widely used to study the structure of 
the fiber pathways of white matter in the brain.  However, the recovered axon orientations 
can be prone to error because of the low signal to noise ratio.  Spatial regularization can 
reduce the error, but it must be done carefully so that real spatial information is not remo-
ved and false orientations are not introduced.  In this paper we investigate the advantages 
of applying an anisotropic filter based on single and multiple axon bundle orientation ker-
nels.  To this end, we compute local diffusion kernels based on Diffusion Tensor and multi 
Diffusion Tensor models.  We show the benefits of our approach to three different types of 
DW-MRI data: synthetic, in vivo human, and acquired from a diffusion phantom.

RESUMEN

Las imágenes por resonancia magnética pesadas en difusión son ampliamente utilizadas 
para el estudio de las estructuras cerebrales dentro de la materia blanca del cerebro. Sin 
embargo, recuperar las orientaciones de los axones puede ser susceptible a errores por el 
ruido dentro de la señal. Una regularización espacial puede mejorar la estimación, pero 
debe ser realizada cuidadosamente dado que puede remover información espacial ó intro-
ducir falsas orientaciones. En este trabajo se investigaron las ventajas de aplicar un filtro 
anisotrópico basado en  simples y múltiples kerneles de orientación de manojos de axones. 
Para esto, hemos calculado kerneles locales de difusión basados en modelos de tensores 
de difusión y multi tensores de difusión. Mostraremos los beneficios de nuestra propuesta 
en 3 tipos diferentes de imágenes obtenidas por resonancia magnética pesada en difusión: 
Datos  sintéticos, imágenes humanas tomadas en vivo, y datos obtenidos de un fantasma 
simulador de difusión.
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INTRoDUCTIoN

One of the most challenging goals in neuroimaging is the estimation of connectivity patterns in the brain in 
vivo. For this purpose, a special magnetic resonance imaging (MRI) technique named Diffusion Weighted Mag-
netic Resonance Imaging (DW-MRI) is used. In this technique, it is possible to obtain an estimation of the ori-
entation of water diffusion in a tissue specimen. Specifically in the brain, such diffusion is constrained by the 
direction of nerve bundles. This information is very useful in neuroscience research due to the relationship of 
brain connectivity with several diseases and, in general, with brain development (Poldrack 2007).

The DW–MRI acquisition protocol measures (indirectly) the Probability Density Function (PDF) or Ensem-
ble-Average Probability (EAP) P(x) for the displacement vector x=xe−x0 corresponding to the particle displace-

ment located at x0 at the beginning and at xe at the end of the experiment 
for a fixed time τ.

The Fourier transform relationship between the PDF and the DW–MR 
signal for a voxel is given by (Alexander, 2005):

(1)
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Where S0 is the measured sig-
nal when no diffusion magnetic 
field gradient is applied, S(qk ,τ) 
is the observed attenuated signal 
value given the Diffusion Encoding 
Orientation (DEO) vector qk=γδGgk 
where γ is the gyromagnetic ratio, 
δ is the applied time for the direc-
tional magnetic gradient, G is the 
magnitude of the applied diffusion 
magnetic field gradient and the 
unitary 3D vector gk indicates the 
k=1,…,M orientation of the diffu-
sion–encoding gradients. εk is the 
signal noise. R³ denotes the three 
dimensional real space. Finally 
τ is the effective diffusion time. A 
standard acquisition protocol for 
a single orientation gk, gives a 3D 
image, where in each voxel, the 
intensity indicates the grade of at-
tenuation in the signal. Lower gray 
values indicate larger attenuations 
(S is smaller) and this indicates 
significant water diffusion in the 
configured orientation (Figure 1).

Given that the image pixels 
are the magnitude of the associ-
ated complex MR signal  with ad-
ditive Gaussian noise in both real 
and imaginary components, the 
signal noise εk in (1) has Rician 
distribution (Gudbjartsson, 1995). 
We show three examples of in vivo 
DW-Signals (Figure 2) for M=64 
Diffusion Encoding Orientation 
measurements.

Figure 1. An axial slice from a DW brain scan for a 
3D orientation gk, red spot indicates the 
position x =55, y = 87, z =36 where the 
signals of figure 2 where taken.  The dark 
zones correspond to brain sites where the 
water diffusion is significant along gk.

Figure 2. Three DW signals from different  image  positions composed of  S0 and  M =64  S(qk , τ ), k = 1, 2, . 
. . , M DEO. The middle and right signals correspond to neighboring voxels.

The axon bundle orientation estimation problem can be stated as the 
estimation of P(x) based on as few as possible measurements S(qk,τ). The 
Ensemble-Average Probability P(x) can be estimated in a parametric fash-
ion, by assuming some observation model, or can be estimated in a non-
parametric way (Alexander, 2005). In any case, the noise present in the 
DW signal perturbs the axon fiber orientation estimation, as well as the 
estimations of anisotropy measurements of diffusion per voxel. For this 
reason, in the recent past, there has been a flurry of activity on denoising 
the diffusion information in terms of its parametric tensor representation 
form (Weickert, 2001) ( Wang,2004) ( Tschumperlé, 2005).

PREVIoUS WoRK

Spatial regularization (spatial average) reduces the corruption caused 
by ill-posed observation models, acquisition noise and incomplete data 
(Z. Li, 2001). In this sense, spatial regularization methods has been ex-
tensively used in medical image processing and in particular in Diffu-
sion Tensor (DT) and multi DT image processing in (Tschumperlé, 2002) 
(Wang, 2004) (Ramirez-Manzanares, 2007) by assuming that the diffu-
sion behaviors are similar for neighboring voxels.

We note that spatial regularization on parametric models at fiber cross-
ing regions is challenging because we need to identify and match similar 
orientations between voxels with different number of fiber orientations. 
Secondly, often the complex structure has similar configurations only for 
a small set of voxels, see (Ramirez-Manzanares, 2008). Thus, a regulariza-
tion framework which assumes global smoothness (Ramirez-Manzanares, 
2007), may inadvertently eliminate such small anatomical structures. A 
better regularization approaches are based on an edge-preserving scheme 
(Black, 1996), which allows the regularization to break the global smooth-
ness assumption at voxels along the boundaries between significantly dif-
ferent regions, thus preserving the features of each region. 

In this work we propose a new anisotropic filtering scheme for the 
raw DW data. The filtering orientation is guided based on the knowledge 
we have about the axon bundle orientation. For this aim we fit DT and 
multi-DT models, and we use the orientation information for computing 
the filtering kernel. Even though reported methods for DW signal filter-
ing exist, to the best of our knowledge there is not a reported work which 
uses the estimated axon bundle orientation for the computation of the 
anisotropic filtering. 

The rest of the paper is organized as follows: In Section 2 we explain 
the two different models we use to estimate the local axon bundle orienta-
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the intra–voxel diffusion (Alexander,2005). This repre-
sents a significant problem for diffusion tractography, 
where we rely on local orientation estimates to recon-
struct fiber pathways. 

A model for solving intra-voxel fiber orientations 
is the Gaussian Mixture Model (GMM) or multi–DT 
(Tuch,2002) : 

(4)

Where the real–valued coefficients βj∈[0,1] indicate 
the fraction of the total diffusion associated with the 
tensor Dj. Recently, in (Ramirez-Manzanares, 2007) is 
proposed a Diffusion Basis Functions (DBF) for GMM 
fitting. They simplified the fitting of model (4) by using a 
large tensor basis Ť in the following observation model:

(5)

Where α j≥0 and the pre–computed DBF coeffi-
cients are defined as: φk,j=S0exp(qT

k Ť j qk τ). Thus, 
the j–th DBF {φk,j,k=1,…,M} is the DW–MRI signal 
due to a single fiber (modeled by the fixed basis ten-
sor Ťj ) and the non-negative unknown αj denotes its 
mixture contribution. This model is fitted (solved for 
α) by solving a linear system of equations and it is 
stable for recovering more than two fiber orientations 
per voxel. It is possible to diminish the angular error 
due to the discrete nature of model (5) by increasing 
the angular resolution of basis ̄ Tj until it is irrelevant 
for practical aims.

METhoDS

In this section we explain our methodology for DW sig-
nal filtering. First we introduce our idea behind the 
anisotropic filtering, then we present two methods for 
computing the filtering kernel.

Anisotropic Filtering Along Axon Fiber Orientation 

The anisotropic filtering for image denoising is a well–
known technique in the image processing field. For in-
stance, in grey scale images, it is possible to compute 
the structure tensor based on the image’s 2D gradient 
which principal orientation is perpendicular to object’s 
boundaries, and then filter the image along the bound-
aries by using the inertia tensor (Knutsson, 1989). The 
prior knowledge behind this reasoning is that regions 
delimitated by prominent boundaries share the same 
features, in this case, the same grey intensity.

tion and then Section 3 presents our anisotropic filter-
ing framework and gives implementation information. 
The results of our experiments on synthetic and in vivo 
data are presented in Section 4 and finally our conclu-
sions are presented in Section 5.

ESTIMATIoN of AxoN fIBER oRIENTATIoN

The following subsections details two different para-
metric approaches to estimate the axon bundle orien-
tation given a set of DW-MRI measurements S(qk,τ). 
We use such models in order to estimate the axon ori-
entation for computing the anisotropic filtering ker-
nels, as is explained in Section 3. 

DT model fitting

In many medical applications, the angular variation of 
water diffusion has been extensively summarized by 
Diffusion Tensor (DT) model (Basser, 1996): 

(2)

Where the water diffusion coefficients (with units 
equal to mm/s2) are summarized by the positive defi-
nite symmetric 3×3 tensor D. This model implicitly 
assumes that P(x) presents Gaussian distribution. 
Given S0 and at least six measurements S(qk,τ) in 
independent non–coplanar orientations, the DT can 
be estimated by a Least Squares procedure. The DT 
can be visualized as a 3D ellipsoid, with the principal 
axis aligned with the DT’s eigenvectors and scaled 
by the eigenvalues λi. The principal eigenvector is 
named the Principal Diffusion Direction (PDD), and 
in the case of a single fiber bundle within the voxel, 
it is associated with the orientation of the fibers. The 
fractional anisotropy (FA) is an anisotropy measure 
(Basser, 1996) given by.

(3)

For a DT fitted to a highly oriented diffusion within 
the voxel (λ1>>λ2  λ3) FA is close to one, while FA is 
close to zero for a DT fitted to the isotropic diffusion 
case (λ1 λ2  λ3).

MDT model fitting

DT model assumes that water diffusion presents 
a single Principal Diffusion Direction at each voxel. 
However, at voxels where two or more fibers cross, 
split, or merge the DT model inadequately represents 
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In case of raw DW data, we have a set of M differ-
ent images, each one with boundaries that delimitate 
different regions. The prior knowledge we introduce 
is about the smoothness of axon bundle orientation: 
given that the axon bundles present a smooth trajec-
tory, then voxels along the fiber’s pathway present a 
similar DW signal S(qk

,τ) because they share similar 
diffusion features. By showing two in vivo noisy DW 
signals (Figure 2) which belongs to neighboring voxels, 
we can how their signals are similar and also different 
to signal in other voxel shown in (Figure 2, left).

With this in mind it is a good idea to apply an aniso-
tropic filtering for denoising the raw DW data. In this 
filtering schema a different process is applied for differ-
ent voxels in the image. In this case, the local feature 
we use in order to select which voxels we are going to 
use for the filtering depends on the local orientation 
of the axon bundles. The prior information we are in-
corporating is well–known in DW processing: the axon 
bundles follow smooth trajectories along the brain, and 
thus it is likely to expect that neighboring voxels along 
the axon bundle orientation present a similar signal. 
Thus, if we have a local estimation of the diffusion ori-
entation at 3D image’s position r, then we promote a 
strong filtering process for signal Sr(qk,τ) with the neigh-
boring voxels p along the local diffusion orientation.

In order to compute the local axon orientation we 
use the data provided by the single and multiple dif-
fusion tensor models (2) and (4), respectively. Note 
that the multi-DT model provides not only informa-
tion about the PDD, but also information about a sec-
ond or third diffusion direction within voxels where 
the axon bundles cross, split, or merge. Moreover, the 
DT’s shape (anisotropic information) provides a mea-
sure about the interaction between neighboring vox-
els: fatty tensors (with low FA) indicate prominent ra-
dial water diffusion, i.e. interaction with voxels which 
are perpendicular to the bundle’s trajectory. 

Kernel Computation for DW Filtering

Given a DT D at each voxel position r, fitted by Least 
Squares method from model (2), the DT’s entries have 
the information about the local 3D orientation of the 
axon bundle. Given a 3D image position r=[x,y,z], let 
Nr be the 3D second order spatial neighborhood of r: 
Nr={p:|r−p|2<2} (i.e. the neighborhood is composed of 
26 neighborhoods in the general case). Thus, for each 
voxel at r we compute an anisotropic kernel which in-
dicates the expected similarity between diffusion in-
formation with respect to p position as:

(6)

So that, if the axon bundle has an orientation simi-
lar to vector (p−r) then ωD(r,p) has a large value, and 
small otherwise. On the other hand, for a multi diffu-
sion kernel, we use the information provided by the L 
different DTs computed from DBF to fit model (4). We 
compute the anisotropic diffusion kernel as

(7)

Where ωDj(r,p) is the diffusion kernel computed 
from (6) for the j-th DT Dj at the same position r. Given 
the single and multi DT diffusion kernels, we compute 
the denoised Ŝ signal as:

(8)

For the single tensor case, or using ωmD(r,p) for the 
multi-DT case. Where k ∈(0,1) is a scalar that weights 
how much we want to introduce the prior information 
about the neighborhood in the signal Sr(qk,τ). 

Implementation details 

We note in our experiments that is easier to fix the 
user defined parameter σ in (8) and to iterate several 
times the filtered signal Ŝ(r). Thus we compute itera-
tively Ŝt(r) at iteration t=1,2,… as follows: 

(9)

with Ŝ0(r)=Sr(qk,τ).

We apply our method only to regions of interest 
(ROI) inside deep white matter, to this purpose we use 
a threshold over the FA map and the morphological 
operator erosion, keeping all the voxels with FA value 
≥ 0.35 to ensure that they are inside the white matter.

We normalize each one of ωD(r,p) and ωD
j(r,p) en-

tries such that ∑p∈NωD(r,p)=1 for internal voxels as 
well as for voxels which lie at the boundaries of the 
ROI, or at the boundaries of the image, so they do not 
have 27 neighbors.

Experiments and Results

In order to show the performance of our method we use 
three different types of DW Data:

In vivo Brain Human Data. A single healthy volun-
teer was scanned on a Siemens Trio 3T scanner with 12 
channel coil. Acquisition parameters: single-shot echo-w r p p r D p rD T
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planar imaging, five images for b=0 s/mm², 64 DW im-
ages with unique, isotropically distributed orientations 
(b=1000 s/mm²), TR=6 700 ms, TE=85 ms, 90o flip angle, 
voxel dimensions equal to 2×2×2 mm3. The approximated 
Signal to Noise Ratio (SNR) is equal to 26. For these data, 
we acquire 5 repetitions, so that, the ground-truth (GT) of 
reference S* is computed as the average of them. 

Data from a diffusion phantom. We used data ac-
quired from a diffusion phantom (C. Poupon, 2008). 
Layers of hydrophobic acrylic fibres were interleaved 
and stack in each other to build fibre crossing configu-
rations. Diffusion-weighted data were acquired on the 
3T Tim Trio MRI systems with 12-channel. The data is 
available at http://www.lnao.fr/spip.php?article112. 
The approximated Signal to Noise Ratio (SNR) is equal 
to 26. For these data, we have only 2 repetitions for the 
GT S* computation.

Synthetic data The DW-MRI signal was synthe-
sized from the GMM (4). We simulate single DTs and 
crossings composed of two DTs. For all cases, the DT 
principal eigenvalue was set to 1×10−3 mm2/s and the 
second and third tensor eigenvalues were 2.22×10−4 
mm2/s, FA= 0.74. The above values were taken from 
a sample of tensors observed in the brain data from 
a healthy volunteer. Rician noise was added to each 
measurement to produce SNR= 15. For these data, we 
have 5 repetitions for the S* computation.

In all our experiments we used ĸ= 0.05 and the 
number of iterations t in (9) was equal to 8 for in vivo 
and phantom data, and 14 for synthetic data. We de-
termine this parameter by the following empirical test: 
we compare the error (absolute value of the difference) 
between the GT and the current Ŝt estimation and we 
used the number of iterations that minimizes such an 
error. Figure 3 shows the result of this procedure for 
the in vivo and phantom data. Note that it is necessary 
to empirically determine the minimum. However this 
procedure must be applied only one time for each med-
ical scan protocol, i.e. to acquire around five repeti-
tions of in vivo DW data and then build a GT volume.

To assess the validity of the proposed denoising 
methods, for each DW acquisition the 5 other DW-MRI 
are averaged gradient-by-gradient, giving the GT S*. 
The error between a denoised image Ŝ and the GT data 
is the scalar ε computed as ε=|S*−Ŝt|. The process is 
then iterated 5 times using the 5 different noisy images, 
yielding 5 errors, which are finally averaged to give a 
global error. Statistical values of these error measures 
are summarized on Table 1. This error computation 
method helps avoiding the introduction of bias.

Figure 3. Evolution of error |Ŝ − S*| along the filtering  iterations.  We note  that 8 
iterations give us the minimum error for a value γ= 0.05.

Signal Max ε Min ε Mean ε StD of ε

Brain Data

S(qk,τ) 281.0 64.2 122.9 23.0

Ŝ from ωmD 287.3 56.7 110.0 25.0

Ŝ from ωD 287.3 56.8 110.0 25.1

Phantom Fibre Cup data

S(qk,τ) 85.7 27.9 44.6 7.0

Ŝ from ωmD 80.1 23.2 37.3 8.3

Ŝ from ωD 80.2 23.2 37.3 8.3

Synthetic data

S(qk,τ) 108.9 57.9 82.2 7.32

Ŝ from ωmD 76.9 27.2 40.6 5.8

Ŝ from ωD 76.7 27.5 40.7 5.9

Table 1. 
Statistical values for the error between the raw and filtered signals ε. Best 
values are in bold font. 
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We note that the mean and minimum values of the ε 
error are always smaller for the images filtered with our 
proposal, and in most cases for the maximum and stan-
dard deviation measures. We also note that there is not 
a significant difference between using single and mul-
tiple DT models for diffusion kernel computation, multi-
DT presents the best values in most cases but the differ-
ences are very small. A detailed view of the distribution 
of the errors is presented in Figure 4, note how the error 
distribution for the filtered image is smaller for in vivo 
data and significantly smaller for synthetic simulations.

We present a quantitative comparison of the recov-
ered signal Ŝt in Figure 5. We note that in this case (dif-
ferently to the following experiments), it is hard to vi-
sually detect the improvement. However, the recovered 
image (in the right), like the GT, presents well defined 
(not blurred) brain structures.

In order to show how our methodology can improve 
the recovered diffusion orientations, we show the result 
of fitting the multi-DT model in (Gudbjartsson, 1995) for 
the filtered images. The cases for in vivo and synthetic 
data are presented in Figures 6 y 7, respectively. Quali-
tatively speaking, we note that the filtered images were 
improved in the sense that they show a better spatial ori-
entational coherence and well aligned fiber crossings.

Figure 4. Noise reduction by our filtering proposal. We show the histogram of the 
voxel by voxel error between the raw data and the GT in red color (|Sr (qk, 
τ )−S*|) and the difference of the  filtered  signal and the  GT (|Sˆ − S*|) in 
blue  color.  Top:  for in vivo DW data and; bottom: for synthetic data (the 
histograms for the phantom data are very similar to the in vivo DW data).

Figure 5. Qualitative comparison of DW signals on a brain axial slice. Left: Avera-
ged S* GT, middle:  raw S(qk , τ ), right: filtered Ŝ.

Figure 6. Filtering result on in vivo data.  Left: DBF multi-DT fitted to raw (noisy) 
data.  Right: DBF multi-DT fitted to filtered data. Upper- right crossing 
ROI (composed of green-red DTs) presents qualitative improvements.

Figure 7. Synthetic fiber Crossing. Left: DBF multi-DT fitted to raw (noisy) data.  
Right: DBF multi-DT fitted to filtered data. Single and multi DT regions 
present significant improvements.
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CoNClUSIoNS AND DISCUSSIoN

We presented a new method for the anisotropic filtering 
of DW-MRI data. For the computation of the kernels, 
we used two different models: single and multi DT.

We show the advantages of the filtering by means 
of experiments on data from three different sources. 
Those experiments showed how the pernicious effect 
of noise is attenuated. 

We compared the results for the two used models and 
we conclude that there is not a significant difference be-
tween the uses of them.

Finally, we depicted a methodology that can be ap-
plied to determine the best number of filtering iterations 
in order to obtain the best results with our proposal.

The product of this research, i.e. the Denoising of 
DW MRI data, is very important in two ways: a) to im-
prove the axon pathway tractography (Basser, 2000) 
which follows the PDD of the tensors and b) to detect 
subtle axon structures, as for instance, the ones re-
lated to thin axon bundles.

As a future work we would like to test how this pro-
posal behaves with respect to another computationally 
expensive parametric denoising methods that corrects 
single and multiple DT orientations, as for instance 
(Ramirez-Manzanares, 2008) (Tschumperlé,2005).
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