
w w w . a c t a u n i v e r s i t a r i a . u g t o . m x
1

h t t p : / / d o i . o r g / 1 0 . 1 5 1 7 4 / a u . 2 0 2 4 . 3 9 1 9

Design of an application to detect covid-19 using convolutional
neural networks and X-ray images
Diseño de una aplicación para detectar covid-19 mediante redes neuronales convolucionales
e imágenes de rayos X

Carlos Eduardo Belman López1*
1*	Departamento	de	Ingeniería	Industrial,	Tecnológico	Nacional	de	México.	C.P.	38010.	Celaya,	Guanajuato,	México.		

carlosbelman@gmail.com.	https://orcid.org/0000-0003-1305-6778	
*Autor	de	correspondencia

Abstract
This research presents the design of an application to detect covid-19 using convolutional neural networks and X-ray

images in two scenarios (covid/Non-covid and covid/Normal/Pneumonia). To avoid overfitting online data

augmentation, dropout, batch normalization, and Adam optimizer was used. The three-class network was used as a

pre-trained model, tuning only the dense and output layers to obtain the binary model. Additionally, hyper-parameter

optimization was used to get dropout probabilities, activation functions, and neurons. The learning rate was adjusted

using callbacks to avoid local optimums. Networks were converted to TensorFlow.js format and embedded locally in

a hybrid application using Ionic and Capacitor and were deployed through Firebase to help provide diagnostics. The

application obtained an accuracy of 98.61% and 96.48% for two and three classes, respectively, achieving higher

performance when compared to other proposals (offline models) in the literature and using fewer training parameters.

Keywords: covid-19; artificial vision; convolutional neural networks.

Resumen
Este documento presenta el diseño de una aplicación para detectar covid-19 utilizando redes neuronales

convolucionales e imágenes de rayos X en dos escenarios (covid/No-covid y covid/Normal/Neumonía). Para evitar

el sobreajuste, se utilizó aumento de datos, dropout, normalización por lotes y optimizador Adam. La red para tres

clases se utilizó como modelo pre-entrenado ajustando solo la capa densa y de salida para obtener el modelo binario.

Además, se realizó una optimización automatizada de hiper-parámetros como dropout, funciones de activación y

número de neuronas. La tasa de aprendizaje se ajustó mediante callbacks para evadir óptimos locales. Las redes fueron

convertidas al formato TensorFlow.js para integrarse en una aplicación híbrida utilizando Ionic y Capacitor, y se

desplegaron mediante Firebase para brindar asistencia y soporte al generar diagnósticos. La aplicación obtuvo una

exactitud del 98.61% y 96.48% para dos y tres clases, respectivamente, logrando mayor rendimiento que otras

propuestas y utilizando menos parámetros de entrenamiento.

Palabras clave: covid-19; visión artificial; redes neuronales convolucionales.

Recibido: 22 de junio de 2023

Cómo citar: Belman López, C. E. (2024). Design of an application to detect covid-19 using convolutional neural networks and X-ray
images. Acta Universitaria 34, e3919. doi: http://doi.org/10.15174/au.2024.3919

Publicado: 24 de julio de 2024 Aceptado: 27 de mayo de 2024

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

2

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Introduction

In December 2019, the World Health Organization (WHO) alerted about cases of respiratory illness of

unknown origin coming from Wuhan, China. The virus was named covid-19 and is caused by the new

coronavirus SARS-CoV-2 (WHO, 2022). Most people infected with covid-19 recover without requiring any

specialized treatment, but older people or those with associated medical conditions such as diabetes,

cancer, chronic respiratory, or cardiovascular diseases have a high probability of severe illness.

Today, the scientific community still plays a fundamental role in the development of tools that allow

the diagnosis and monitoring of this disease. In radiology, many works in the literature have focused on

the use of computed tomography (CT) scans for the detection of covid-19 (Zhou et al., 2020). However, CT

scans have drawbacks related to patient transportation, waiting time between services to sanitize the

facilities, inefficient sanitizations, and shortage of CT in certain places. Due to these drawbacks, chest X-

ray images are more widely used as a tool for the identification of respiratory and lung abnormalities such

as covid-19 (American College of Radiology, 2020). Additionally, the X-ray images for the detection of this

disease have a key role given the limited or insufficient access to RT-PCR (reverse transcriptase polymerase

chain reaction) tests in some parts of the world (Jacobi et al., 2020).

Millions of confirmed cases of covid-19 and thousands of deaths were reported (WHO, 2020). To

stop the increase in the number of infections, it is crucial to detect positive cases as soon as possible,

isolating and treating patients instantly. This leads to the need to develop auxiliary tools for the diagnosis,

where recent research indicates that X-ray images contain significant information about covid-19 (Chung

et al., 2020). Artificial intelligence techniques, especially deep learning (Beysolow II, 2017), together with X-

ray images can be useful for the diagnosis of covid-19 and compensate for the lack of specialists in remote

locations (Ozturk et al., 2020).

Deep learning (DL) has already been used for image and signal processing in healthcare, improving

diagnostics based on medical, multidimensional, or thermal images. Recently, X-ray images and DL models

have been used for the detection of covid-19. Loey et al. (2020) used a DL model based on GAN and transfer

learning to reach an accuracy of 85.2% in the prediction of three classes (covid-19, Normal and Pneumonia)

but using only 69 covid-19 images and 306 total images for all the classes. For transfer learning, AlexNet,

GoogleNet, and ResNet were selected in this study. Rahimzadeh & Attar (2020) trained several deep

convolutional networks into three classes: normal, pneumonia, and covid-19 using 180 X-ray images

belonging to persons infected with covid-19 and an unbalanced dataset (fewer cases of covid-19 along with

more cases from other classes). For the networks, they proposed a neural network that is a concatenation

of the Xception and ResNet50V2 pre-trained models. The overall average accuracy for all classes was 91.4%.

Wang et al. (2020) developed a DL model based on a pre-trained model from ImageNet to achieve

an accuracy of 93.3% in the diagnostic of three classes (covid-19, Normal and Pneumonia) but using only

358 covid-19 images and 11.95 million parameters. This model makes heavy use of a lightweight residual

projection-expansion projection-extension (PEPX) design pattern. Ioannis & Tzani (2020) developed a DL

model using only 224 covid-19 images based on VGG-19 model, obtaining an accuracy of 98.75% and

93.48% in the detection of two and three classes, respectively.

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

3

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

VGG-19 is a deep neural network architecture that does not leverage residual design principles and

lightweight design patterns, and it has very low architectural diversity. Ozturk et al. (2020) proposed a DL

model consisting of 17 convolutional layers and different filtering on each layer. This approach reached an

accuracy of 98.08% and 87.02% for the detection of two and three classes, respectively, but using only 125

covid-19 images and without using techniques for avoiding overfitting such as dropout or data

augmentation. Narin et al. (2020) reached an accuracy of 98% in detecting covid-19, using only 100 X-ray

images (50 covid-19 + 50 Non-covid) in conjunction with the ResNet50 model. ResNet-50 is a deep neural

network architecture that leverages residual design principles and lightweight design patterns (e.g.,

bottleneck design patterns), and it has moderate architectural diversity, but it does not leverage lightweight

PEPX sign patterns or selective long-range connectivity. Sethy & Behera (2020) achieved an efficiency of

95.3% in detecting covid-19 using only 50 X-ray images (25 covid-19 + 25 Non-covid) in conjunction with

the ResNet50 DL model and support vector machines (SVM). Mahmud et al. (2020) used a convolutional

network with multi-dilation for the detection of covid-19, reaching an accuracy of 90% in predicting several

cases of pneumonia and covid-19.

Every previous research mentioned above is limited by the small number of images used in

comparison to the large network capacity (number of trainable parameters) they are using, and the results

can also be significantly improved. Moreover, transfer learning models are more useful when the pre-

trained models are developed using images with some similarity; otherwise, they will have to be adjusted

to be relevant to the problem in question, requiring expensive computing power. Furthermore, the most

complex networks do not always produce the best results.

Springenberg et al. (2015) has already mentioned that the simplest models are less likely to overfit

and may produce better results. Also, pretrained models -such as ImageNet-based models, among others-

used to end in very heavy models, making it difficult to deploy them locally in devices with limited

capacities. Finally, a platform or application that makes models available to final users in the form of

services (software as a service) is essential to help in the detection process.

For these reasons, the contribution of this research is the design of a convolutional neural networks-

based application that can be an assistance support to diagnose covid-19 using X-ray images. The proposed

application and networks provide accuracy results in two (covidvs. Non-covid) and three classes (covidvs.

Normal vs. Pneumonia), achieving competitive results (and even better) when compared to other proposals

(offline models) in the literature and using significantly fewer training parameters. This allowed embedding

the models in an application that can be executed without the need for Internet access.

To avoid overfitting, online data augmentation with normalization was used during training

execution. The networks also included dropout and batch normalization layers in addition to Adam

optimizer. The three-class network was used as a pre-trained model, preserving the convolutional layers,

and tuning only the dense and output layers to obtain the binary network (this represents cost savings if

time from a cloud computing platform such as AWS is used for training). In both scenarios, automated

hyper-parameter optimization (HPO) was used to optimize hyper-parameters such as dropout

probabilities, activation functions, and neurons in the dense layer. Additionally, the learning rate was

adjusted using callbacks to escape from local optimums. The datasets (training, validation, and testing)

were increased compared to most studies.

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

4

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

The proposed networks obtained an accuracy of 98.61% and 96.48% for two and three classes in the

validation sample and 99.07% and 93.15% in the testing sample, achieving higher performance when

compared to other proposals in the literature and using significantly fewer training parameters. Finally,

these network sizes allowed to convert the models into TensorFlow JS format and to embed them locally

in a hybrid application (using Ionic and Capacitor) that can be installed and executed without the need for

Internet access (which is not always available in remote or poor areas). Additionally, the application was

deployed into Internet through Firebase to help provide diagnostics at any time and place.

Deep learning and convolutional neural networks

Deep learning (DL) is a method of data analysis and a branch of artificial intelligence that automates

analytical model building (SAS Institute Inc., 2023). The deep in DL is not a reference to any kind of deeper

understanding achieved by the approach; rather, it stands for the idea of successive layers of

representations, including automatic feature learning and high-volume modelling capabilities (Wang et

al., 2018; Wang et al., 2020; Wuest et al., 2016).

DL has several properties that justify its importance within artificial intelligence, such as simplicity

(no feature engineering), scalability (within GPU or TPU), and versatility and reusability (continuous

learning). The key in DL solutions is the balance between optimization and generalization. Optimization

refers to adjusting a model to obtain the best performance on the training data, whereas generalization

measures how well the trained model performs on data it has never seen before. When generalization stops

improving on the training data, and validation metrics begin to degrade, then the model is starting to

overfit. It means the model is learning patterns that are specific to the training data but irrelevant for new

observations. It should be highlighted that, the bigger network will likely overfit, meanwhile simpler models

are less likely to overfit than complex ones (Springenberg et al., 2015).

Convolutional neural networks (CNN) are a DL area primarily used for image recognition and

classification (Loey et al., 2020), although they have also been investigated in other areas such as natural

language processing and speech recognition (Wang et al., 2018). In traditional artificial neural networks

(ANN), each neuron in the input layer is connected to each neuron in the next layer, which is known as a

dense or fully connected layer. However, in CNN, dense layers are used until the last part of the network

(Rosebrock, 2017). Patterns learned by CNN are not limited to a particular position; for example, a pattern

learned in the lower left corner may be recognized in the upper right corner or anywhere.

CNN achieve pattern recognition using a set of convolutional, pooling, and dense layers.

Convolutional layers are combined with the input data using multiple filters (Rong et al., 2020). A nonlinear

activation function is applied to the output of the convolution layers (Rosebrock, 2017). The subsequent

pooling layers extract the most significant features with a fixed length over sliding windows of the raw

input data by pooling operations such as max pooling or average pooling. Max pooling selects the

maximum value of one region in the feature map as the most significant feature. Average pooling

calculates the mean value and takes it as the pooling value in this region. After multi-layer feature learning,

fully connected layers convert a two-dimensional feature map into a one-dimensional vector and then

feed it into a softmax function for model construction (Rong et al., 2020).

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

5

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Recently, several advances have emerged in the development of CNN. These advances include pre-

trained models, model assembly, new training algorithms, activation functions, and regularization

techniques. A pre-trained model is a model previously trained on a large dataset. If this original dataset is

large and general enough, then the pre-trained model can act as a generic model, useful for many different

computer vision problems, even though these new problems may involve different classes than those of

the original task, such as VGGNet, GoogleNet, ResNet, Xception, and Inception-V3.

Additionally, new efficient training algorithms have been proposed, such as momentum-based

SGD, AdaGrad, AdaDelta, Adam, and RMSProp. Another powerful technique to get the best possible results

is model assembly. This technique consists of using predictions from a set of models to produce a better

prediction. Ensembling relies on the assumption that different good models trained independently are

likely to be good for different reasons: each model looks at slightly different aspects of the data to make its

predictions, getting part of the “truth” but not all of it (Chollet, 2018).

ANN with a large number of parameters are powerful DL systems; however, overfitting is a serious

problem. Large networks are also slow to use, making it difficult to deal with overfitting by combining the

predictions of many different large neural networks at test time. Dropout is a technique for addressing this

problem. Dropout is a very effective way to prevent overfitting. The key idea is to randomly select and

remove a set of neurons and their connections during training to prevent neurons from correlating.

Dropout significantly reduces overfit, providing greater improvements than other regularization methods.

The authors propose to use "dropout" in ranges from 0.5 to 0.8 for hidden layers and greater than 0.8 for

visible layers (input and output). Standard backpropagation learning usually builds up brittle co-

adaptations that work for the training data, but do not generalize to unseen data. Random dropout breaks

up these co-adaptations by making the presence of any hidden unit unreliable. It has been tested that

Dropout is a general technique and is not specific to any domain (Srivastava et al., 2014).

In addition, new and improved activation functions have been introduced, such as the rectifier

linear unit (ReLU) function that significantly improves older activation functions such as sigmoid or

tangent (Pedamonti, 2018). Different ReLU variants have been introduced such as Leaky ReLU, ELU, and

SELU. But, particularly, the exponential linear units (ELU) activation function can speed up training and

lead to higher ranking performances. Like ReLU, leaky ReLU, and parametrized ReLU, ELU alleviate the

vanishing gradient problem via the identity for positive values. However, ELU have improved learning

characteristics compared to the units with other activation functions. In contrast to ReLU, ELU have

negative values which allow them to push mean unit activations closer to zero, like batch normalization,

but with lower computational complexity. Mean shifts toward zero speed up learning by bringing the

normal gradient closer to the unit natural gradient because of a reduced bias shift effect (Clevert et al., 2016).

Finally, batch normalization (BN) allows to use higher learning rates and be less careful about

initialization. It may also regularize, eliminating in some cases the need for dropout. BN allows to speed up

the training phase using higher training rates, while it regularizes the network parameters. Merely adding

BN to a state-of-the-art image classification model yields a substantial speed up in training. By further

increasing the learning rates, and applying other modifications afforded by BN, it is possible to reach state-

of-the-art results with only a small fraction of training steps (Zhou et al., 2020).

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

6

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Materials and methods

This research presents the design and development of a convolutional neural networks-based application

that can be an assistance support to diagnose covid-19 using chest X-ray images. The proposed networks

were developed to provide accurate results in two (covidvs. Non-covid) and three classes (covidvs. Normal

vs. Pneumonia).

The proposed method (Figure 1) benefits from the fact that both scenarios are very similar, and it

uses transfer learning from one scenario to the other. In order to avoid overfitting, online data

augmentation with normalization was used during training execution. The architecture also included

dropout and batch normalization layers in addition to Adam optimizer. The three-class network was the

model used as a pre-trained model, preserving the convolutional layers and retraining (continuous

learning) only the dense and output layers in order to obtain the binary network. Taking advantage of the

fact that the three-class model was trained on a similar dataset, training time is saved by using it as a pre-

trained model compared to training from scratch. This can represent cost savings if time from a cloud

computing platform such as AWS is used for training. Therefore, a transfer learning strategy from one

scenario (in this case the three-class scenario) to the other is a better option.

Figure	1.	Proposed	method.	

Source:	Author’s	own	elaboration.	

In both cases, HPO was used to optimize hyper-parameters such as dropout probabilities, activation

functions (such as ReLU or ELU), and neurons in the dense layer. Additionally, the learning rate was

adjusted using callbacks to escape from local optimums. Finally, the proposed models were converted to

TensorFlow JS format and embedded locally in a hybrid application (using Ionic and Capacitor), and they

were deployed through Firebase to help provide diagnostics at any time.

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

7

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Dataset

In this investigation, X-ray images were acquired from various public data sources. For the design of the

proposed models, the number of images for training, validation, and testing samples was considerably

increased compared to most studies. For the covid-19 class, 489 images were obtained from Cohen et al.

(2020) and the Italian Society of Medical and Interventional Radiology (2020); 35 images were obtained

from the covid-19 Chest X-ray Dataset Initiative (Github, 2020); 56 images were obtained from Chung

(2020); 31 images were obtained from European Society of Radiology (2021); and 31 images were obtained

from Radiopaedia (2021). For the Non-coviddata set (Normal and Pneumonia), 5840 images were obtained

from Kaggle Inc. (2023).

Figure	2.	Categories	involved	in	this	investigation.	

Source:	Author’s	own	elaboration.	

Figure 2 illustrates some sample images used in this investigation. The number of images used for

each scenario is presented in Table 1. The three-class scenario (covid-19, Normal and Pneumonia) analyzed

a total of 6482 images, 642 for covid-19, 1580 for the Normal class and 4260 for Pneumonia class.

Pneumonia class is internally composed of two types (bacterial and viral pneumonia). The two-class

scenario (covid-19 and non-covid) analyzed a total of 6302 images, 642 for covid-19, and 5660 for the Non-

covidclass (Normal and Pneumonia). The training and test samples use the same amount of data in both

scenarios and the testing sample is never seen during the training phase. It should be noted that although

the training and testing samples are unbalanced, the size of the validation sample (used during training

process) is balanced using 180 images for each class (360 and 540 for 2 and 3 classes, respectively), although

this caused a small difference in the total number of images used in both scenarios.

Table 1. Number of images and classes used for this investigation.

Scenario Sample covid-19

Non-covid

Normal
Pneumonia

Bacterial Viral Total

3 classes
(6482 images)

Training 400 1 000 2 480 1 200 5 080

Validation 180 180 90 90 540
Testing 62 400 200 200 862

2 classes
(6302 images)

Training 400 1 000 2 480 1 200 5 080
Validation 180 60 60 60 360

 Testing 62 400 200 200 862

Source:	Author’s	own	elaboration.	

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

8

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Configuration and online data augmentation with normalization

CNN were developed using Python in conjunction with TensorFlow and Keras. The training was carried

out using a computer equipped with an Intel Core i5-6200U processor (2.40 GHz), 16 GB of RAM, 222 GB of

hard disk and Windows 10. The X-ray images passed through a preprocessing step in order to carry out an

easier and faster training. All images were resized to 200x200, followed by a value normalization (dividing

by 255), resulting in floating point inputs in a range between 0 and 1. The supported image types are all 3-

channel, types such as DICOM are not supported right now.

In addition, online data augmentation was used to avoid overfitting. Data augmentation takes the

approach of generating more training data from existing training samples by augmenting the samples via

a number of random transformations that yield believable-looking images. The goal is that at training time,

the model will never see the exact same picture twice (Chollet, 2018).

Data augmentation techniques can be divided into two types depending on the execution time. The

first type consists of running desired transformations before training process. This is known as offline

augmentation and is normally applied in small datasets. Here the dataset will be increased before training

by a factor equal to the number of transformations. The second type is called online augmentation.

Transformations are performed at the time of training the model, applying techniques such as rotation,

zoom, crop, among others. Online augmentation increases the variability of the input images, so that the

model will never see the exact same picture twice during the training phase providing higher robustness

to the model (Gutierrez et al., 2019). This also helps expose the model to more aspects of the data and

generalize better. This research used online data augmentation approach applying the following

techniques and parameters: rotation range in 35 degrees, width shift and height shift in 5%, zoom range in

10%, shear range in 10%, brightness range in 15%, and fill mode constant in black color.

Architecture and network optimization

The proposed base architecture is illustrated in Figure 3. The resolution used in the images allowed a

maximum of six layers. Therefore, the architecture consists of six convolutional layers with 32, 32, 64, 64,

128, and 128 neurons, respectively. The convolutional layers used 3 x 3 filters and padding to conserve the

size of the inputs. This padding allowed to extend the network without having to increase the size of the

resolution. Additionally, six max pooling layers with 2x2 windows and no stride (stride 1) were utilized. To

improve the optimization of the network, two batch normalization layers were added in the positions

illustrated in Figure 2. Additionally, researchers must direct efforts to carefully coping with model design

and corresponding hyper-parameter selection. This usually involves high costs, time, and effort. HPO

consists of searching for optimum hyper-parameters to be used during the training process. Hyper-

parameter refers to parameters that cannot be updated during the training of DL models, such as the

structure of the model (layers), layer sizes, activation functions, among others (Yu & Zhu, 2020).

In this research, HPO was done using Hyperas and Hyperopt. Hyperas allows to use the power of

Hyperopt without having to learn the syntax of it. Instead, just define the model and use a simple template

notation to define hyper-parameter ranges to tune. The following hyper-parameters were tested using

Hyperas during 100 epochs and five automatic evaluations (trials):

• Dropout probabilities in the dense and output layer in a uniform distribution over the interval [0,1],

in order to avoid overfitting.

• Neurons in the dense layer, choosing between 256, 512, and 1024.

• Activation function in the different layers, choosing between ReLU and ELU.

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

9

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Figure	3.	Base	architecture.	

Source:	Author’s	own	elaboration.	

CNN were trained using Adam to minimize the loss function (binary and categorical crossentropy,

respectively). The batch size (set to 20) was used for calculating the steps per epoch, dividing the training

samples by the batch size. Accuracy was the metric used for monitoring the training, which was carried

out over 100 epochs. In the output layer, the “softmax” function was used for the three-class scenario, while

the “sigmoid” activation function was used for the binary case.

The initial training rate was set to 1.5e-3 but using “callbacks”; the training rate was adjusted by a

factor of 0.8 with patience of 2 epochs in order to escape from local optimums. A “callback” is an object

used to perform actions at various phases of training (at the start or end of an epoch, before or after a single

batch). Callbacks may periodically save your model to disk, do early stopping, reduce learning rate when a

metric has stopped improving, get a view on internal statistics of a model during training, among other

actions. When reducing the learning rate, patient refers to the number of epochs with no improvement in

the metrics after which learning rate will be reduced. The proposed networks were validated using cross-

validation, confusion matrix, and accuracy, precision, sensitivity, and F1-score metrics.

Deployment

Once the models were trained and tested, they were embedded into a hybrid application using Ionic and

Capacitor frameworks. Ionic is an open-source mobile framework for building high quality, cross-platform

native, and web applications (hybrid apps), and Capacitor provides progressive web app (PWA) support so

that users can use the exact same API when running on different targets such as iOS or Android (native

apps), including elements of both web apps and native apps (Ionic, 2023). Therefore, this hybrid mobile

application can be installed on the device or run via a web browser. Ionic uses a single code base and runs

everywhere with JavaScript and the Web. To embed the models into Ionic, TensorFlow.js was used.

TensorFlow.js is a ML library that uses out-of-the-box models in JavaScript. It can also convert TensorFlow

and Python models to run in the browser. In this way, being a hybrid application, it can be installed inside

the devices (including the embedded models) and executed without the need for Internet access (which is

not always available in remote or poor areas) (Tensorflow, 2023). Finally, Firebase was used to deploy the

Ionic hybrid application in the Web. Firebase is a powerful tool that helps you build apps fast, without

managing infrastructure. Firebase is built on Google infrastructure and scales automatically, even for

largest apps, so you do not need to worry about scaling your servers when necessary (Google, 2023).

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

10

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Results and discussion

This research proposed a CNN-based application to provide accurate results in two (covidvs. Non-covid)

and three classes (covidvs. Normal vs. Pneumonia). In both cases, the networks used a larger number of

covid-19 images for training, validation, and testing. Additionally, although the training samples are

unbalanced, the size of the validation sample is balanced in both scenarios. Additionally, online data

augmentation and dropout in the dense and output layer were used to avoid overfitting. The number of

trainable parameters was kept as small as possible, the learning rate was adjusted through callbacks to

escape local optimums, and automated hyper-parameter was used to define dropout probabilities (in dense

and output layers), activation functions (ELU or ReLU), and number of neurons in dense layer. Adam's

algorithm was used for improving the network optimization, and the binary network was obtained through

transfer learning using the three-class network as a pre-trained model.

The images used for covid-19 class are still limited, and a larger number of images could help

increase performance, especially in the three-class scenario. The proposed models obtained higher

performance when compared to other studies reported in the literature, requiring significantly fewer

parameters and processing more images (Table 2).

Other very recent alternatives, such as that of Bosowski et al. (2021) (based on deep ensembles), can

produce competitive results but are computationally much more expensive to be embedded in devices with

limited capabilities; as well, their implementation within a platform must have a different approach, using

a cloud computing platform or on-promise, which will imply high costs and Internet access. Additionally,

the latency of the entire system (including the physical network) must be analyzed to provide responses in

real time.

Table 2. Performance comparison of these networks with other proposals.

Reference Number of images
Architecture/

parameters

Accuracy (%)

Binary Three-classes

Sethy & Behera
(2020)

25 covid-19 + 25 non-covid
ReNet-50/SVM
24.97 million

95.38

Narin et al.
(2020)

50 covid -19 + 50 non-covid
ResNet-50
24.97 million

98

Loey et al.
(2020)

69 covid -19 + 70 Normal Alexnet/GAN
61 million
Googlenet /GAN

99

85.2 69 covid -19 + 79 Normal + 79 Viral Pneumonia + 79 Bacterial

Pneumonia

Ozturk et al.
(2020)

125 covid -19 + 500 Normal DarkCovidNet / 1 164
434

98.08

87.02

125 covid -19 + 500 Pneumonia + 500 Normal

Ioannis & Tzani
(2020)

224 covid -19 + 700 Pneumonia + 504 Normal
VGG-19/
20.37 million

 93.48

Rahimzadeh &
Attar (2020)

180 covid -19 +6 054 Pneumonia + 8 851 Normal
Xception and
ResNet50V2 /
Unspecified

 91.4

Mahmud et al.
(2020)

305 covid -19 + 305 Normal Multi-resolution
CovXNet /
Unspecified

97.4

90.2 305 covid -19 + 305 Normal + 305 Viral Pneumonia + 305
Bacterial Pneumonia

This research

642 covid -19 + 682 NO-covid (1 460 Normal + 2 740 Viral
Pneumonia + 1 460 Bacterial Pneumonia)

Convolutional neural
networks
435 617 /
879 779

98.61

96.48 642 covid -19 + 1 580 Normal + 4 260 Pneumonia (1 493 Viral + 2

767 Bacterial)

Source:	Author’s	own	elaboration.	

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

11

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

In addition, previous studies working with multiple scenarios, train each scenario separately. This

can represent higher costs if time from a cloud computing platform such as AWS is used for training.

Therefore, a transfer learning approach from the three-class scenario to binary scenario is a better option.

Also, HPO process that usually involves high costs, time, and effort was automated using novel DL libraries

such as Hyperas and Hyperopt, and learning rate was adjusted using callback functions to escape from

local optimums. Although the number of images used in this type of research usually has bias in some

category, for example, negative cases for covid-19, this is usually evaluated using the confusion matrix.

Furthermore, analyzing the confusion matrix from previous works, they usually have poor performance in

one category, generally in pneumonia (Ioannis & Tzani, 2020; Loey et al., 2020; Mahmud et al., 2020; Ozturk

et al., 2020). The proposed CNN have a very good performance in every category involved. Figure 4 shows

the confusion matrix for both proposed models (in the validation and testing samples), and Table 3 shows

the values for the selected metrics (accuracy, precision, sensitivity, and F1-score). Processing a larger

number of images allowed the proposed networks to learn a greater number of patterns; online data

augmentation avoided overfitting, dropout and batch normalization layers provided better generalization

(Figure 5), while HPO in combination with Adam algorithm and new activation functions (such as ReLU or

ELU) led to further optimization.

Figure	4.	Confusion	matrices:	(a)	3-class	validation	scenario,	(b)	binary	validation	scenario,	(c)	3-class	testing	scenario,	and	(d)	binary	testing	

scenario.	
Source:	Author’s	own	elaboration.	

Table 3. Performance metrics.

Dataset Scenario Class Precision Recall F1-score Accuracy

Validation

Binary

covid -19 0.99 0.98 0.99
98.61

Non- covid 0.98 0.99 0.99

Three-class

covid -19 0.99 0.98 0.98
96.48

Normal 0.95 0.97 0.96

Pneumonia 0.96 0.95 0.95

Testing

Binary

covid -19 0.91 0.97 0.94
99.07

Non-COVID 1.0 0.99 0.99

Three-class

covid -19 0.92 0.97 0.94
93.15

Normal 0.97 0.88 0.92

Pneumonia 0.90 0.98 0.94

Source:	Author’s	own	elaboration.	

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

12

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Table 4 shows the selected hyper-parameters using Hyperas and Hyperopt. For the binary

classification scenario, the network was adjusted to only 435 617 parameters, while accuracy increased to

98.61% and 99.07% in the validation and testing samples. In the three-class scenario, the network was

adjusted to only 879 779 parameters, and the accuracy increased to 96.48% and 93.15% into the validation

and testing samples. These network sizes allowed to convert the models to TensorFlow JS format and

embed them locally in a hybrid application (using Ionic) that can be installed and executed without the

need for Internet access. Additionally, the application was deployed into Internet through Firebase to

provide support in diagnostics, without managing infrastructure, saving infrastructure costs, and scaling

automatically. Figure 6 presents the proposed application being executed in the three-class scenario. The

application supports two languages (English and Spanish) and is available at https://xrays-covid.web.app/.

Figure	5.	Three-class	training	and	validation	accuracy	(left)	and	training	and	validation	loss	(right).	

Source:	Author’s	own	elaboration.	

 	

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

13

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Figure	6.	The	proposed	application.	
Source:	Author’s	own	elaboration.	

Table 4. Hyper-parameters obtained through Hyperas and Hyperopt.

Three-class Scenario Binary Scenario

Activation Conv. Layer 1: elu
Activation Conv. Layer 2: elu
Activation Conv. Layer 3: elu
Activation Conv. Layer 4: relu
Activation Conv. Layer 5: relu
Activation Conv. Layer 6: elu
Dense Layer Size: 512
Dropout (Dense Layer): 0.1124
Activation (Dense Layer): relu
Dropout (Output Layer): 0.32

Dense Layer Size: 128
Dropout (Dense Layer): 0.7628
Activation (Dense Layer): elu

Source:	Author’s	own	elaboration.	

Cloud computing tools (such as Firebase) offer infrastructure built using regions made up of

different availability zones that include different computing centers. Widely used services like Amazon S3

offer guaranteed availability of 99.99% and durability of 99.999999999%. Using AWS CloudWatch, an event

was scheduled to invoke the proposed application every three minutes. This event ran for one month (14

880 invocations) and found 100% availability.

Additionally, applications previously used redundancy to ensure sufficient capacity to respond to

the maximum level of activity. The cloud allows you to achieve high flexibility and scalability levels,

automatically providing the amount of resources needed, reducing costs and improving capacity to meet

the demand and workload. Concurrency refers to the number of instances serving requests. When requests

arrive faster compared to scalability, requests fail due to a throttling error (http code 429). To test the

scalability of this application, the artillery.io tool was used, carrying out a simulation of five new users

accessing the application (load test) every second for 10 min, resulting in 3000 invocations and 100%

successful executions.

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

14

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Conclusions

DL models can be widely used in many areas, being dependent on the existence of enough data for training.

When the amount of data available is scarce, there are some techniques that allow improving the

performance of the models such as data augmentation, the use of pre-trained models, regularization

techniques (such as dropout and batch normalization) to avoid overfitting, and new and improved training

algorithms (like Adam and RMSProp) and activation functions (such as ReLU and ELU). This research

proposed a CNN-based application to provide assistance support in diagnosing two (covidvs. Non-covid)

and three classes (covidvs. Normal vs. Pneumonia), reaching an accuracy of 98.61% and 96.48% for two and

three classes in the validation dataset and 99.07% and 93.15% in the testing dataset, obtaining higher

performance when compared to previous studies and using a significantly lower number of parameters.

The architecture used into these networks increased the classification performance using state-of-the-art

concepts such as dropout, batch normalization, and online data augmentation to avoid overfitting, transfer

learning, automated hyper-parameter optimization, learning rate adjustment through callbacks to escape

local optimums, new activation functions (such as ELU or ReLU), and Adam optimizer. In addition, the

amount of data for training, validation, and testing samples was considerably increased, compared to other

works reported in the literature. This application can be widely used to help diagnose since X-ray images

are widely used for the diagnosis of respiratory diseases and lung abnormalities such as covid-19. In the

future, CNN used in this research can be validated against a greater number of images and include other

categories (other lung diseases such as tuberculosis, lung cancer, ARDS, among others). They can even be

used as a base architecture or pre-trained models in future investigations. The size of these CNN allowed

them to be converted to TensorFlow JS format and be embedded locally in a hybrid application that can be

installed and executed without the need for Internet access (which is not always available in remote or poor

areas). Additionally, the application was deployed into the Internet through Firebase to provide assistance

to health personnel, without managing infrastructure, saving infrastructure costs, and scaling

automatically. This application is online at https://xrays-covid.web.app/ and two languages are available

(English and Spanish).

Conflict of interest

The authors declare that there is no conflict of interest with the preparation of the article.

References
American	College	of	Radiology	(ACR).	(March	11,	2020).	ACR	Recommendations	for	the	use	of	chest	radiography	

and	 computed	 tomography	 (CT)	 for	 suspected	 covid-19	 infection.	 https://www.acr.org/Advocacy-and-
Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-
covid19-Infection	

Beysolow	II,	T.	(2017).	Introduction	to	deep	learning	using	R.	A	step-by-step	guide	to	 learning	and	implementing	
deep	learning	models	using	R.	Apress.	

Bosowski,	P.,	Bosowska,	J.,	&	Nalepa,	J.	(2021).	Evolving	deep	ensembles	for	detecting	covid-19	in	chest	X-Rays.	
IEEE	International	Conference	on	Image	Processing	(ICIP),	3772-3776.		
https://doi.org/10.1109/ICIP42928.2021.9506119	

Chollet,	F.	(2018).	Deep	learning	with	Python.	Manning	Publications	Co.	

Chung,	M.,	Bernheim,	A.,	Mei,	X.,	Zhang,	N.,	Huang,	M.,	Zeng,	X.,	Cui,	J.,	Xu,	W.,	Yang,	Y.,	Fayad,	Z.	A.,	Jacobi,	A.,	Li,	K.	
S.,	&	Shan,	H.	 (2020).	CT	 Imaging	 features	of	2019	novel	 coronavirus	 (2019-nCoV).	Radiology,	 295(1).	
https://doi.org/10.1148/radiol.2020200230	

Chung,	A.	(2020).	Actualmed	covid-19	chest	x-ray	data	initiative.	https://github.com/agchung/Actualmed-covid-
chestxray-dataset	

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

15

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Clevert,	D.	A.,	Unterthiner,	T.,	&	Hochreiter,	S.	(2016).	Fast	and	accurate	deep	network	learning	by	exponential	
linear	units	(ELUs).	Johannes	Kepler	University,	Linz,	Australia,	pp.	1-14.	arXiv:1511.07289v5	

Cohen,	 J.,	Morrison,	 P.,	&	Dao,	 L.	 (2020).	 covid-19	 image	data	 collection:	 prospective	 predictions	 are	 the	 future.	
https://github.com/ieee8023/covid-chestxray-dataset	

European	 Society	 of	 Radiology	 (ESR).	 (2021).	 [Eurorad].	 https://www.eurorad.org/advanced-
search?search=covid&sort_by=published_at&sort_order=DESC&page=5	

Github.	 (2020).	 covid-19	 Chest	 X-Ray	 Dataset	 Initiative.	 https://github.com/agchung/Figure1-covid-chestxray-
dataset	

Google.	(2023).	Firebase.	https://firebase.google.com/	

Gutierrez,	A.,	Ansuategi,	A.,	 Susperregi,	L.,	Tubío,	C.,	Rankic,	 I.,	&	Lenza,	L.	 (2019).	A	benchmarking	of	 learning	
strategies	for	pest	dete	and	identification	on	tomato	plants	for	autonomous	scouting	robots	using	internal	
databases.	Journal	of	Sensors,	2019(1),	1-16.	https://doi.org/10.1155/2019/5219471	

Ioannis,	D.	A.,	&	Tzani,	B.	(2020).	covid-19:	automatic	detection	from	X-Ray	images	utilizing	transfer	learning	with	
convolutional	neural	networks.	arXiv:2003.11617	

Ionic.	(2023).	Cross-platform	mobile	App	development:	Ionic	framework.	https://ionicframework.com/	

Jacobi,	A.,	Chung,	M.,	Bernheim,	A.,	&	Eber,	C.	(2020).	Portable	chest	X-ray	in	coronavirus	disease-19	(covid-19):	a	
pictorial	review.	Clinical	Imaging,	64,	35-42.	https://doi.org/10.1016/j.clinimag.2020.04.001	

Kaggle	Inc.	(2023).	Chest	X-Ray	images	(Pneumonia).	https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia	

Loey,	M.,	 Smarandache,	 F.,	&	Khalifa,	N.	 E.	M.	 (2020).	Within	 the	 lack	of	 chest	 covid-19	X-ray	dataset:	 a	 novel	
detection	 model	 based	 on	 GAN	 and	 deep	 transfer	 learning.	 Symmetry,	 12(4),	 1-19.	
https://doi.org/10.3390/sym12040651	

Mahmud,	T.,	Rahman,	M.	A.,	&	Fattah,	S.	A.	 (2020).	CovXNet:	a	multi-dilation	convolutional	neural	network	 for	
automatic	 covid-19	 and	 other	 pneumonia	 detection	 from	 chest	 X-ray	 images	with	 transferable	multi-
receptive	 feature	 optimization.	 Computers	 in	 Biology	 and	 Medicine,	 122,	 103869.	
https://doi.org/10.1016/j.compbiomed.2020.103869	

Narin,	A.,	Kaya,	C.,	&	Pamuk,	Z.	(2020).	Automatic	detection	of	coronavirus	disease	(covid-19)	using	X-ray	images	
and	deep	convolutional	neural	networks.	arXiv:2003.10849		

Ozturk,	T.,	Talo,	M.,	Yildirim,	E.	A.,	Baloglu,	U.	B.,	&	Yildirim,	O.	(2020).	Automated	detection	of	covid-19	cases	using	
deep	 neural	 networks	 with	 X-ray	 images.	 Computers	 in	 Biology	 and	 Medicine,	 121,	 1-11.	
https://doi.org/10.1016/j.compbiomed.2020.103792	

Pedamonti,	 D.	 (2018).	 Comparison	 of	 non-linear	 activation	 functions	 for	 deep	 neural	 networks	 on	 MNIST	
classification	task.	arXiv:1804.02763v1	

Radiopaedia.	(2021).	[covid-19].	Radiopaedia.org.	https://radiopaedia.org/articles/covid-19-4?lang=us	

Rahimzadeh,	M.,	&	Attar,	A.	 (2020).	A	modified	deep	convolutional	neural	network	 for	detecting	 covid-19	and	
pneumonia	from	chest	X-ray	images	based	on	the	concatenation	of	Xception	and	ResNet50V2.	Informatics	
in	Medicine	Unlocked,	19,	1-9.	https://doi.org/10.1016/j.imu.2020.100360	

Rong,	G.,	Mendez,	A.,	Assi,	 E.	B.,	 Zhao,	B.,	&	Sawan,	M.	 (2020).	Artificial	 Intelligence	 in	Healthcare:	 review	and	
prediction	case	studies.	Engineering,	6(3),	291–301.	https://doi.org/10.1016/j.eng.2019.08.015	

Rosebrock,	A.	(2017).	Deep	learning	for	computer	vision	with	Python.	PyImageSearch.	

SAS	Institute	Inc.	(2023).	Machine	learning:	What	it	is	and	why	it	matters	SAS.		
https://www.sas.com/en_us/insights/analytics/machine-learning.html#machine-learning-importance	

Sethy,	P.	K.,	&	Behera,	S.	K.	(2020).	Detection	of	coronavirus	disease	(covid-19)	based	on	deep	features.	Preprints.org.	
https://doi.org/10.20944/preprints202003.0300.v1	

Springenberg,	J.	T.,	Dosovitskiy,	A.,	Brox,	T.,	&	Riedmiller,	M.	(2015).	Striving	for	simplicity:	the	all	convolutional	net.	
arXiv:1412.6806v3	

Srivastava,	N.,	Hinton,	G.,	Krizhevsky,	A.,	Sutskever,	I.,	&	Salakhutdinov,	R.	(2014).	Dropout:	a	simple	way	to	prevent	
neural	networks	from	over.	Journal	of	Machine	Learning	Research,	15,	1929-1958.		

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

16

ISSN online 2007-9621
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Tensorflow.	(2023).	TensorFlow.js	|	Machine	Learning	for	JavaScript	Developers.	TensorFlow.org.		
https://www.tensorflow.org/js	

The	 Italian	 Society	 of	 Medical	 and	 Interventional	 Radiology	 (SIRM).	 (2020).	 [covid-19	 database].	
https://www.sirm.org/en/category/articles/covid-19-database/	

Wang,	 J.,	 Ma,	 Y.,	 Zhang,	 L.,	 Gao,	 R.,	 &	 Wu,	 D.	 (2018).	 Deep	 learning	 for	 smart	 manufacturing:	 methods	 and	
applications.	Journal	of	Manufacturing	Systems,	48,	1-13.	https://doi.org/10.1016/j.jmsy.2018.01.003	

Wang,	L.,	Lin,	Z.	Q.,	&	Wong,	A.	(2020).	covid-Net:	a	tailored	deep	convolutional	neural	network	design	for	detection	
of	covid-19	cases	from	chest	X-Ray	images.	arXiv:2003.09871	

World	 Health	 Organization	 (WHO).	 (June	 06,	 2020).	 Coronavirus	 disease	 (covid-19)	 pandemic.	
https://www.who.int/emergencies/diseases/novel-coronavirus-2019	

World	 Health	 Organization	 (WHO).	 (2022).	 Coronavirus.	 https://www.who.int/health-
topics/coronavirus#tab=tab_1	

Wuest,	 T.,	 Weimer,	 D.,	 Irgens,	 C.,	 &	 Thoben,	 K.	 D.	 (2016).	 Machine	 learning	 in	 manufacturing:	 advantages,	
challenges,	and	applications.	Production	&	Manufacturing	Research,	4(1),	23-45.		
https://doi.org/10.1080/21693277.2016.1192517	

Yu,	T.,	&	Zhu,	H.	(2020).	Hyper-Parameter	optimization:	a	review	of	algorithms	and	applications.	arXiv:2003.05689	

Zhou,	S.,	Wang,	Y.,	Zhu,	T.,	&	Xia,	L.	(2020).	CT	features	of	coronavirus	disease	2019	(covid-19).	American	Journal	
of	Roentgenology,	214(6),	1287-1294.	https://doi.org/10.2214/AJR.20.22975	

	

