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Abstract 
This research presents the design of an application to detect covid-19 using convolutional neural networks and X-ray 

images in two scenarios (covid/Non-covid and covid/Normal/Pneumonia). To avoid overfitting online data 

augmentation, dropout, batch normalization, and Adam optimizer was used. The three-class network was used as a 

pre-trained model, tuning only the dense and output layers to obtain the binary model. Additionally, hyper-parameter 

optimization was used to get dropout probabilities, activation functions, and neurons. The learning rate was adjusted 

using callbacks to avoid local optimums. Networks were converted to TensorFlow.js format and embedded locally in 

a hybrid application using Ionic and Capacitor and were deployed through Firebase to help provide diagnostics. The 

application obtained an accuracy of 98.61% and 96.48% for two and three classes, respectively, achieving higher 

performance when compared to other proposals (offline models) in the literature and using fewer training parameters.  
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Resumen 
Este documento presenta el diseño de una aplicación para detectar covid-19 utilizando redes neuronales 

convolucionales e imágenes de rayos X en dos escenarios (covid/No-covid y covid/Normal/Neumonía). Para evitar 

el sobreajuste, se utilizó aumento de datos, dropout, normalización por lotes y optimizador Adam. La red para tres 

clases se utilizó como modelo pre-entrenado ajustando solo la capa densa y de salida para obtener el modelo binario. 

Además, se realizó una optimización automatizada de hiper-parámetros como dropout, funciones de activación y 

número de neuronas. La tasa de aprendizaje se ajustó mediante callbacks para evadir óptimos locales. Las redes fueron 

convertidas al formato TensorFlow.js para integrarse en una aplicación híbrida utilizando Ionic y Capacitor, y se 

desplegaron mediante Firebase para brindar asistencia y soporte al generar diagnósticos. La aplicación obtuvo una 

exactitud del 98.61% y 96.48% para dos y tres clases, respectivamente, logrando mayor rendimiento que otras 

propuestas y utilizando menos parámetros de entrenamiento. 
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Introduction 

In December 2019, the World Health Organization (WHO) alerted about cases of respiratory illness of 

unknown origin coming from Wuhan, China. The virus was named covid-19 and is caused by the new 

coronavirus SARS-CoV-2 (WHO, 2022). Most people infected with covid-19 recover without requiring any 

specialized treatment, but older people or those with associated medical conditions such as diabetes, 

cancer, chronic respiratory, or cardiovascular diseases have a high probability of severe illness.  

Today, the scientific community still plays a fundamental role in the development of tools that allow 

the diagnosis and monitoring of this disease. In radiology, many works in the literature have focused on 

the use of computed tomography (CT) scans for the detection of covid-19 (Zhou et al., 2020). However, CT 

scans have drawbacks related to patient transportation, waiting time between services to sanitize the 

facilities, inefficient sanitizations, and shortage of CT in certain places. Due to these drawbacks, chest X-

ray images are more widely used as a tool for the identification of respiratory and lung abnormalities such 

as covid-19 (American College of Radiology, 2020). Additionally, the X-ray images for the detection of this 

disease have a key role given the limited or insufficient access to RT-PCR (reverse transcriptase polymerase 

chain reaction) tests in some parts of the world (Jacobi et al., 2020). 

Millions of confirmed cases of covid-19 and thousands of deaths were reported (WHO, 2020). To 

stop the increase in the number of infections, it is crucial to detect positive cases as soon as possible, 

isolating and treating patients instantly. This leads to the need to develop auxiliary tools for the diagnosis, 

where recent research indicates that X-ray images contain significant information about covid-19 (Chung 

et al., 2020). Artificial intelligence techniques, especially deep learning (Beysolow II, 2017), together with X-

ray images can be useful for the diagnosis of covid-19 and compensate for the lack of specialists in remote 

locations (Ozturk et al., 2020).  

Deep learning (DL) has already been used for image and signal processing in healthcare, improving 

diagnostics based on medical, multidimensional, or thermal images. Recently, X-ray images and DL models 

have been used for the detection of covid-19. Loey et al. (2020) used a DL model based on GAN and transfer 

learning to reach an accuracy of 85.2% in the prediction of three classes (covid-19, Normal and Pneumonia) 

but using only 69 covid-19 images and 306 total images for all the classes. For transfer learning, AlexNet, 

GoogleNet, and ResNet were selected in this study. Rahimzadeh & Attar (2020) trained several deep 

convolutional networks into three classes: normal, pneumonia, and covid-19 using 180 X-ray images 

belonging to persons infected with covid-19 and an unbalanced dataset (fewer cases of covid-19 along with 

more cases from other classes). For the networks, they proposed a neural network that is a concatenation 

of the Xception and ResNet50V2 pre-trained models. The overall average accuracy for all classes was 91.4%. 

Wang et al. (2020) developed a DL model based on a pre-trained model from ImageNet to achieve 

an accuracy of 93.3% in the diagnostic of three classes (covid-19, Normal and Pneumonia) but using only 

358 covid-19 images and 11.95 million parameters. This model makes heavy use of a lightweight residual 

projection-expansion projection-extension (PEPX) design pattern. Ioannis & Tzani (2020) developed a DL 

model using only 224 covid-19 images based on VGG-19 model, obtaining an accuracy of 98.75% and 

93.48% in the detection of two and three classes, respectively.  
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VGG-19 is a deep neural network architecture that does not leverage residual design principles and 

lightweight design patterns, and it has very low architectural diversity. Ozturk et al. (2020) proposed a DL 

model consisting of 17 convolutional layers and different filtering on each layer. This approach reached an 

accuracy of 98.08% and 87.02% for the detection of two and three classes, respectively, but using only 125 

covid-19 images and without using techniques for avoiding overfitting such as dropout or data 

augmentation. Narin et al. (2020) reached an accuracy of 98% in detecting covid-19, using only 100 X-ray 

images (50 covid-19 + 50 Non-covid) in conjunction with the ResNet50 model. ResNet-50 is a deep neural 

network architecture that leverages residual design principles and lightweight design patterns (e.g., 

bottleneck design patterns), and it has moderate architectural diversity, but it does not leverage lightweight 

PEPX sign patterns or selective long-range connectivity. Sethy & Behera (2020) achieved an efficiency of 

95.3% in detecting covid-19 using only 50 X-ray images (25 covid-19 + 25 Non-covid) in conjunction with 

the ResNet50 DL model and support vector machines (SVM). Mahmud et al. (2020) used a convolutional 

network with multi-dilation for the detection of covid-19, reaching an accuracy of 90% in predicting several 

cases of pneumonia and covid-19.  

Every previous research mentioned above is limited by the small number of images used in 

comparison to the large network capacity (number of trainable parameters) they are using, and the results 

can also be significantly improved. Moreover, transfer learning models are more useful when the pre-

trained models are developed using images with some similarity; otherwise, they will have to be adjusted 

to be relevant to the problem in question, requiring expensive computing power. Furthermore, the most 

complex networks do not always produce the best results.  

Springenberg et al. (2015) has already mentioned that the simplest models are less likely to overfit 

and may produce better results. Also, pretrained models -such as ImageNet-based models, among others- 

used to end in very heavy models, making it difficult to deploy them locally in devices with limited 

capacities. Finally, a platform or application that makes models available to final users in the form of 

services (software as a service) is essential to help in the detection process.  

For these reasons, the contribution of this research is the design of a convolutional neural networks-

based application that can be an assistance support to diagnose covid-19 using X-ray images. The proposed 

application and networks provide accuracy results in two (covidvs. Non-covid) and three classes (covidvs. 

Normal vs. Pneumonia), achieving competitive results (and even better) when compared to other proposals 

(offline models) in the literature and using significantly fewer training parameters. This allowed embedding 

the models in an application that can be executed without the need for Internet access.  

To avoid overfitting, online data augmentation with normalization was used during training 

execution. The networks also included dropout and batch normalization layers in addition to Adam 

optimizer. The three-class network was used as a pre-trained model, preserving the convolutional layers, 

and tuning only the dense and output layers to obtain the binary network (this represents cost savings if 

time from a cloud computing platform such as AWS is used for training). In both scenarios, automated 

hyper-parameter optimization (HPO) was used to optimize hyper-parameters such as dropout 

probabilities, activation functions, and neurons in the dense layer. Additionally, the learning rate was 

adjusted using callbacks to escape from local optimums. The datasets (training, validation, and testing) 

were increased compared to most studies.  
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The proposed networks obtained an accuracy of 98.61% and 96.48% for two and three classes in the 

validation sample and 99.07% and 93.15% in the testing sample, achieving higher performance when 

compared to other proposals in the literature and using significantly fewer training parameters. Finally, 

these network sizes allowed to convert the models into TensorFlow JS format and to embed them locally 

in a hybrid application (using Ionic and Capacitor) that can be installed and executed without the need for 

Internet access (which is not always available in remote or poor areas). Additionally, the application was 

deployed into Internet through Firebase to help provide diagnostics at any time and place. 

Deep learning and convolutional neural networks 

Deep learning (DL) is a method of data analysis and a branch of artificial intelligence that automates 

analytical model building (SAS Institute Inc., 2023). The deep in DL is not a reference to any kind of deeper 

understanding achieved by the approach; rather, it stands for the idea of successive layers of 

representations, including automatic feature learning and high-volume modelling capabilities (Wang et 

al., 2018; Wang et al., 2020; Wuest et al., 2016).  

DL has several properties that justify its importance within artificial intelligence, such as simplicity 

(no feature engineering), scalability (within GPU or TPU), and versatility and reusability (continuous 

learning). The key in DL solutions is the balance between optimization and generalization. Optimization 

refers to adjusting a model to obtain the best performance on the training data, whereas generalization 

measures how well the trained model performs on data it has never seen before. When generalization stops 

improving on the training data, and validation metrics begin to degrade, then the model is starting to 

overfit. It means the model is learning patterns that are specific to the training data but irrelevant for new 

observations. It should be highlighted that, the bigger network will likely overfit, meanwhile simpler models 

are less likely to overfit than complex ones (Springenberg et al., 2015). 

Convolutional neural networks (CNN) are a DL area primarily used for image recognition and 

classification (Loey et al., 2020), although they have also been investigated in other areas such as natural 

language processing and speech recognition (Wang et al., 2018). In traditional artificial neural networks 

(ANN), each neuron in the input layer is connected to each neuron in the next layer, which is known as a 

dense or fully connected layer. However, in CNN, dense layers are used until the last part of the network 

(Rosebrock, 2017). Patterns learned by CNN are not limited to a particular position; for example, a pattern 

learned in the lower left corner may be recognized in the upper right corner or anywhere.  

CNN achieve pattern recognition using a set of convolutional, pooling, and dense layers. 

Convolutional layers are combined with the input data using multiple filters (Rong et al., 2020). A nonlinear 

activation function is applied to the output of the convolution layers (Rosebrock, 2017). The subsequent 

pooling layers extract the most significant features with a fixed length over sliding windows of the raw 

input data by pooling operations such as max pooling or average pooling. Max pooling selects the 

maximum value of one region in the feature map as the most significant feature. Average pooling 

calculates the mean value and takes it as the pooling value in this region. After multi-layer feature learning, 

fully connected layers convert a two-dimensional feature map into a one-dimensional vector and then 

feed it into a softmax function for model construction (Rong et al., 2020). 
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Recently, several advances have emerged in the development of CNN. These advances include pre-

trained models, model assembly, new training algorithms, activation functions, and regularization 

techniques. A pre-trained model is a model previously trained on a large dataset. If this original dataset is 

large and general enough, then the pre-trained model can act as a generic model, useful for many different 

computer vision problems, even though these new problems may involve different classes than those of 

the original task, such as VGGNet, GoogleNet, ResNet, Xception, and Inception-V3. 

Additionally, new efficient training algorithms have been proposed, such as momentum-based 

SGD, AdaGrad, AdaDelta, Adam, and RMSProp. Another powerful technique to get the best possible results 

is model assembly. This technique consists of using predictions from a set of models to produce a better 

prediction. Ensembling relies on the assumption that different good models trained independently are 

likely to be good for different reasons: each model looks at slightly different aspects of the data to make its 

predictions, getting part of the “truth” but not all of it (Chollet, 2018).  

ANN with a large number of parameters are powerful DL systems; however, overfitting is a serious 

problem. Large networks are also slow to use, making it difficult to deal with overfitting by combining the 

predictions of many different large neural networks at test time. Dropout is a technique for addressing this 

problem. Dropout is a very effective way to prevent overfitting. The key idea is to randomly select and 

remove a set of neurons and their connections during training to prevent neurons from correlating. 

Dropout significantly reduces overfit, providing greater improvements than other regularization methods. 

The authors propose to use "dropout" in ranges from 0.5 to 0.8 for hidden layers and greater than 0.8 for 

visible layers (input and output). Standard backpropagation learning usually builds up brittle co-

adaptations that work for the training data, but do not generalize to unseen data. Random dropout breaks 

up these co-adaptations by making the presence of any hidden unit unreliable. It has been tested that 

Dropout is a general technique and is not specific to any domain (Srivastava et al., 2014).  

In addition, new and improved activation functions have been introduced, such as the rectifier 

linear unit (ReLU) function that significantly improves older activation functions such as sigmoid or 

tangent (Pedamonti, 2018). Different ReLU variants have been introduced such as Leaky ReLU, ELU, and 

SELU. But, particularly, the exponential linear units (ELU) activation function can speed up training and 

lead to higher ranking performances. Like ReLU, leaky ReLU, and parametrized ReLU, ELU alleviate the 

vanishing gradient problem via the identity for positive values. However, ELU have improved learning 

characteristics compared to the units with other activation functions. In contrast to ReLU, ELU have 

negative values which allow them to push mean unit activations closer to zero, like batch normalization, 

but with lower computational complexity. Mean shifts toward zero speed up learning by bringing the 

normal gradient closer to the unit natural gradient because of a reduced bias shift effect (Clevert et al., 2016).  

Finally, batch normalization (BN) allows to use higher learning rates and be less careful about 

initialization. It may also regularize, eliminating in some cases the need for dropout. BN allows to speed up 

the training phase using higher training rates, while it regularizes the network parameters. Merely adding 

BN to a state-of-the-art image classification model yields a substantial speed up in training. By further 

increasing the learning rates, and applying other modifications afforded by BN, it is possible to reach state-

of-the-art results with only a small fraction of training steps (Zhou et al., 2020). 
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Materials and methods 

This research presents the design and development of a convolutional neural networks-based application 

that can be an assistance support to diagnose covid-19 using chest X-ray images. The proposed networks 

were developed to provide accurate results in two (covidvs. Non-covid) and three classes (covidvs. Normal 

vs. Pneumonia).  

The proposed method (Figure 1) benefits from the fact that both scenarios are very similar, and it 

uses transfer learning from one scenario to the other. In order to avoid overfitting, online data 

augmentation with normalization was used during training execution. The architecture also included 

dropout and batch normalization layers in addition to Adam optimizer. The three-class network was the 

model used as a pre-trained model, preserving the convolutional layers and retraining (continuous 

learning) only the dense and output layers in order to obtain the binary network. Taking advantage of the 

fact that the three-class model was trained on a similar dataset, training time is saved by using it as a pre-

trained model compared to training from scratch. This can represent cost savings if time from a cloud 

computing platform such as AWS is used for training. Therefore, a transfer learning strategy from one 

scenario (in this case the three-class scenario) to the other is a better option.  

 
Figure	1.	Proposed	method.	

Source:	Author’s	own	elaboration.	

 

In both cases, HPO was used to optimize hyper-parameters such as dropout probabilities, activation 

functions (such as ReLU or ELU), and neurons in the dense layer. Additionally, the learning rate was 

adjusted using callbacks to escape from local optimums. Finally, the proposed models were converted to 

TensorFlow JS format and embedded locally in a hybrid application (using Ionic and Capacitor), and they 

were deployed through Firebase to help provide diagnostics at any time. 

  



 
 

w w w . a c t a u n i v e r s i t a r i a . u g t o . m x 	

 

7 

ISSN online 2007-9621 
Belman	López,	C.	E.			

Design	of	an	application	to	detect	covid-19	using	convolutional	neural	networks	and	X-ray	images	|	1-16	
	

Dataset 

In this investigation, X-ray images were acquired from various public data sources. For the design of the 

proposed models, the number of images for training, validation, and testing samples was considerably 

increased compared to most studies. For the covid-19 class, 489 images were obtained from Cohen et al. 

(2020) and the Italian Society of Medical and Interventional Radiology (2020); 35 images were obtained 

from the covid-19 Chest X-ray Dataset Initiative (Github, 2020); 56 images were obtained from Chung 

(2020); 31 images were obtained from European Society of Radiology (2021); and 31 images were obtained 

from Radiopaedia (2021). For the Non-coviddata set (Normal and Pneumonia), 5840 images were obtained 

from Kaggle Inc. (2023).  

 
Figure	2.	Categories	involved	in	this	investigation.	

Source:	Author’s	own	elaboration.	

 

Figure 2 illustrates some sample images used in this investigation. The number of images used for 

each scenario is presented in Table 1. The three-class scenario (covid-19, Normal and Pneumonia) analyzed 

a total of 6482 images, 642 for covid-19, 1580 for the Normal class and 4260 for Pneumonia class. 

Pneumonia class is internally composed of two types (bacterial and viral pneumonia). The two-class 

scenario (covid-19 and non-covid) analyzed a total of 6302 images, 642 for covid-19, and 5660 for the Non-

covidclass (Normal and Pneumonia). The training and test samples use the same amount of data in both 

scenarios and the testing sample is never seen during the training phase. It should be noted that although 

the training and testing samples are unbalanced, the size of the validation sample (used during training 

process) is balanced using 180 images for each class (360 and 540 for 2 and 3 classes, respectively), although 

this caused a small difference in the total number of images used in both scenarios.  

Table 1. Number of images and classes used for this investigation. 

Scenario Sample covid-19 

Non-covid  

Normal 
Pneumonia  

Bacterial Viral Total 

3 classes 
(6482 images) 

Training 400 1 000 2 480 1 200 5 080 

Validation 180 180 90 90 540 
Testing 62 400 200 200 862 

2 classes 
(6302 images) 

Training 400 1 000 2 480 1 200 5 080 
Validation 180 60 60 60 360 

 Testing 62 400 200 200 862 

Source:	Author’s	own	elaboration.	
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Configuration and online data augmentation with normalization 

CNN were developed using Python in conjunction with TensorFlow and Keras. The training was carried 

out using a computer equipped with an Intel Core i5-6200U processor (2.40 GHz), 16 GB of RAM, 222 GB of 

hard disk and Windows 10. The X-ray images passed through a preprocessing step in order to carry out an 

easier and faster training. All images were resized to 200x200, followed by a value normalization (dividing 

by 255), resulting in floating point inputs in a range between 0 and 1. The supported image types are all 3-

channel, types such as DICOM are not supported right now. 

In addition, online data augmentation was used to avoid overfitting. Data augmentation takes the 

approach of generating more training data from existing training samples by augmenting the samples via 

a number of random transformations that yield believable-looking images. The goal is that at training time, 

the model will never see the exact same picture twice (Chollet, 2018).  

Data augmentation techniques can be divided into two types depending on the execution time. The 

first type consists of running desired transformations before training process. This is known as offline 

augmentation and is normally applied in small datasets. Here the dataset will be increased before training 

by a factor equal to the number of transformations. The second type is called online augmentation. 

Transformations are performed at the time of training the model, applying techniques such as rotation, 

zoom, crop, among others. Online augmentation increases the variability of the input images, so that the 

model will never see the exact same picture twice during the training phase providing higher robustness 

to the model (Gutierrez et al., 2019). This also helps expose the model to more aspects of the data and 

generalize better. This research used online data augmentation approach applying the following 

techniques and parameters: rotation range in 35 degrees, width shift and height shift in 5%, zoom range in 

10%, shear range in 10%, brightness range in 15%, and fill mode constant in black color. 

Architecture and network optimization 

The proposed base architecture is illustrated in Figure 3. The resolution used in the images allowed a 

maximum of six layers. Therefore, the architecture consists of six convolutional layers with 32, 32, 64, 64, 

128, and 128 neurons, respectively. The convolutional layers used 3 x 3 filters and padding to conserve the 

size of the inputs. This padding allowed to extend the network without having to increase the size of the 

resolution. Additionally, six max pooling layers with 2x2 windows and no stride (stride 1) were utilized. To 

improve the optimization of the network, two batch normalization layers were added in the positions 

illustrated in Figure 2. Additionally, researchers must direct efforts to carefully coping with model design 

and corresponding hyper-parameter selection. This usually involves high costs, time, and effort. HPO 

consists of searching for optimum hyper-parameters to be used during the training process. Hyper-

parameter refers to parameters that cannot be updated during the training of DL models, such as the 

structure of the model (layers), layer sizes, activation functions, among others (Yu & Zhu, 2020).  

In this research, HPO was done using Hyperas and Hyperopt. Hyperas allows to use the power of 

Hyperopt without having to learn the syntax of it. Instead, just define the model and use a simple template 

notation to define hyper-parameter ranges to tune. The following hyper-parameters were tested using 

Hyperas during 100 epochs and five automatic evaluations (trials):  

• Dropout probabilities in the dense and output layer in a uniform distribution over the interval [0,1], 

in order to avoid overfitting. 

• Neurons in the dense layer, choosing between 256, 512, and 1024. 

• Activation function in the different layers, choosing between ReLU and ELU. 
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Figure	3.	Base	architecture.	

Source:	Author’s	own	elaboration.	

 

CNN were trained using Adam to minimize the loss function (binary and categorical crossentropy, 

respectively). The batch size (set to 20) was used for calculating the steps per epoch, dividing the training 

samples by the batch size. Accuracy was the metric used for monitoring the training, which was carried 

out over 100 epochs. In the output layer, the “softmax” function was used for the three-class scenario, while 

the “sigmoid” activation function was used for the binary case. 

The initial training rate was set to 1.5e-3 but using “callbacks”; the training rate was adjusted by a 

factor of 0.8 with patience of 2 epochs in order to escape from local optimums. A “callback” is an object 

used to perform actions at various phases of training (at the start or end of an epoch, before or after a single 

batch). Callbacks may periodically save your model to disk, do early stopping, reduce learning rate when a 

metric has stopped improving, get a view on internal statistics of a model during training, among other 

actions. When reducing the learning rate, patient refers to the number of epochs with no improvement in 

the metrics after which learning rate will be reduced. The proposed networks were validated using cross-

validation, confusion matrix, and accuracy, precision, sensitivity, and F1-score metrics.  

Deployment 

Once the models were trained and tested, they were embedded into a hybrid application using Ionic and 

Capacitor frameworks. Ionic is an open-source mobile framework for building high quality, cross-platform 

native, and web applications (hybrid apps), and Capacitor provides progressive web app (PWA) support so 

that users can use the exact same API when running on different targets such as iOS or Android (native 

apps), including elements of both web apps and native apps (Ionic, 2023). Therefore, this hybrid mobile 

application can be installed on the device or run via a web browser. Ionic uses a single code base and runs 

everywhere with JavaScript and the Web. To embed the models into Ionic, TensorFlow.js was used. 

TensorFlow.js is a ML library that uses out-of-the-box models in JavaScript. It can also convert TensorFlow 

and Python models to run in the browser. In this way, being a hybrid application, it can be installed inside 

the devices (including the embedded models) and executed without the need for Internet access (which is 

not always available in remote or poor areas) (Tensorflow, 2023). Finally, Firebase was used to deploy the 

Ionic hybrid application in the Web. Firebase is a powerful tool that helps you build apps fast, without 

managing infrastructure. Firebase is built on Google infrastructure and scales automatically, even for 

largest apps, so you do not need to worry about scaling your servers when necessary (Google, 2023). 
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Results and discussion 

This research proposed a CNN-based application to provide accurate results in two (covidvs. Non-covid) 

and three classes (covidvs. Normal vs. Pneumonia). In both cases, the networks used a larger number of 

covid-19 images for training, validation, and testing. Additionally, although the training samples are 

unbalanced, the size of the validation sample is balanced in both scenarios. Additionally, online data 

augmentation and dropout in the dense and output layer were used to avoid overfitting. The number of 

trainable parameters was kept as small as possible, the learning rate was adjusted through callbacks to 

escape local optimums, and automated hyper-parameter was used to define dropout probabilities (in dense 

and output layers), activation functions (ELU or ReLU), and number of neurons in dense layer. Adam's 

algorithm was used for improving the network optimization, and the binary network was obtained through 

transfer learning using the three-class network as a pre-trained model.  

The images used for covid-19 class are still limited, and a larger number of images could help 

increase performance, especially in the three-class scenario. The proposed models obtained higher 

performance when compared to other studies reported in the literature, requiring significantly fewer 

parameters and processing more images (Table 2).  

Other very recent alternatives, such as that of Bosowski et al. (2021) (based on deep ensembles), can 

produce competitive results but are computationally much more expensive to be embedded in devices with 

limited capabilities; as well, their implementation within a platform must have a different approach, using 

a cloud computing platform or on-promise, which will imply high costs and Internet access. Additionally, 

the latency of the entire system (including the physical network) must be analyzed to provide responses in 

real time. 

Table 2. Performance comparison of these networks with other proposals. 

Reference Number of images 
Architecture/ 

parameters 

Accuracy (%) 

Binary Three-classes 

Sethy & Behera 
(2020) 

25 covid-19 + 25 non-covid 
ReNet-50/SVM 
24.97 million 

 
95.38 

 

Narin et al. 
(2020) 

50 covid -19 + 50 non-covid 
ResNet-50 
24.97 million 

98  

Loey et al. 
(2020) 

69 covid -19 + 70 Normal Alexnet/GAN 
61 million 
Googlenet /GAN 

 
99 

 
85.2 69 covid -19 + 79 Normal + 79 Viral Pneumonia + 79 Bacterial 

Pneumonia 

Ozturk et al. 
(2020) 

125 covid -19 + 500 Normal DarkCovidNet / 1 164 
434 
 

 
98.08 

 
87.02 

125 covid -19 + 500 Pneumonia + 500 Normal 

Ioannis & Tzani 
(2020) 

224 covid -19 + 700 Pneumonia + 504 Normal 
VGG-19/ 
20.37 million 

 93.48 

Rahimzadeh & 
Attar (2020) 

180 covid -19 +6 054 Pneumonia + 8 851 Normal 
Xception and 
ResNet50V2 / 
Unspecified 

 91.4 

Mahmud et al. 
(2020) 

305 covid -19 + 305 Normal Multi-resolution 
CovXNet / 
Unspecified 

 
 

97.4 

 
 

90.2 305 covid -19 + 305 Normal + 305 Viral Pneumonia + 305 
Bacterial Pneumonia 

This research 

642 covid -19 + 682 NO-covid (1 460 Normal + 2 740 Viral 
Pneumonia + 1 460 Bacterial Pneumonia) 

Convolutional neural 
networks 
435 617 / 
879 779 

 
98.61 

 
96.48 642 covid -19 + 1 580 Normal + 4 260 Pneumonia (1 493 Viral + 2 

767 Bacterial) 

Source:	Author’s	own	elaboration.	
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In addition, previous studies working with multiple scenarios, train each scenario separately. This 

can represent higher costs if time from a cloud computing platform such as AWS is used for training. 

Therefore, a transfer learning approach from the three-class scenario to binary scenario is a better option. 

Also, HPO process that usually involves high costs, time, and effort was automated using novel DL libraries 

such as Hyperas and Hyperopt, and learning rate was adjusted using callback functions to escape from 

local optimums. Although the number of images used in this type of research usually has bias in some 

category, for example, negative cases for covid-19, this is usually evaluated using the confusion matrix. 

Furthermore, analyzing the confusion matrix from previous works, they usually have poor performance in 

one category, generally in pneumonia (Ioannis & Tzani, 2020; Loey et al., 2020; Mahmud et al., 2020; Ozturk 

et al., 2020). The proposed CNN have a very good performance in every category involved. Figure 4 shows 

the confusion matrix for both proposed models (in the validation and testing samples), and Table 3 shows 

the values for the selected metrics (accuracy, precision, sensitivity, and F1-score). Processing a larger 

number of images allowed the proposed networks to learn a greater number of patterns; online data 

augmentation avoided overfitting, dropout and batch normalization layers provided better generalization 

(Figure 5), while HPO in combination with Adam algorithm and new activation functions (such as ReLU or 

ELU) led to further optimization. 

 
Figure	4.	Confusion	matrices:	(a)	3-class	validation	scenario,	(b)	binary	validation	scenario,	(c)	3-class	testing	scenario,	and	(d)	binary	testing	

scenario.	
Source:	Author’s	own	elaboration.	

 

Table 3. Performance metrics. 

Dataset Scenario Class Precision Recall F1-score Accuracy 

Validation 

Binary 
 

covid -19 0.99 0.98 0.99 
98.61 

Non- covid 0.98 0.99 0.99 

Three-class 
 

covid -19 0.99 0.98 0.98  
96.48 

 
Normal 0.95 0.97 0.96 

Pneumonia 0.96 0.95 0.95 

Testing 

Binary 
 

covid -19 0.91 0.97 0.94 
99.07 

Non-COVID 1.0 0.99 0.99 

Three-class 
 

covid -19 0.92 0.97 0.94  
93.15 

 
Normal 0.97 0.88 0.92 

Pneumonia 0.90 0.98 0.94 

Source:	Author’s	own	elaboration.	
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Table 4 shows the selected hyper-parameters using Hyperas and Hyperopt. For the binary 

classification scenario, the network was adjusted to only 435 617 parameters, while accuracy increased to 

98.61% and 99.07% in the validation and testing samples. In the three-class scenario, the network was 

adjusted to only 879 779 parameters, and the accuracy increased to 96.48% and 93.15% into the validation 

and testing samples. These network sizes allowed to convert the models to TensorFlow JS format and 

embed them locally in a hybrid application (using Ionic) that can be installed and executed without the 

need for Internet access. Additionally, the application was deployed into Internet through Firebase to 

provide support in diagnostics, without managing infrastructure, saving infrastructure costs, and scaling 

automatically. Figure 6 presents the proposed application being executed in the three-class scenario. The 

application supports two languages (English and Spanish) and is available at https://xrays-covid.web.app/. 

 
Figure	5.	Three-class	training	and	validation	accuracy	(left)	and	training	and	validation	loss	(right).	

Source:	Author’s	own	elaboration.	
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Figure	6.	The	proposed	application.	
Source:	Author’s	own	elaboration.	

 
Table 4. Hyper-parameters obtained through Hyperas and Hyperopt. 

 
Three-class Scenario Binary Scenario 

Activation Conv. Layer 1: elu 
Activation Conv. Layer 2: elu 
Activation Conv. Layer 3: elu 
Activation Conv. Layer 4: relu 
Activation Conv. Layer 5: relu 
Activation Conv. Layer 6: elu 
Dense Layer Size: 512 
Dropout (Dense Layer): 0.1124 
Activation (Dense Layer): relu 
Dropout (Output Layer): 0.32 

Dense Layer Size: 128 
Dropout (Dense Layer): 0.7628 
Activation (Dense Layer): elu 

Source:	Author’s	own	elaboration.	

 

Cloud computing tools (such as Firebase) offer infrastructure built using regions made up of 

different availability zones that include different computing centers. Widely used services like Amazon S3 

offer guaranteed availability of 99.99% and durability of 99.999999999%. Using AWS CloudWatch, an event 

was scheduled to invoke the proposed application every three minutes. This event ran for one month (14 

880 invocations) and found 100% availability. 

Additionally, applications previously used redundancy to ensure sufficient capacity to respond to 

the maximum level of activity. The cloud allows you to achieve high flexibility and scalability levels, 

automatically providing the amount of resources needed, reducing costs and improving capacity to meet 

the demand and workload. Concurrency refers to the number of instances serving requests. When requests 

arrive faster compared to scalability, requests fail due to a throttling error (http code 429). To test the 

scalability of this application, the artillery.io tool was used, carrying out a simulation of five new users 

accessing the application (load test) every second for 10 min, resulting in 3000 invocations and 100% 

successful executions. 
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Conclusions 

DL models can be widely used in many areas, being dependent on the existence of enough data for training. 

When the amount of data available is scarce, there are some techniques that allow improving the 

performance of the models such as data augmentation, the use of pre-trained models, regularization 

techniques (such as dropout and batch normalization) to avoid overfitting, and new and improved training 

algorithms (like Adam and RMSProp) and activation functions (such as ReLU and ELU). This research 

proposed a CNN-based application to provide assistance support in diagnosing two (covidvs. Non-covid) 

and three classes (covidvs. Normal vs. Pneumonia), reaching an accuracy of 98.61% and 96.48% for two and 

three classes in the validation dataset and 99.07% and 93.15% in the testing dataset, obtaining higher 

performance when compared to previous studies and using a significantly lower number of parameters. 

The architecture used into these networks increased the classification performance using state-of-the-art 

concepts such as dropout, batch normalization, and online data augmentation to avoid overfitting, transfer 

learning, automated hyper-parameter optimization, learning rate adjustment through callbacks to escape 

local optimums, new activation functions (such as ELU or ReLU), and Adam optimizer. In addition, the 

amount of data for training, validation, and testing samples was considerably increased, compared to other 

works reported in the literature. This application can be widely used to help diagnose since X-ray images 

are widely used for the diagnosis of respiratory diseases and lung abnormalities such as covid-19. In the 

future, CNN used in this research can be validated against a greater number of images and include other 

categories (other lung diseases such as tuberculosis, lung cancer, ARDS, among others). They can even be 

used as a base architecture or pre-trained models in future investigations. The size of these CNN allowed 

them to be converted to TensorFlow JS format and be embedded locally in a hybrid application that can be 

installed and executed without the need for Internet access (which is not always available in remote or poor 

areas). Additionally, the application was deployed into the Internet through Firebase to provide assistance 

to health personnel, without managing infrastructure, saving infrastructure costs, and scaling 

automatically. This application is online at https://xrays-covid.web.app/ and two languages are available 

(English and Spanish). 
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