
Vol. 22 (NE-1), ENC Marzo 2012 113

U n i v e r s i d a d d e G u a n a j u a t o

 *

Programming robots in a traditional way could be a very large process, in wich programmers have to map
from sensor to actuators in many iterations. Robot sensors and actuators are not human-like: misconception
about how they operate can cause control fails. Another approach is learning from experience and creating
appropiate adaptive control systems.

A general approach is the framework provided by reinforcement learning, which requires an unanbiguous
representation of states and actions and the existence of a scalar reward function. This means, that if robot
takes an action, it’ll drive the robot from a “currente” state to a “final” satate, depending on the action taken.
So, each action is rewarded or punished and, this way, the robot “learns” how to accomplish an specific task,
and the programmer is just worried about other subjects like sensor callibration, communication or the envi-
ronment dising, among others.

Reinforcement learning (RL) is a machine learning paradigm [1][2] that is particularly well-situated for using
on mobile robots [6][7][8][9]. This kind of learning can be described as “a way for programming agents that
learn, by reward and punishment, without the need of specifying how to accomplish the task”.

The RL assumes that the world can be described by a set of states S , and
that the agent (the robot, in this case) can take one from a finite number of
actions A. The time is divided in discrete steps, and for each step, the robot
observes the state of the world, S t and chooses an action at . After taking the
action, the reward function (RF) gives a reward rt to the robot.

*

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 114

The model of reinforcement learning is shown next:

1. Check the state S t

2. Decide an action at

3. Do that action,

4. Check the new state S t+1

5. Get the reward rt+1

6. Learn from experience (relate sate-action reward
value and store it).

7. Repeat.

The fact of specifying what to do, but not how to do
it, allows better final solutions, because they are based
on the agent’s real experience and not on program-
mer’s assumptions. The advantage of this is that pro-
grammer’s assumptions could be ambigous, or hard
to mathematically model them.

The RL is based on Markovian Decision Process
(MDP)[3], as is briefly described in the next subsec-
tion.

Formally, it is:

• A set of states, S = {s1, s2, ..., sn}

• A set of actions, A = {a1, a2, ..., an}

• A reward function, R : S × A × S →

• A transfer function, Pa
i j = P(st+1 = j | st = i, at = a)

Reinforcement Learning is a particular case of
MDP, in which the sets of states and actions are
known, but the transfer or the reward function is
missed. This is, Markovian Decision Process is in-
complete.

The particular reinforcement learning algorithm that
we use in this work is Q-Learning [4]. This algorithm
aproximates the value of state-action function Q iter-
ating the process. For learning with this algorithm,
we keep an estimate of the Q(s, a) function in a table.
This values are updated as the agent achieves more
experience. The estimate of Q doesn’t depends on ex-
ploration. The Q-Learning algorithm pseudocode is
shown in the following subsection.

1. Intialize Q(s, a) on small random values, ∀s,∀a

2. Check the state s

3. Pick an action a and execute it out.

4. Check new state s and reward the last action.

5. Q(s, a) ← Q(s, a) + α(r + γmaxaQ(s, a))

6. Go to step 2.

Where:

Q(s, a) is the learning function,
s ∈ S is the current state,
a ∈ A is the executed action,
s ∈ S is the state driven by the action a
0 < α is the learning rate, and
0 ≤ γ is the discount rate

The content of this paper is divided as follows: Sec-
tion Experiments shows the implementation, how the
Lego was connected with Matlab, the elements used
to build the prototype, the states and actions set used
for the learning process and the parameters for the ex-
ecution of the algorithm. In Section Results and Dis-
cussion, the results of the experiment are discussed,
and the final set of states and actions are shown, and
also the reward values plots given by the algorithm.
Finally, conclusions and future work are presented in
Section Conclusions and Future Work.

For this experiment, we used Lego Mindstorms Kit.
Also, we programmed the algorithm in Matlab, using
the RWTH 4.03 Library. In this section, we discuss
how we accomplish this phase of the experiment.

On principle, we analize the possibility of intercon-
necting Matlab with the NXT using a Bluetooth link.
The RWTH brings this communication using a USB
Buetooth dongle. Alternatively, it is possible to use a
USB cable to connect with the NXT.

On the first communication tests, we discover that
NXT allows communication via a Bluetooth link, but
when a test program ends, the communication is in-
terrupted unless Bluetooth service is rebooted in the
NXT.

Vol. 22 (NE-1), ENC Marzo 2012 115

U n i v e r s i d a d d e G u a n a j u a t o

Considering this fact, we thougth that we can be
in front of a unstable connection, and in order to min-
imize the risk of lose communication, we decided to
use the USB connection via cable.

The initial proposal of using Bluetooth dongle was
done in order to avoid the USB cable could iterfere
in the learning phase of the robot, and with this give
to robot the freedom of movement since is necessary
the robot to wander around for the algorithm to work
properly.

The following Lego’s Mindstorms Kit elements were
used in order to build up our prototype:

• NXT 2.0 IntelliBrick, firmware 1.29.

• 2 optic sensors (active mode) on the input ports
2 and 3.

• 2 servos for the wheels on output ports B and C.

• 1 ultrasonic sensor for avoiding obstacles / walls
on input port 4.

 .

Initially, the prototype doesn’t know how to perform
its task. So, to follow the line (an amoeba-shaped
closed curve), the prototype has to wander around on
the test ground space, until the algorithm builds a
weight table that is going to be used in another pro-
gram to follow the line successfully.

First, we defined four states and three actions, as
follows:

S 1 Both sensors detect the line.

S 2 Left sensor doesn’t detect line.

S 3 Right sensor doesn’t detect line.

S 4 None of both sensors detect line.

a1 Go forwards.

a2 Turn to the left.

a3 Turn to the right.

Also, we build an state graph, in which, obviuosly,
any action in any state takes to another one, including
the same from which the action is performed. This is
beacuse initally the robot doesn’t know how to follow
the line, and it will try to learn how to do it, according
to the algorithm.

 .

Originally, we proposed a fifth state, given by the
ultrasonic sensor, but in order to reduce the model’s
complexity, we decided to make a simple reactive be-
haviour for avoiding obstacles and walls, in which,
the so callibrated sensor for 20 centimeters, when de-
tecting something, it makes a backwards movement,
and then it turns 45 degrees to the right. This helps
getting back the robot on the wandering around the
ground and, eventually, back on detecting line.

The initial reward was set to a value of 100, but
when executing the first tests, we noted this value was
generating high values of γ, and in order to avoid big
integers (> 1×1018), we decided to set the reward on 10.
It is worth to mention that, as appreciated in figure 2,
the state (S 4, a1), has a reward value of zero. This is
for avoiding the robot to get stucked in this state, and
helps it saving time in the learning process.

Once upon prototype was build, the algorithm was
executed from Matlab. The tests were repeated for α

values of 0.5 and 0.8 for comparison purposes.

The Q-Learning program was executed once for each
value of α. Each one of the executions has a cylce of

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 116

2400 iterations, taking an mean time of 2 hours for
each test. The results are discussed in the next sec-
tion.

In order to register the time evolution of the algo-
rithm, we paused the execution at every 200 itera-
tions. On each pause, we registered down the variable
that stored the weight table. This data were sub-
sequently dumped into an spreadsheet for further
analysis and plotting purposes. When the algorithm
execution reached the 2400 iterations, the results
given by it allowed us to test the robot’s “learned” be-
havior. At this point is possible to say that Q-Learning
has allowed the robot to learn how to follow the line.
The plots and state graphs placed next show this is
valid, since it’s appreciated in the plots in figures 3
and 6 that the three highest values corresponds to the
state graphs in figures 5 and 8 respectively, and they
are specifically the actions that keep the robot reading
the line once it has learned in both cases.

 α

It is possible to appreciate in figure 3 the combination
of states-actions in horizontal axis, and the final value
of the rewards, in vertical axis. The ID shown in the
horizontal axis of the plot matches with a combination
of an initial state, an action taken, and the state driven
by that action. This set of combinations of states and
actions for α = 0.5 is shown in the table in figure 4. The
states and actions labels where previously discussed
in section Experiments (Prototype Building).

 . α = 0.8

 .

1 BothSensors Forward BothSensors
2 BothSensors Forward LeftSensor
3 BothSensors Forward RightSensor
4 BothSensors Left BothSensors
5 BothSensors Left LeftSensor
6 BothSensors Right BothSensors
7 BothSensors Right LeftSensor
8 BothSensors Right RightSensor
9 LeftSensor Forward BothSensors
10 LeftSensor Forward LeftSensor
11 LeftSensor Left BothSensors
12 LeftSensor Left LeftSensor
13 LeftSensor Right BothSensors
14 LeftSensor Right LeftSensor
15 RightSensor Forward BothSensors
16 RightSensor Left BothSensors
17 NoneSensor Forward BothSensors
18 NoneSensor Left BothSensors
19 NoneSensor Right BothSensors

As a consequence of this results, we were able to
build a new state graph, shown in figure 5, where is
appreciated that the state S 4 from fig. 2, at which the
robot doesn’t reads the line, no longer exists (as we
mentioned previously at the begining of this section),
which means that at this point, the robot is following
the line in every action it takes. This could be un-
destood as the robot had learned from its own experi-
ence, this is, of course, because of Q-Learning results.

 . α = 0.5

 α

In the same way, we present the result of the Q-
Learning execution with α = 0.8. The plot is shown
in figure 6:

Vol. 22 (NE-1), ENC Marzo 2012 117

U n i v e r s i d a d d e G u a n a j u a t o

 . α = 0.8

The vertical axis is shown in logarithmic scale, be-
cause the high values of combinations 4, 8 and 11
don’t let to appreciate with clarity the rest of the com-
binations. This combinations are presented in the ta-
ble 7.

 .

1 BothSensors Forward BothSensors
2 BothSensors Left BothSensors
3 BothSensors Right BothSensors
4 BothSensors Right LeftSensor
5 LeftSensor Forward BothSensors
6 LeftSensor Left BothSensors
7 LeftSensor Right BothSensors
8 LeftSensor Left RightSensor
9 RightSensor Forward BothSensors
10 RightSensor Left BothSensors
11 RightSensor Left LeftSensor
12 NoneSensors Forward BothSensors
13 NoneSensors Left BothSensors
14 NoneSensors Right BothSensors

With this values, it were also possible to build a
state graph shown in figure 8, where, as in the case of
α = 0.5, state S 4 no longer exists, and the robot follows
line regardless the action taken. Again, the robot had
learned from its own experience.

It is worth to mention that the results show that,
although the main goal was achieved successfully in
the both cases, the specific way to make it was not
the same. For the case of α = 0.5, the plot and state
graph tell that robot learned to follow the line whith
the stimulus of the right sensor’s readings, while in
the case of α = 0.8 the learning was possible mainly by

the left sensor’s readings. This is because the initial
wandering, and, of course, since this wandering is
done randomly.

 . α = 0.8

Once we collect the data shown above, we proceed
to write another program that uses the weight tables
obtained from the former tests in order to control the
robot. The execution of this new program allowed us
to verify that the Q-Learning algorithm actually makes
the robot “to learn” how to accomplish a task by itself.
After watching it wander around randomly on the test
ground, when the second program controls the robot,
it follows the line without troubles, and with this fact,
we can validate the data given by the results and the
state graphs from the executions, so this algorithm
becomes very useful to reduce the complexity of pro-
gramming for robot’s tasks, since the learning process
relies on Q-Learning Algorithm, and not on program-
mer’s skills or assumptions.

For future work another Artificial Intelligence tech-
niques and algorithms are proposed to be used for
training the robot’s behavior, for example: genetic
algorithms[10][11], cultural algorithms[12], artificial
neural networks and differential evolution [13] or even
a combination of them could be possible. This way,
depending of the robot’s task, one technique or an-
other could be choosen in order to achieve optimum
learning values and the optimal tuning of the behav-
ior. An special improvement to this work using this
techniques is the sensor callibration stage. This way,
it could be possible to get a more accurate sensor
thresholds, and even robot would be capable of re-
callibrating sensors for different light conditions. This
fact is of interest since one of the hard tasks configur-
ing mobile robots for natural enviroments is the light
sensor callibration.

U n i v e r s i d a d d e G u a n a j u a t o

Vol. 22 (NE-1), ENC Marzo 2012 118

