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DIRECTORES:

DR. YURIY S. SHMALIY

SALAMANCA, GUANAJUATO JUNE, 2018





Abstract

Copy Number Alterations (CNA)s are hallmarks of cancer, which are gains or losses in

copies of Deoxyribonucleic Acid (DNA) sections. Nowadays, CNAs are routinely measured

by different techniques for diagnostic and prognostic purposes. The array-Comparative

Genomic Hybridization (aCGH), Array-Single Nucleotide Polymorphism (aSNP) and Next

Generation Sequencing (NGS) are examples of technologies that enable cost-efficient high

resolution detection of CNAs.

Intensive noise as well as technical and biological biases inherent to modern technolo-

gies of CNAs probing often cause inconsistency between the estimates provided by different

methods. Efficient and accurate detection of the breakpoint positions in heterogeneous

cancer samples measured under such conditions is a challenging practical and method-

ological problem. Despite the necessity of accurate CNA estimates, there is no much

information regarding the estimation errors..

Based on studies of the confidence limits for noisy stepwise signals, an efficient algo-

rithm has been developed for computing the upper and lower confidence boundary masks

with a specific probability, in order to guarantee an existence of genomic changes within

certain regions. This tool combined with estimates can give more information to medical

experts about true CNAs structures.

The probabilistic confidence masks are initially designed based on the Skew Laplace

distribution to represent jitter in the CNA breakpoints. Using experimental measurements,

it is concluded that Laplace distribution is accurate when the segmental Signal–to–Noise

Ratio (SNR) exceeds unity. In this work the experimental jitter distribution is simulated to

different ranges in order to find approximations to actual distributions with minimal errors.
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Following this procedure, three techniques are described to approximate the experimental

jitter distribution: Heuristic approximation, parametrization of skew Laplace distribution,

and asymmetric exponential power distribution. The confidence masks algorithm is de-

signed and modified for each approximation. It is also tested by arrays: High–Resolution

Comparative Genomic Hybridization and Single Nucleotide Polymorphism data.

Additionally, the confidence masks based on the exponential power distribution are

tuned to the medical expert annotations of the training set of the breakpoints obtained by

the standard circular binary segmentation algorithm. A comparison of modified confidence

masks and experts annotations related to CNA profiles of neuroblastoma demonstrates an

efficiency of the designed masks to improve the CNA estimates.

3



Acknowledges

Foremost, I would like to express my sincere gratitude to my advisor Prof. Yuriy S. Shmaliy

for the continuous support of my Ph.D study and research, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and mentor

for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Oscar

G. Ibarra–Manzano, Prof. Israel A. Arriaga Trejo, Gustavo Cerda–Villafaa and Prof. Luis

J. Morales–Mendoza, for their encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Dr. Tatiana Popova for offering me the summer stay

opportunities in her group and leading me working on diverse exciting tasks.

To my family, particularly my parents Jorge Muoz and Angelica Minjares, and brothers

Freddy, Karen, Erika and Marcos, thank you for your love, support, and unwavering belief

in me. Without you, I would not be the person I am today.

Above all I would like to thank my wife Janette Perez for her love and constant support,

for all the late nights and early mornings, and for keeping me sane over the past few

months. But most of all, thank you for being my best friend. I owe you everything. Also,

I want to thank to my children Isaac and Darleth, for giving me courage, bravery and

strength throughout my everyday life.

Finally, the work reported in this thesis would not have been possible without the

financial support of an Conacyt studentship (No. 254890/CVU 388890), for which I am

grateful.

4



Contents

1 Introduction 18

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Foundations 2

2.1 DNA and Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 DNA Microarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 SNP microarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 CGH microarray . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.3 Next Generation Sequencing . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Algorithms for estimate CNAs . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Median Breakpoints detector . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Circular Binary Segmentation . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Pruned Exact Linear Time . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.4 Binary Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.5 Segment Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Jitter Distribution 11

3.1 Jitter Distribution in Breakpoints . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Probabilities of events A and B . . . . . . . . . . . . . . . . . . . . 15

5



CONTENTS 6

3.1.2 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Distribution verification by simulation . . . . . . . . . . . . . . . . 21

3.2 Confidence UB and LB Masks . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Testing real measurements by the probabilistic confidence masks. . 28

3.3 Limitation of Laplace-based Approximation . . . . . . . . . . . . . . . . . 29

4 Improving Jitter 31

4.1 Experimental Jitter Histogram . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Approximations of jitter pdf . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Heuristic Approximation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Parametrization of Laplace Density . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Asymmetric Exponential Power Distribution . . . . . . . . . . . . . . . . . 46

4.4.1 Parameters Estimation for AEP distribution . . . . . . . . . . . . . 47

4.5 Comparison of Proposed Approximations . . . . . . . . . . . . . . . . . . . 51

5 Modified Confidence Masks 53

5.1 Confidence Masks for Hybrid approximation . . . . . . . . . . . . . . . . . 53

5.1.1 Testing Estimates by BUB
l|H and BLB

l|H Masks . . . . . . . . . . . . . . 54

5.1.2 Improving CNAs Estimates . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Confidence Masks based on Laplace–parametrization . . . . . . . . . . . . 59

5.2.1 Hybrid confidence masks . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Applications to SNP Array Probing . . . . . . . . . . . . . . . . . . 60

5.3 Confidence Masks based on AEP distribution . . . . . . . . . . . . . . . . 63

6 Matching Expert’s Annotations 66

6.1 Breakpoints Annotations as Gold Standard . . . . . . . . . . . . . . . . . . 66

6.2 Match Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.1 Case 1–Perfect Match . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Case 2–Good Match . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.3 Case 3–Wrong Match . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.4 Case 3.1–Transitional Match . . . . . . . . . . . . . . . . . . . . . . 71

6



CONTENTS 7

7 Algorithms comparizon using Confidence Masks 75

7.1 Comparison of breakpoints estimators . . . . . . . . . . . . . . . . . . . . . 75

7.1.1 CNAs Size Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusions 87

8.1 About Heuristic Approximation . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 About Laplace–Parametrization . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3 About AEP approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.4 About Matching Expert’s Annotations . . . . . . . . . . . . . . . . . . . . 89

8.5 About Comparative of algorithms using Confidence Masks . . . . . . . . . 89

Bibliography 91

Appendices 102

Appendix A 103

A.1 Analysis of Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix B 108

B.1 Skew Laplace Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix C 112

C.1 Computational Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Appendix D 115

D.1 Comparison of Approximations . . . . . . . . . . . . . . . . . . . . . . . . 115

Appendix E 117

7



List of Figures

1.1 Jitter caused by intensive noise in a typical representation of CNA (Gain

and Loss), plotted Log2Ratio respect to probes n. . . . . . . . . . . . . . . 20

2.1 Structure of deoxyribonucleic Acid (DNA). . . . . . . . . . . . . . . . . . . 3

2.2 Chromosomes 1 ´ 10 represented in Log2Ratio from pancreatic adenocar-

cinoma genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Median–based denoising of the microarray measurement ... . . . . . . . . . 7

2.4 Example of breakpoint estimated using the Pruned Exact Linear Time

(PELT) method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Schematic of Binary Segmentation (BINSEG) algorithm. . . . . . . . . . . 10

3.1 Jitter distributions computed with Maximum Likelihood and Skew Laplace

distribution to a) SNR=0.1 and b) SNR =0.5. . . . . . . . . . . . . . . . . 13

3.2 Simulated CNAs with one breakpoint located at n “ 50 and standard de-

viations σl and σl`1 of each segment... . . . . . . . . . . . . . . . . . . . . 14

3.3 Cases respect to values of standart deviation to compute the events Ai and

Bi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 The discrete skew Laplace pdf (dashed) for different segmental SNRs; k “ 0

corresponds to il. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Total jitter probability PJpγq and probabilities Pkpγq of the right jitter at

k “ 1, k “ 2, and k “ 3 for equal SNRs in the CNAs segments. . . . . . . . 24

3.6 An example of UB mask BU
n and LB mask BL

n around the simulated CNA . 28

3.7 Median–based denoising of the microarray measurement... . . . . . . . . . 30

8



LIST OF FIGURES 9

4.1 Procedure to approximate the jitter distribution in the CNA breakpoints

by simulating a stepwise signal in the presence of AWGN with different

segmentsl SNRs. The breakpoitn il change its position from î0 to î200 seeking
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Chapter 1

Introduction

1.1 Background

Copy Number Alterations (CNAs) result from Somatic aberrations in DNA which repre-

sent an important class of structural variation of the sequence of the genetic chain DNA

across diverse cancer types [1, 2, 3]. Cancer is well known as a disease of the genome and

genomic aberrations of interest are mostly somatic aberrations [4, 5].

During the last decades, several technologies have been developed to measure the

genome chromosomal structure such as, aCGH [6], High Resolution CGH (HR-CGH) [7],

and Whole Genome Sequencing (WGS) [8] are among the most common.

Recently, the modern NGS-based technologies have provided a high resolution in se-

quencing, this quality produces that an estimator discovers more subtle chromosomal

effects than before causing other problems [9]. Additionally, the NGS–based technologies

are generally considered to be more difficult in use and still more expensive with respec to

to the aCGH microarrays. The aCGH microarrays have been developed as genome-wide

assays for measurements of CNAs, using the fact that microarray fluoresence intensity is

proportional to DNA copy number [10].

Nevertheless, due to complexity of cancer, cause that the microarays are mostly con-

tamined by normal cells and that causes noise in CNAs measurements [11]. In the presence

of the technological biases (quality of material and hybridization/sequencing) and the in-
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1. Introduction 19

tensive random noise [12, 13] , there are increasing difficulties to detect the breakpoints

in the CNAs. Consequently, under the intense noise, no estimator, optimal or robust, is

able to produce a sufficiently accurate estimate [14].

The problem is complicated by an incapacity of generating multiple probing in short

time [15] and thus to enhance the estimates statistically. No estimator can guarantee that

detected changes exist with high probability, because single probing does not provide suf-

ficient information. Thus, accurate identification of CNAs remains a challenging problem.

Accordingly, as shown in [16], some small CNAs tested by the confidence masks may be

identified with low probability and some others not detected.

The aCGH is one of the most modern techniques employing chromosomal microarray

analysis to detect the CNAs at a resolution level of 5–10 kbp (kilo base pairs) [17]. In

practice, the interpretation made by an expert biologist looking for CNAs can be provided

easier if the normalized aCGH measurements are plotted against genomic position [18].

The CNAs data are represented in genomic position with the nth probe, nl P r1,Ms, where
M is the number of probes. In the CNAs picture, the nlth discrete point corresponds to

the lth edge or breakpoint. In microarray technique, the CNAs are often normalized and

plotted as log2R{G “ log2Ratio, where R and G are the fluorescent Red and Green

intensities, respectively [19]. The CNAs levels are estimated by simple averaging between

the breakpoints which reduces the variance of the segmental noise.

Uncertainty in the breakpoint location caused by the intensive noise is called “jitter”.

Such phenomenon denotes a deviation from the true breakpoint location [20]. Figure 1.1a

shows the possibles estimates of breakpoints (Jittered signals) caused by noise embedded

in the measurements of CNAs (the gain or loss). There have been developed a number

of methods to refine the breakpoints, such as [21, 22, 23] and new mathematical models

proposed to provide noise removal (denoising) while preserving edges from these microarray

assays [24, 25, 26, 27, 28, 29]. Even so, detection of the breakpoint locations often becomes

unavailable due to low segmental Signal to Noise Ratio (SNR). The values of segmental

SNRs γ´
l and γ`

l are computed with the left and right measurements respect to the

breakpoint.

In [14, 16, 30] we have shown that jitter in the CNAs breakpoints is distributed with
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Figure 1.1: Jitter caused by intensive noise in a typical representation of Copy Number

Alterations (Gain and Loss), plotted Log2Ratio respect to probes n. The ideal event (bold

line), the measurements of CNA (noise signal) (line), and jitter (dashed line) are showed.

the discrete skew discrete Laplace (SkL) law and derived the confidence masks using the

SkL. Later, we have shown that the SkL is adequate only when SNR values overcome

unity [31]. Otherwise, the Laplace distribution becomes too rough and a more correct

probabilistic model of jitter in the breakpoints is required. Such conditions include the

low SNR, γ´
l , γ

`
l ă 1, and extremely low, γ´

l , γ
`
l ! 1.

Jan O. Korbel, Alexander Eckehart Urbanwe, et.al. have proposed in [32] an approach,

called BreakPtr, for fine-mapping Copy Number Variations (CNVs). They statistically

integrate both sequence characteristics and data from high–resolution comparative genome

hybridization experiments in a discrete–valued, bivariate hidden Markov model. The

incorporation of nucleotide–sequence information has allowed them to take into account

the fact that recently duplicated sequences (e.g., segmental duplications) often coincide

with the breakpoints.

Sergii Ivakhno et.al. [33] presented a novel approach, called CNAseg, to identify CNAs

from second-generation sequencing data. It uses depth of coverage to the estimate copy

number states and flowcell–to–flowcell variability in cancer and normal samples to control
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1. Introduction 21

the false positive rate.

Popova T., Boeva, V., et.al. in [34] provided a data mining technique based on the

GAP method which allows extraction of absolute copy numbers and allelic contents from

the whole genome copy number variation and allelic imbalance profiles obtained by SNP

arrays or NGS.

Szatkiewicz, J. P. et.al. in [35] presented a novel read–depth–based method, GENSENG,

which uses a hidden Markov model and negative binomial regression framework to identify

regions of discrete copy-number changes while simultaneously accounting for the effects of

multiple confounders.

Van den Broek, Evert et al. in [36] developed GeneBreak method to systemati-

cally identify genes recurrently affected by the genomic location of chromosomal CNA-

associated breaks by a genome-wide approach, which can be applied to DNA copy number

data obtained by aCGH or by (low-pass) WGS.

1.2 Motivation

Modern technologies developed to produce the CNA profiles with high resolution are still

very sensitive to additive white Gaussian noise. As a consequence, jitter is inherent to

the breakpoints of measured genome somatic CNAs causing errors and ambiguities in the

breakpoint detection with low signal-to-noise rations (SNRs). When SNR ą 1, it can

statistically be described using the discrete skew Laplace distribution. Otherwise, if SNR

ă 1, better approximations are required to produce more accuracy.

Nowadays, no estimator–robust or optimal– is able to provide jitter-free estimation

of segmental changes. Thus, in order to avoid wrong decisions, the estimates must be

bounded by the confidence probability. Having the jitter distribution, it is easy to find

a region within which the breakpoint exists for the required probability. Of practical

importance are the confidence UB and LB masks, which can be created based on the

segmental and jitter distributions for the given confidence probability.

A researcher or medical geneticist takes hours to detect aberrations in samples of DNA.

The masks can serve as an auxiliary tool for medical experts to make decisions about the
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1. Introduction 22

CNA structures. Therefore, an analysis and improvement of jitter is required to reduce

errors in the CNAs estimation.

1.3 Research Objectives

We propose and investigate several approximations for the jitter distribution in the CNA’s

breakpoints for low and extra low SNRs, and show that the approximations proposed fits

the CNA probes much better than the Laplace distribution for any reasonable SNR value

of practical interest. Then, a statistical theoretical model to compute the confidence

masks is justified via the lower and upper confidence boundaries, using the suggested

approximations for the given confidence probability. The estimated CNAs are tested by

the masks for data obtained using microarray technology and show how to improve the

CNAs estimates by removing some unlikely existing breakpoints.

1.4 Scope of this work

In Chapter 2, some biologic concepts about the genetic data are defined, including a

description of the principal technologies of hybridization to obtain the measurements of

CNAs and details about the algorithms to estimate changes in signals piecewise.

In Chapter 3 we provide a detailed description of initial algorithm for computing the

probabilistic confidence masks for the confidence limits the stepwise signals measured in

noise. Also, we derive the SkL distribution for the jitter in the breakpoints under the

ideal conditions and show its limitations. This distribution is later used to compute the

confidence upper and lower boundary masks in order to guarantee an existence of genomic

changes with required probability.

In Chapter 4, we analyze errors caused by the fitting of SkL approximation based

on data obtained by simulation for different segmental SNRs. Aimed at improving the

approximation accuracy, we develop here three new approaches resulting in the follow-

ing outputs: Heuristic approximation, parametrization of skew Laplace distribution, and

asymmetric exponential power distribution.
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1. Introduction 1

In Chapter 5, the proposed approximations are adapted to the probabilistic confidence

masks by modifying the initial equations and replacing the SkL. Then, the modified

confidence masks are applied to microarrays data obtained with different technologies to

test estimates of the Copy Number Alterations.

Based on the annotations made by experts, the probability of their observations is

computed in Chapter 6, using the CNAs estimates of neuroblastoma and the probabilistic

modified confidence masks.

In Chapter 7, the CNAs estimates are compared using the Circular Binary Segmenta-

tion and Pruned Exact Linear Time methods respect to the Next Generation Sequencing

technology which are established as the ideal estimates. Also, it is given the global analysis

of the deleted breakpoints and the length of CNAs at each level of probability

Finally, Chapter 8 is sketched the conclusions with respect to each approximation of

jitter distribution proposed and modified confidence masks.

1



Chapter 2

Foundations

2.1 DNA and Cancer

The nucleus of each human cell contains 22 Chromosomes, plus the X chromosome (one

in males, two in females) and, in males only, one Y chromosome, composed by a chemical

substance called DNA stranded by Histones. A biomolecule of DNA is formed by four

molecules, they are adenine (A), thymine (T), cytosine (C), and guanine (G). Simultane-

ously, each chromosome consists of two polynucleotide chains wound around each other in

the form of a double helix formed by genes that contain complementary genetic informa-

tion. In humans, genes vary in size from a few hundred DNA bases to more than 2 million

bases. The Human Genome Project has estimated that humans have between 20,000 and

25,000 genes.

According to the World Health Organization www.who.int, cancer is one of the main

causes of morbidity and mortality worldwide. This disease causes mutations in cell’s ADN,

modifying the structures and positions of genes. Such mutations are called Copy Number

Aberrations (CNA).

CNAs are recurrently defined as gains and losses of large segments of the genome in

size, ranging from a few kilobases to whole chromosomes. Somatic CNAs (SCNAs) that

occur during the lifetime of an individual are a major contributor to cancer development,

particularly for solid tumors [37].

2



2. Foundations 3

Figure 2.1: Structure of DNA. SITEMAN, Cancer Center.

2.2 DNA Microarray

DNA microarray is a technology to determine whether a sample of DNA from a living

organism contains CNAs in genes. Basically, a microarray is an ordered arrangement of

known or unknown DNA samples attached to a solid support [38]. Several techniques have

been developed based on this methodology, being the most popular to analyze samples of

genome.

3



2. Foundations 4

2.2.1 SNP microarray

Single Nucleotide Polymorphism (SNP) array is a type of DNA microarray which is used

to detect polymorphisms within a population. An SNP, a variation at a single site in

DNA, is the most frequent type of variation in the genome. Currently, there are around

85 million SNPs that have been identified in the human genome [39]. The CNVs profiles

are represented by the Log R ratios (LRR)s centered at zero for each sample.

The SNP arrays are presently one of the most efficient technologies for the identification

of the CNAs [40]. The SNP method is considered as an NGS technology because gives

maximal information about tumors. Although, SNP arrays have progressively replaced

aCGH in samples of cancer is less common to analyze CNAs.

2.2.2 CGH microarray

The aCGH microarrays have been developed as genome-wide assays for measurements of

CNAs, using the fact that the microarray fluoresence intensity is proportional to DNA

copy number [10]. It is one of the most modern techniques providing a resolution of 5–

10 kbp [17]. The CNAs data are represented in genomic position with the nth probe,

nl P r1,Ms, where M is the number of probes. In the CNAs picture, the nlth discrete

point corresponds to the ith edge or breakpoint. In microarray technique, the CNAs are

often normalized and plotted as log2R{G “ log2Ratio, where R and G are the fluorescent

Red and Green intensities, respectively [19]. Figure 2.2 shows a structure based on aCGH

data from pancratic cancer study.

2.2.3 Next Generation Sequencing

The most modern technology of hybridization is the Next Generation Sequencing NGS

(also known as massively parallel sequencing) that is revolutionizing the ability to char-

acterize cancers. The NGS technique can recognize copy number aberrations and somatic

rearrangements in an entire cancer genome at base pair resolution in a matter of weeks.

Comparative genomic hybridization and SNP array analysis have provided a wealth of
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Figure 2.2: Chromosomes 1 ´ 10 represented in Log2Ratio from pancreatic adenocarci-

noma genome. Measurements and estimate CNAs are plotted in doted and solid lines,

respectively.

data on gene copy number aberrations in breast cancer and have helped identify potential

therapeutic targets for subgroups of breast cancer patients; however, this technology does

not provide any information about structural genomic aberrations and base pair mutations

[41].

Perhaps more important than the sequencing throughput provided by this technology

and its relative low cost compared with traditional sequencing methods is the type of

data it generates[42]. Instead of long reads generated from a Polymerase Chain Reaction

(PCR)–amplified sample, massively parallel sequencing methods provide much shorter

reads ( 21 to 400 base pairs (bp)), but millions of them [43, 44, 45, 46, 47, 48].
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2. Foundations 6

2.3 Algorithms for estimate CNAs

Nowadays the estimation and evaluation of CNAs are fundamental tasks because physi-

cians use this information to give a diagnostic and treatment to a particular disease. Many

methods have been developed with this purpose following different statistical properties.

Below, a technique proposed in [28] and the most popular algorithms are described.

2.3.1 Median Breakpoints detector

To apply the Median filter as a breakpoint detector, consider a measurement yn, n P r1,Ms.
Because the median is efficient asymptotically in large measurement noise [49], apply the

median

x̂ “ argmin
yjPW

vÿ

i“1

|yj ´ yi| “ medtyi|Wv

i“1u (2.1)

sequentially v times with windows W1 ă W2
... ă Wv, provided that each Wv, v P r1, V s, is

odd,

x̂
p1q

n´
W1´1

2

“ med
`
yn´i|W1´1

i“0

˘
,

x̂
p2q

n´
W2´1

2

“ med
´
x

p1q
n´i|W2´1

i“0

¯
,

... (2.2)

x̂
pvq

n´Wv´1

2

“ med
´
x

pvq
n´i|Wv´1

i“0

¯
,

Until the CNAs structure becomes clear. If the computation time is not an issue,

then the window length Wv can be increased as 3, 5, 7, . . . , until the next window gives

no change. Alternatively, follow the recommendations given in [50] regarding the window

optimality. Figure 2.3 depicts the effect of median smoothing with v1 “ 11, v2 “ 21,

v3 “ 41, and v4 “ 71. By (2.2), the final median estimate becomes x̂med
n “ x̂

pvq
n . The

locations of edges in the x̂med structure determine the candidate breakpoints vector N ˚ “
rn˚

1n
˚
2 . . . n

˚
LsT . The estimate N̂ “ rn̂1n̂2 . . . n̂LsT of N can then be found by adjusting N ˚

6
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(a)

N*

(b)

Figure 2.3: Median–based denoising of the microarray measurement: (a) subsequent

smoothing of log2 Ratio with v “ 11,v “ 21,v “ 41,and v “ 71 and(b) threshold–based

forming of a rectangular pulse train.

visually or using any of the optimization procedures such as the combined ML estimation

algorithm [28]. Placing a threshold A below the minimum copy number in |x̂med
n | will

7



2. Foundations 8

form a pulse trains as shown in Figure 2.3b. Provided the candidate breakpoints N ˚, the

component âl of the estimate âl “ râ1â2 . . . âL`1sT can be found by averaging.

This method is able to detect the breakpoints of CNAs with precision. However, two

principal disadvantages of this procedure are a high time to select the adequate window

W and that the breakpoints of little changes could be undetectable.

2.3.2 Circular Binary Segmentation

Circular Binary Segmentation (CBS) was one of the first algorithms used to estimate

CNAs. In [51], it was developed a modification of Binary Segmentation (BS), which was

called circular binary segmentation, to translate noisy intensity measurements into regions

of equal copy number. This algorithm is based on the partitions of a genome into constant

segments, detecting copy numbers alterations and the change–point (breakpoint).

Following the change–point method it is possible to estimate the CNAs. Let X1, X2, ...

be a sequence of random probes. An index i is called a breakpoint if X1, ..., Xi have

a common distribution function F0 and Xı`1, ... have a different common distribution

function F1 until the next change-point (if one exists).

Subsequently, the CBS algorithm is modified in [52] to faster. The algorithm tests

for breakpoints using a maximal t–statistic with a permutation reference distribution to

obtain the corresponding P–value.

2.3.3 Pruned Exact Linear Time

The Pruned Exact Linear Time (PELT) method was introduced to find breakpoints and

is computationally efficient in several applications, such as CNAs estimate. The PELT

finds the minimum of the cost functions, such as the negative log likelihood, quadratic

loss, cumulative sums or those based on both the segment log–likelihood and the length of

the segment. Next, the Optimal Partition (OP) and location of breakpoints are obtained

having a linear computational cost respect to the number of observations n, under mild

conditions, so the computational efficiency of PELT is Opnq [27]. Also, this procedure

requires a penalty for inserted changepoints. In Fig. 2.4, we give an example of the

8
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0 i

OP+Cost+Penalty
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Figure 2.4: Example of breakpoint estimated using the Pruned Exact Linear Time (PELT)

method.

breakpoint estimates using the PELT algorithm.

This method is more accurate than Binary Segmentation (BS) algorithm, but compu-

tationally it is not efficient. Even so, the authors argued that the statistical benefits of an

exact segmentation outweigh is in the relatively small computational costs.

2.3.4 Binary Segmentation

The Binary Segmentation (BINSEG) uses techniques of cluster analysis to split measure-

ments into reasonably homogeneous groups [53]. The BINSEG method is based on a

technique of cluster analysis to separate the sample treatment means in an equitable de-

sign. Then, a likelihood ratio test set the significance of the difference among groups, i.e.

this parameter determines the grade of segmentation. The BINSEG includes a high effi-

ciency of the order of Opnlognq. A graphic example of the BINSEG algorithm is showed

in Figure 2.5.

This algorithm was modified in [51] and called Circular Binary Segmentation (CBS)

to translate noisy intensity measurements into regions of equal copy number. The method

was evaluated by simulation and was demonstrated on cell line data with known copy

number alterations and on a breast cancer cell line data set.

9



2. Foundations 10

Figure 2.5: Schematic of Binary Segmentation (BINSEG) algorithm.

2.3.5 Segment Neighborhood

The Segment Neighborhood (SEGNEIGH) method is based on the concept of segment

neighborhood which is defined as a set of contiguous residues that share common features

[54]. So, the model of these features and the residuals that define the boundaries of

each segment neighborhood need to be estimated using a defined algorithm. The least

squares and maximum likelihood are used to compute the most critical features. The

computational efficiency of this algorithm isOpKn2q where n is the number of observations

and K a repetition parameter.

10



Chapter 3

Jitter Distribution

3.1 Jitter Distribution in Breakpoints

Most generally, the CNAs estimation problem implies predicting the breakpoints locations

I “ ri1i2 . . . iLsT P RL, where il, l P r1, Ls, and the segmental changes âl with a maxi-

mum possible accuracy and precision acceptable for medical applications. Several cases to

estimate I and âl were detected in the research made in [30]:

• Case I: I and âl can easily be estimated if the number of probes is large in each

neighboring segment and the edges are sharp.

• Case II: the component of I can be well detectable, but the estimate of the relevant

component of al may be imprecise owing to a small number of probes.

• Case III: it is hard to estimate the components of I if the segmental differences

between al and its CNAs neighborhoods are small.

• Case IV: the segmental estimates al may have enough precision, whereas the esti-

mates of the edges not.

So, an analysis of the estimation errors caused by the segmental noise and jitter in the

breakpoints is required.

11



3. Jitter Distribution 12

Let us consider the microarray–based measurement of the CNAs in more detail. Fig.

3.1 gives several simulated examples around the lth breakpoint with different realizations of

the measurement affected with white Gaussian noise having for simplicity equal segmental

variances. The threshold (dashed) is placed equidistantly between the segmental changes.

The breakpoint location is found by the Maximum Likelihood (ML) based on Gauss’s

ordinary least squares (OLS). The case (a) is ideal to mean that with such locations of

the measured points the ML estimate will be jitter–free. If it happens that some left-

neighboring to il points lie below the threshold (dashed), then the ML estimate will be

found to the left of il; two points to the left in the case (b). We call it the left jitter. If

some right-neighboring points lie as in 3.1c, then the ML estimate will be found to the

right of il; two points to the right in the case (c). We call it the right jitter. Also, there

may be observed some ambiguities as in the case (d) when the estimator gives two or more

possible locations for the same breakpoint.

In order to derive the approximate jitter distribution for CNAs, a simulated measure-

ment with one breakpoint and two constant segments is considered, as sketched in Fig.

3.2a. Here, the al and al`1 segmental levels are contaminated with zero mean Additive

White Gaussian Noise (WGN) [55, 56] having the variances σ2
l and σ2

l`1 as shown in Fig.

3.2b. The segmental signal-to-noise ratios (SNRs) in the lth and pl ` 1qth segments are

computed as in [57], respectively,

γ´
l “ 2pal`1 ´ alq2

2σl

“ pal`1 ´ alq2
σl

“ ∆
2
l

σ2
l

γ`
l “ 2pal`1 ´ alq2

2σl`1
“ pal`1 ´ alq2

σl`1
“ ∆

2
l

σ2
l`1

, (3.1)

where ∆l “ al`1 ´ al is the segmental difference, which corresponds to the breakpoint il

at n “ 50.

Aiming to find the probability between intersection points α and β of probability

function densities, it is needed to represent the Gaussian pdfs of each segment l and l ` 1

with ppxq and ppyq, respectively, and defined as :
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Figure 3.1: Jitter distributions computed with Maximum Likelihood and Skew Laplace

distribution to a) SNR=0.1 and b) SNR =0.5. The ML (circled) is the jitter pdf obtained

experimentally using a ML estimator via a histogram over 50 ˆ 103 runs and SkL (solid)

is the skew Laplace distribution.
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(a) noise measurements,b) segmental Gaussian distributions and (c) skew Laplace jitter

distributions.

ppxq “ 1a
2πσ2

x

e
´

px´alq2

2σ2
x (3.2)

ppyq “ 1a
2πσ2

y

e
´

py´al`1q2

2σ2
y . (3.3)

Seeking the cross points between ppxq and ppyq, we arrive at the following equalities

1a
2πσ2

x

e
´

px´alq2

2σ2
x “ 1a

2πσ2
y

e
´

py´al`1
q2

2σ2
y

ln
σy

σx

“ px ´ alq2
2σ2

x

´ py ´ al`1q2
2σ2

y

. (3.4)
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After simplifying equation (3.4) and grouping variables, we have,

x2
σ2
y ´ σ2

x

2σ2
xσ

2
y

` x
al`1σ

2
x ´ alσ

2
y

σ2
xσ

2
y

`
alσ

2
y ´ al`1σ

2
x

2σ2
xσ

2
y

´ ln
σy

σx

“ 0. (3.5)

Now, (3.5) can be represented as a squared binomial replacing the following variables:

a “
σ2
y ´ σ2

x

2σ2
xσ

2
y

“ γ´
l

2∆2
´ γ`

l

2∆2
“ γ´

l ´ γ`
l

2∆
(3.6)

b “
al`1σ

2
x ´ alσ

2
y

σ2
xσ

2
y

“ al`1γ
`
l

∆2
´ alγ

´
l

∆2
“ al`1γ

`
l ´ alγ

´
l

∆2
(3.7)

c “
alσ

2
y ´ al`1σ

2
x

2σ2
xσ

2
y

´ ln
σy

σx

“ a2l γ
´
l ´ a2l`1γ

`

2∆2
´ ln

d
γ´
l

γ`
l

(3.8)

which can be solved as a standard quadratic function

αl, βl “ ´ b

2a
˘ 1

2a

?
b2 ´ 4ac

“ alγ
´
l ´ al`1γ

`
l

γ´
l ´ γ`

l

¯ 1

γ´
l ´ γ`

l

ˆ

gffepal ´ al`1q2γ´
l γ

`
l ` 2∆2

l pγ´
l ´ γ`

l q ln
d

γ´
l

γ`
l

.

(3.9)

If al`1 “ 0 and al “ ∆, it can be represented with

α, β “ ∆γ´
l

γ´
l γ

`
l

»
–1 `

gffe1 ´ γ´
l ´ γ`

l

γ´
l

˜
1 ´ 2

γ´
l

ln

d
γ´
l

γ`
l

¸fi
fl , (3.10)

if γ´
l ‰ γ`

l . For γ
´
l “ γ`

l , set αl “ ∆l{2 and βl “ ˘8.

3.1.1 Probabilities of events A and B

In order to compute the probability of jitter, three cases can be considered: σx ą σy,

σx ě sigmay and σx ă σy, which are sketched in Fig. 3.3a, Fig. 3.3b and Fig. 3.3c,

respectively.

15



3. Jitter Distribution 16

σx > σy

γ−

l = γ+
l

σx = σy σx < σy

γ−

l > γ+
l

p(y)

γ−

l < γ+
l

p(y)

p(x)

al+1

β

al al

α

al+1al+1

α

al

p(x)

p(y)

p(x)

β

a) b) c)

α

x y x y x y

Figure 3.3: Cases for different values of standart deviation to compute the events Ai and

Bi. a)σx ą σy, b)σx “ σy and c)σx ă σy

Following Fig. 3.3 and assuming different noise variances for σ2
x and σ2

y , the events Ai

and Bi can be specified as

Ai|n´N`1ďiďn “

$
’’&
’’%

α ă yi ^ yi ă β , σx ą σy ,

yi ă β , σx “ σy ,

α ă yi ă β , σx ă σy ,

(3.11)

Bj|n`1ďjďn`N “

$
’’&
’’%

β ă yi ă α , σx ą σy ,

yi ă α , σx “ σy ,

yi ă α ^ yi ą β , σx ă σy ,

(3.12)

where N is the segment length. Following the conjectures made in [58], we develop the

next procedure. The event Ai means that measurements at the points n ´ N ` 1 ď i ď n

belong to the first segment, where n is its last point. Also, the event Bj means that the

measurements at n ` 1 ď j ď n ` N totally belong to the second segment. The inverse

16



3. Jitter Distribution 17

events are Āi “ 1´Ai and B̄j “ 1´Bj. The events Ai and Bj can be united in two blocks

A “ tAn´N`1An´N`2 . . . Anu (3.13)

B “ tBn`1Bn`2 . . . Bn`Nu (3.14)

If the events A and B occur simultaneously, then the jitter at il will never occur.

However, there may be found some events which do not obligatorily lead to jitter. For

example, the second point in Fig. 3.1a lies below the threshold (dashed) but does not lead

to jitter. Such events are ignored and the lower bound of the jitter free can be obtained

with equation (3.15) and the jitter upper bound with (3.16) as

qP pABq “ qP pAn´N`1 ¨ ¨ ¨AnBn`1 ¨ ¨ ¨Bn`Nq (3.15)

P̂ “ 1 ´ qP pABq . (3.16)

Assuming that the noise in the measurements is additive white noise and that all of

the events are thus independent, it is allowed to write (3.15) and (3.16) as

P̂ “ 1 ´ PNpAqPNpBq (3.17)

qP “ PNpAqPNpBq. (3.18)

Thinking that jitter occurs at some n ` 1 ˘ k point , we assign two additional blocks

of events

A´k “ tAn´N`1 ¨ ¨ ¨An´ku, (3.19)

Bk “ tBn`1`k ¨ ¨ ¨Bn ` Nu. (3.20)

The probability qP´k that jitter occurs at the kth point to the left from n`1 (left jitter)

and the probability qPk that jitter occurs at the kth point to the right from n ` 1 (right

jitter) can be specified as, respectively,

17



3. Jitter Distribution 18

qP´k

`
A´kĀn´k`1 ¨ ¨ ¨ ĀnB

˘
(3.21)

“ qP´k

`
An´N`1 ¨ ¨ ¨An ´ kĀn´k`1 ¨ ¨ ¨ ĀnBn`1 ¨ ¨ ¨Bn`N

˘
, (3.22)

qPk

`
AkB̄n`1 ¨ ¨ ¨ B̄n`kBk

˘
(3.23)

“ qPk

`
An´N`1 ¨ ¨ ¨AnB̄n`1 ¨ ¨ ¨ B̄n`kBn`1`k ¨ ¨ ¨Bn`N

˘
. (3.24)

Assuming that the events are independent, the (3.21) and (3.23) can be simplified to

qP´k “ PN´kpAq r1 ´ P pAqsk PNpBq, (3.25)

qPk “ PNpAq r1 ´ P pBqsk PN´kpBq. (3.26)

Now, P pAq and P pBq can be specified for segmental Gaussian noise as, respectively,

P pAq “

$
’’’’’’&
’’’’’’%

1 ´
α
ş

β

p1pyqdy , σx ą σy ,

8
ş

α

p1pyqdy , σx “ σy ,

β
ş

α

p1pyqdy , σx ă σy ,

(3.27)

P pBq “

$
’’’’’’&
’’’’’’%

α
ş

β

p2pyqdy , σx ą σy ,

α
ş

8

p2pyqdy , σx “ σy ,

1 ´
β
ş

α

p2pyqdy , σx ă σy .

(3.28)

Analyzing the Gaussian processes (see Appendix A), the probabilities P pAlq and P pBlq
can be expressed in terms of the erf and erfc functions

P pAlq “

$
’’&
’’%

1 ` 1
2
rerfpgβl q ´ erfpgαl qs , γ´

l ă γ`
l ,

1
2
erfcpgα1 q , γ´

l “ γ`
l ,

1
2
rerfpgβl q ´ erfpgαl qs , γ´

l ą γ`
l ,

(3.29)

18



3. Jitter Distribution 19

P pBlq “

$
’’&
’’%

1
2
rerfphα

l q ´ erfphβ
l qs , γ´

l ă γ`
l ,

1 ´ 1
2
erfcphα

l q , γ´
l “ γ`

l ,

1 ` 1
2
rerfphα

l q ´ erfphβ
l qs , γ´

l ą γ`
l ,

(3.30)

where g
β
l “ βl´∆l

|∆l|

b
γ´
l

2
, gαl “ αl´∆l

|∆l|

b
γ´
l

2
, hβ

l “ βl

|∆l|

b
γ`
l

2
, hα

l “ αl

|∆l|

b
γ`
l

2
, erfpxq is the error

function, erfcpxq define the complementary error function.

3.1.2 Normalization

Referring to (3.25) and (3.26), we can now write a k-variant function as

qfk “

$
’’&
’’%

rP´1pAq ´ 1s|k|
, k ă 0 ,

1 , k “ 0 ,

rP´1pBq ´ 1sk , k ą 0 ,

(3.31)

which turns out to be independent on N . Further normalization of qfk to have a unit area

leads to the pdf ppkq “ 1
φ

qfk, where φ is the sum of the values of qfk for all k,

φ “ 1 `
´8ÿ

k“´1

“
P´1pAq ´ 1

‰|k| `
8ÿ

k“1

“
P´1pBq ´ 1

‰k
(3.32)

“ 1 `
´8ÿ

k“´1

φ1k `
8ÿ

k“1

φ2k, (3.33)

where φ1k “ rP´1pAq ´1sk and φ2k “ rP´1pBq ´1sk. Because 0.5 ă P “ P pAq, P pBq ă 1,

we obtain lnP ă 0, lnP p1 ´ P q ă 0 and lnp1 ´ P q ă 1 ´ P . This allows us to find

φ1k “ e´k| lnp1´P pAqq´lnpP pAqq|, (3.34)

φ2k “ e´k| lnp1´P pBqq´lnpP pBqq|. (3.35)
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3. Jitter Distribution 20

By substituting equations (3.34) and (3.35) into (3.33) and expressing the summations

a in short form as

φ “ 1 ` 1

e
| ln 1´P pAq

P pAq
| ´ 1

` 1

e
| ln 1´P pBq

P pBq
| ´ 1

. (3.36)

Given the conditions 0.5 ď P “ P pAq, P pBq ă 1, 1´P pA,Bq
P pA,Bq

, and ln
´

1´P pA,Bq
P pA,Bq

¯
ď 0, can

be represented equation (3.36) in terms of P pAq and P pBq as

φ “ 1 ` 1
´

1´P pAq
P pAq

¯´1

´ 1
` 1

´
1´P pBq
P pBq

¯´1

´ 1

“ 1 ´ 1 ´ P pAq
1 ´ 2P pAq ´ 1 ´ P pBq

1 ´ 2P pBq

“ ´P pAq
1 ´ 2P pAq ´ 1 ´ P pBq

1 ´ 2P pBq

“ P pAlq ` P pBlq ´ 1

r1 ´ 2P pAlqsr1 ´ 2P pBlqs . (3.37)

The jitter pdf ppkq becomes now

ppkq “ 1

φ

$
’’&
’’%

rP´1pBq ´ 1sk , k ą 0 ,

1 , k “ 0 ,

rP´1pAq ´ 1s|
k| , k ă 0 ,

(3.38)

where φ is specified by (3.37). Because (3.38) depends only on k points around the

breakpoint and is uninfluenced by any other point, the probability is complete and we

called it the jitter probability.

Introducing new variables dl “ P´1pAq ´ 1 and ql “ P´1pBq ´ 1, we can write P pAq “
1p1 ` dlq and P pBq “ 1p1 ` qlq, provide the transformations, and arrive at the conclusion

that (3.38) is the discrete skew Laplace pdf recently shown in [59],

ppk|dl, qlq “ p1 ´ dlqp1 ´ qlq
1 ´ dlql

$
&
%

dkl , k ě 0 ,

q
|k|
l , k ď 0 ,

(3.39)
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3. Jitter Distribution 21

where 0 ă dl “ e
´

κl
νl “ P pBlq´1´1 ă 1, 0 ă ql “ e

´ 1

κlνl “ P pAlq´1´1 ă 1, κl “
b

lnxl

lnpxl{µlq
,

νl “ ´ κl

lnxl
, and

xl “ φlp1 ` µlq
2p1 ` φlq

˜
1 ´

d
1 ` 4µlp1 ´ φ2

l q
φ2
l p1 ` µlq2

¸
, (3.40)

µl “ P pAlqr1 ´ P pBlqs
P pBlqr1 ´ P pAlqs , (3.41)

φl “ P pAlq ` P pBlq ´ 1

r1 ´ 2P pAlqsr1 ´ 2P pBlqs . (3.42)

A complete analysis of κ, ν and equations (3.40) to (3.42) is provided in Appendix B.

3.1.3 Distribution verification by simulation

The discrete skew Laplace pdf (3.39) computed using (3.29) and (3.30) is shown in Fig.

3.4 for γ l “ 2.78 and γ`
l “ 6.25. It is seen that jitter may occur here at 7 points (five

to the left and two to the right from k “ 0) allowing the jitter probability of 1%. With

smaller SNR values, the jitter increases.

To find out how the skew Laplace distribution fits real measurements, a piecewise

constant (PWC) signal with 200 points has been generated. The breakpoint is located at

the sample 101 with known al “ 1 and al`1 “ 0. The SNRs were set the same values

as in Fig. 3.4. Then, using a ML estimator [28], the breakpoint locations were found

over 10 ˆ 104 realizations, plotted with a histogram, normalized to have unit area, and

represented as the jitter pdf. To avoid ripples, we further repeated this procedure 9

times and averaged the results. The final jitter pdf circled in Fig. 3.4 has revealed some

discrepancy with the Laplace distribution. This is explained by some probabilities ignored

in the derivation of (3.38). The maximum approximation error of about 4% is seen here

only at k “ 0. The error diminishes with k that however cannot be seen in logarithmic

measures in (3.4). Note that (3.39) also fits the experimental histograms reported for

some CNAs breakpoints in [60]. Thus, we come up with a conclusion that the discrete

skew Laplace distribution is a good approximation for jitter in the breakpoints of CNAs,

although further investigations are necessary in order to find a more correct law.
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3. Jitter Distribution 22

Because a step is unity with integer k the jitter probability Pkpγ´
l , γ

`
l q can be specified

at the kth point utilizing (3.39) as

Pkpγ´
l , γ

`
l q “ p

“
k ´ |dpγ´

l , γ
`
l q, qpγ´

l , γ
`
l q

‰
. (3.43)

The jitter probability (3.43) is determined for ith breakpoint at zero assuming k ž 0.

To move (3.43) to il ą 0, one can substitute k with kil and change k as k ž il. Figure

3.5 sketches Pkpγq for small and large equal SNRs γ “ γ´
l “ γ`

l affected by somatic

alterations. Here, we show the probability of a jitter–free breakpoint (dashed) along with

some values obtained by simulation in the SNR region most typical for the microarray

Figure 3.4: The discrete skew Laplace pdf (dashed) for different segmental SNRs; k “ 0

corresponds to il. By simulation, the breakpoint locations were found using a ML estimator

over 10 ˆ 105 runs. Measurements and estimations were repeated 9 times. An average

jitter pdf is circled. A discrepancy between the curves is due to some probabilities ignored

while deriving the jitter distribution. The maximum approximation error is about 4% at

k “ 0. The difference between the functions is almost indistinguishable in linear scales.

22



3. Jitter Distribution 23

measurements. As can be seen, (3.39) fits well the simulated data and we may continue

on with some analysis.

The SNRs are extremely small if structural changes are present in small fraction of the

tested cells and the value of ∆ is minimal, then the total jitter probability PJpγ´
l , γ

`
l q “

P pAlBlq becomes almost unity, whereas the probability of the jitter–free breakpoint be-

comes almost zero. More precisely, the probability of jitter–free breakpoint and the jitter

probability at kth point tend toward 1{2N (see that the curves merge at γl “ γ`
l “ 10´2

in Fig. 3.43. All these tendencies are illustrated in Fig. 3.43.

With an increase in structural changes, the segmental SNRs also increase, and the

probability of the jitter–free breakpoint (dashed in Fig. 3.5) naturally becomes larger

and finally reaches unity when γ´
l ÝÑ 8 and γ`

l ÝÑ 8. It is seen in Fig. 3.5 that

γ´
l “ γ`

l “ 40 makes the breakpoint jitter–free in the 3–sigma sense. With an increase in

the SNRs from zero, the jitter probability initially increases. It then reaches a maximum

and decreases, when the SNRs become relatively large. It also follows from Fig. 3.5 that

the maximum jitter probability at k “ 1 corresponds to about unit SNRs. This case can

be met most frequently in the microarrays of CNAs measurements within a typical SNR

range of 0.1, . . . , 100 which follows from [61, 62, 63, 64, 65, 17, 66, 19, 60, 51, 67, 68, 69].

3.2 Confidence UB and LB Masks

The confidence masks is an algorithm of local segmentation profiles with confidence prob-

abilities if noise in segments and jitter in the breakpoints are statistically specified [70].

The research made in [16, 30] has shown that the confidence masks become a unique tool

to verify validity of the estimated CNAs with a given probability. Thus, the confidence

boundaries should be provided as additional information for medical experts to give an

accurate diagnostic. The confidence masks are based on the fundamental principle of jitter

distribution, which is used to compute the Jitter and Segmental bounds.
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Figure 3.5: Total jitter probability PJpγq and probabilities Pkpγq of the right jitter at

k “ 1, k “ 2, and k “ 3 for equal SNRs in the CNAs segments. The probability of a

jitter–free breakpoint is dashed and some values obtained by simulation are depicted with

diamond ♦ and circles ˝. A discrepancy between the theory and measurement is due to

some probabilities ignored while deriving the jitter distribution.

Jitter Bounds

The Left Jitter Bound JL
l (LJB) and the right jitter bound Right Jitter Bound JR

l (RJB)

can be determined with respect to the lth breakpoint îl as follows. Consider the jitter

distribution (3.39) for known γ´
l and γ`

l . Increase k in (3.39) from zero until pk ă ξ,%.

Accept the relevant value of k as the right jitter kR
l . Next, reduce k from zero until

pk ă ξ,% and accept the relevant value of k as the left jitter kL
l . Form the LJB and RJB
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3. Jitter Distribution 25

as

JL
l – n̂l ´ kR

l , (3.44)

JR
l – n̂l ` kL

l . (3.45)

The equations to compute kR
l and kL

l are obtained by equating (3.39) to ξ and solving

for kl. Then, to find the right jitter kR
l with a constant value of ξ, we set the next steps

to k ě 0 as

ξ ď
p1 ´ dlqp1 ´ qlq

1 ´ dlql
pk “ p1 ´ dlqp1 ´ qlq

1 ´ dlql
e´κ

ν
k, (3.46)

e
κ
ν
k ď

p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

, (3.47)

κ

ν
k ď ln

p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

, (3.48)

k ď
ν

κ
ln

p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

. (3.49)

Appliying the same procedure to kL
l and k ď 0, we obtain

ξ ď
p1 ´ dlqp1 ´ qlq

1 ´ dlql
q|k| “ p1 ´ dlqp1 ´ qlq

1 ´ dlql
e´ |k|

κν , (3.50)

e
|k|
κν ď

p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

, (3.51)

|k|
κν

ď ln
p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

, (3.52)

k ´κν ď
ν

κ
ln

p1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

. (3.53)

Thus, kR
l and kL

l can be defined as, respectively,

kR
l “ t

νl

κl

1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

u, (3.54)

kL
l “ t

1

νlκl

1 ´ dlqp1 ´ qlq
ξp1 ´ dlqlq

u, (3.55)
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to correspond to the right (superscript R) and the left (superscript L) jitter. Here, txu

means a maximum integer lower than or equal to x. Here, equal confidence intervals are

allowed for thesegments and breakpoints.

Segmental Bounds

Let us suppose that the estimate n̂l of the lth breakpoint location is available (see figure

3.2, at least it can be assigned visually. In view of white Gaussian noise in measurement

yv, simple averaging applied on an interval of Nl “ n̂l ´ n̂l´1 points, from âl´1 to n̂l ´ 1,

gives the best estimate for the lth segmental level:

âl “ 1

N

n̂l´1ÿ

v“n̂l´1

yv, (3.56)

which mean Eâl “ al and the variance σ̂2
l “ pσ2

l {Nlq. Because σ̂2
l is commonly not neg-

ligible, segmental errors occur. The confidence UB and LB for segmental estimates can

thus be specified in the ϑ-sigma sense as:

âUB
j – âj ` ϵ “ âj ` ϑ

d
σ2
j

Nj

“ âj ` ϑσ̂j , (3.57)

âLBj – âj ´ ϵ “ âj ´ ϑ

d
σ2
j

Nj

“ âj ´ ϑσ̂j , (3.58)

where ϑ indicates the bound wideness in terms of σ̂j . The probability ξ for the segmental

estimate to exceed a threshold ϵ strongly depends on the segmental length Nj and can be

determined using equation (3.39) and âl, as

ξpNlq “ 2

8
ż

al`ϵ

plpxqdx “ erfc

˜
µl

c
Nl

2

¸
, (3.59)

where erfcpxq is the complementary error function and µl “ pϵ{
a

σ2
l q is the normalized

threshold. A distinctive feature of ξ is that it does not depend on the unknown al. By

combining ϵ and µl in ξpNlq we obtain ξpNlq “ erfcpϑ{
?
2q and the confidence interval

for segmental estimate becomes
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P pNlq “ 1 ´ ξpNlq “ 1 ´ erfc

ˆ
ϑ?
2

˙
. (3.60)

Table 3.1 gives several values of ϑ, P , and ξ for likely existing genomic changes p50%q.
As can be seen, the 1-sigma sense pϑ “ 1q occupies an intermediate position between the

50% probability (even chances) and 75% probability (probably existing changes). Here-

with, the 2-sigma sense pϑ “ 2q can be treated as typical or almost certainly existing

changes and 3-sigma pϑ “ 3q as certainly existing changes [16].

Table 3.1: Probabilistic measures for genomic changes

ϑ P p%q ξp%q
Even chances 0.6745 50 50

1-Sigma 1 68.27 31.73

Probable 1.15035 75 25

Almost certain 1.81191 93 7

Typical confidence 1.96 95 5

2-Sigma 2 95.45 4.55

3-Sigma 3 99.73 0.27

Certain 8 100 0

By combining (3.44), (3.45), (3.57), and (3.58), the UB and LB confidence masks out-

line the region of existence for true CNAs. The algorithm for computing the Upper Bound

mask BU
n (UB mask) and Lower Bound mask BL

n (LB mask) is developed in Appendix B

Table C.1 and Table C.2 [71, 72].

Figure 3.6 shows an example of the probabilistic confidence masks applied to a simu-

lated CNA from mocroarray data for different probabilities P taken from Table 3.1. As

can be seen, the breakpoints are localized in the 1–sigma sense pP “ 68.27%q with no

errors, but the segmental level is detected with an error of about ˘20%. Admitting that

the confidence probability of P “ 68.27% may not be sufficient for medical decisions, we
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Figure 3.6: An example of UB mask BU
n and LB mask BL

n around the simulated CNA for

confidence probabilities taken from Table 3.1.

apply the masks in the 3-sigma sense pP “ 99.73%q and observe that the breakpoints can

no longer be detected exactly and the segmental errors increase to about ˘50%. The CNA

evidently exists in this case and there is a necessity of defining an exact value of P which

is sufficient for medical needs.

3.2.1 Testing real measurements by the probabilistic confidence

masks.

The first database processed is part of the 7th chromosome in archive ”159A–vs–159D–

cut of ROMA. It is shown to have 14 segments and 13 breakpoints (Figs. 3.7a and 3.7b).

Observing Fig. 3.7a, the only breakpoint which location can be estimated with a high

accuracy is i1. Jitter in î6 and î7 is moderate. All other breakpoints have large jitter. It

is seen that the UB mask covering 2nd–to–6th segments is almost uniform. Thus, there
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is a probability that the 2nd–to–5th breakpoints do not exist. If to follow the LB mask,

then locations of the 2nd–to–4th breakpoints can be predicted even with large errors. At

least they can be supposed to exist. However, nothing definitive can be said about the

5th breakpoint and one may suppose that it does not exist. It is also hard to distinguish a

true location of the 8th breakpoint. In Fig. 3.7b, i10, i12, and i13 are well detectable owing

to large segmental SNRs. The breakpoint i9 has a moderate jitter. In turn, the location

of i11 is unclear. Moreover, there is a probability that i11 does not exist.

3.3 Limitation of Laplace-based Approximation

As it was described previously in [30], Jitter is inherent to measurements affected by in-

tensive noise in all CNA’s breakpoints. When pγ´
l or γ`

l are lesser than 1, the jitter distri-

bution is approximated with the discrete skew Laplace distribution [30]. If pγ´
l , γ

`
l q ă 1,

an actual breakpoint may occur several points to the left or to the right of the candi-

date one detected by an estimator. Subtle chromosomal changes are often observed with

pγ´
l , γ

`
l q ! 1 and, for the required high confidence probability, the actual breakpoint can

be found tens of points apart from the candidate one.

An extensive analysis has confirmed that the Skew Laplace distribution becomes highly

inefficient when subtle CNAs reveal a SNR level much less than 1 pγ´
l , γ

`
l q ! 1 [58]. The

research of SkL pdf (3.39) in applications to jitter in the CNA-like signals measured in

WGN allowed making the following statements. The SkL-based approximation is

• Acceptable when γ´
l , γ

`
l ą 1 and very accurate if γ´

l , γ
`
l " 1;

• Also acceptable if at least one of the SNRs exceeds unity, γ´
l ą 1 or γ`

l ą 1, and

very accurate if γ´
l " 1 or γ´

l " 1;

• Inaccurate when γ´
l , γ

`
l ă 1 and unacceptable if γ´

l , γ
`
l ! 1.

An overall conclusion that can be made following [57, 73, 58] is that the SkL-based

approximation (3.39) fits only easily seen breakpoints. The chromosomal changes are

not brightly pronounced, the SkL should not be used to make decisions about the CNAs
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3. Jitter Distribution 30

(a)

(b)

Figure 3.7: Median–based denoising of the microarray measurement: (a) subsequent

smoothing of log2 Ratio with N “ 11,N “ 21,N “ 41,and N “ 71 and(b) threshold–

based forming of a rectangular pulse train.

structures [16, 30]. Therefore a more accurate approximation is required to avoid a wrong

behavior of this tool.
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Chapter 4

Improving Jitter

Previously in Chapter 3, we have derived the discrete skew Laplace function to represent

the jittter distribution in the CNAs breakpoints. However, the SkL approximation has

appeared to be inaccurate when γ´
l , γ

`
l ă 1 and unacceptable if γ´

l , γ
`
l ! 1. In this

chapter, the errors caused by SkL approximation are analyzed based on the experimental

distribution following the procedure described below. Also, several approximations are

proposed to fit the jitter distribution with the minimum error following three strategies.

First, a heuristic approximation is developed, second a theory to parametrize the SkL

distribution is proposed, and finally, a mathematical approximation is applied to fit the

experimental jitter distribution.

4.1 Experimental Jitter Histogram

To find the experimental jitter histogram, we set an ideal CNA xn of length n “ 400 with

two constant levels al “ 1 and al`1 “ 0 and one breakpoint il at n “ 200. The CNA

measurement is defined as yn “ xn ` vn, where vn is a vector of noise WGN with the

variance σ2 corresponding to the given γ.

We change the breakpoint position il at n “ 200 in a range of n˘100 or ´100 ď k ď 100

producing one estimate in each point. The variable ŷî represent the CNA estimated, which

is defined as
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4. Improving Jitter 32

ŷn|̂i “ rȳ1:n´|2k|, ȳn´|2k|`1:ns (4.1)

where ȳ is the mean of measurements in a given lapse conditioned by the breakpoint î.

Next, we use the Ordinary Least Squares (OLS) method to find the CNA estimation ŷn|̂i

with minimal error of the measurement yn obtaining the error variable Sk. The breakpoint

location is detected when the Mean Square Error (MSE) Sk in the ML estimate reaches

a minimum. Then, the vector that define the jitter histogram Hk is increased one unit

at a specific position k based on the best CNA estimation. The calculated histogram Hk

is normalized to produce the discrete jitter pdf. This procedure is summarized in Figure

4.1.
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Figure 4.1: Procedure to approximate the jitter distribution in the CNA breakpoints by

simulating a stepwise signal in the presence of AWGN with different segmentsl SNRs. The

breakpoitn il change its position from î0 to î200 seeking the best CNA estimate.
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In the first simulation, the ML estimate was provided by 50 ˆ 103 times averaging of

each vector of noise generated with a constant SNR. For each value of SNR, the histogram

was plotted as a number of the events in the k scale. To smooth ripples, such a step was

done in 9 runs and the estimates were averaged. To be accepted as an experimentally

defined jitter pdf, the histogram obtained was normalized for a unit area as shown in Fig.

4.2a and Fig. 4.2b with circles to SNR γl “ 0.1 and γl “ 0.5, respectively.
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Figure 4.2: Jitter distributions computed with Maximum Likelihood and Skew Laplace

distribution to a) SNR=0.1 and b) SNR =0.5. The ML (circled) is the jitter pdf obtained

experimentally using a ML estimator via a histogram over 50 ˆ 103 runs and SkL (solid)

is the skew Laplace distribution.

At the second stage, the MATrix LABoratory (MATLAB)-based algorithm [71] was

run for the simulation using a computer based on Intel Core i5, 2.5 GHz. The computation
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time required to produce a histogram was about 12.7 hours. To make it possible to operate

faster, in [74] the algorithm was modified removing “for” cycles and did not save variables

in Random Access Memory (RAM) memory, increasing the times averaging to 10 ˆ 105

for each SNR. Thereby, the computation time was significantly reduced and the jitter

histogram computed with a improved accuracy in a wide range of k.

The left part of (Fig. 4.3, A1) is a flowchart of the procedure described above and

illustrated in Figure 4.1 that allows getting faster the jitter histogram. Comparing the

algorithm A0 designed in [71] and the modified algorithm A1, it was found that A0 con-

sumes more time and that A1 is computationally more efficient. In average, the algorithm

A1 operates about 28 times faster than A0 and requires about 27 min to produce one

histogram. The simulated one–sided jitter distributions provided by the sub-algorithm A1

for equal segmental values of SNR are shown in Fig. 4.4.

Referring to the necessity of estimating the CNAs with low segmental SNRs [12] and

taking into account that the Laplace distribution (3.39) is sufficiently accurate when the

SNR values exceed unity [13, 75], so the jitter is investigated in the region of 0.1 ď γ´
l “

γ`
l ď 1.37. As can be seen in Fig. 4.4, a decrease in the SNRs makes the actual jitter

distribution less straight in the logarithmic scale and the SkL has thus limited applications

for low segmental SNRs.

Subsequently, the resolution of each iteration was enhanced to generate the noise step

from 4 to 9 decimal values, short and long formats, respectively, to diminish the accu-

mulated error. Figure 4.5 shows the difference between the generated histograms using

different formats in simulation. The detailed algorithm generate a complete jitter his-

togram of symmetric values of SNR γ´
l “ γ`

l from 0.1 to 1.37 illustrated in Figure 4.4. It

should be noted that the jitter pdf expands significantly its hedge with respect to k when

γl ă 1.

In summary, let us notice that the three stages are implemented to simulate jitter

histogram according to averaging simulations: 50 ˆ 103, 10 ˆ 104 and 10 ˆ 104 with long
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4. Improving Jitter 35

Figure 4.3: A flowchart to approximate the jitter distribution in the CNA breakpoints

by simulating a stepwise signal in the presence of AWGN with different segmentsl SNRs:

A1 provides the jitter histogram and A2 provides the jitter distribution approximation by

minimizing the MSE. An example of signal yn is given in Fig. 4.1.

format –which are labeled as slow, fast and detailed algorithms.

4.2 Approximations of jitter pdf

In this section, several methodologies are proposed to obtain a more accurate approxi-

mations of the jitter distribution than the Skew Laplace distribution. First, an heuristic

approximation is developed based on the Bessel functions of the second kind of zeroth

order. This approximation requires the estimation of constants and functions using the

MSE with respect to the histograms generated with a slow algorithm used as a refer-

ence. Next, the parametrization of the SkL distribution is implemented to obtain a set of

approximations using different functions, which modify the constant behavior of σ. The

approximations obtained in such a way fit the measurements of a fast algorithm. Finally,
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Figure 4.4: Experimentally defined one-sided jitter probability densities (dotted) of the

breakpoint location for equal segmental SNRs γ in the range of M “ 400 points with a

true breakpoint at n “ 200. The experimental density functions were found using the

ML estimator. The histogram was build over over 10 ˆ 105 runs repeated 10 times and

averaged.
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Figure 4.5: Difference between experimental distributions obtained using a format of 4

(solid) and 9 (circles) decimal values.
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an Asymmetric Exponential Power Distribution is applied to fit the experimental jitter

distribution obtained with a more accurate algorithm detailed based on the estimation of

few constants.

4.2.1 Heuristic Approximation

A preliminary analysis has shown that, among the available special functions, the modified

Bessel function of the second kind K0pxq and zeroth order is a good candidate to fit the

experimentally jitter measured. Figure 4.6 show some examples of the modified Bessel

functions of the second kind Kαpxq for α “ 0, 1, 2, 3 and 4.
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Figure 4.6: Modified Bessel functions of the second kind, Kαpxq, for α “ 0 (solid),

1(dashed), 2 (dotted), 3 (dash-dotted) and 4 (solid-pointed).

For the function proposed, the measured densities were obtained with a slow method

and shown in Fig. 4.7. In our approximation, we use the following form of K0pxq,
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4. Improving Jitter 38

K0rxpkqs “
8
ż

0

cosrxpkq sinh ts dt

“
8
ż

0

cosrxpkqts?
t2 ` 1

dt ą 0 , xpkq ą 0 , (4.2)

in which variable xpkq depends on index k which represents a discrete departure from

the assumed breakpoint location (see Fig. 4.1). The equation (4.2) describes decaying

functions and diverges at x “ 0 with the singularity being of logarithmic type [76]. Because

K0rxpkqs is a positive-valued for xpkq ą 0 smooth function decreasing with x to zero, this

is used to approximate the measured probability densities shown in Fig. 4.7.
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Figure 4.7: Experimentally defined one-sided jitter probability densities (dotted) of the

breakpoint location for equal segmental SNRs in the range of M “ 400 points with a

breakpoint at n “ 200. The histogram was obtained using the ML estimator based

in the slog algorithm and plotted over 50 ˆ 103 runs repeated 9 times and averaged.

Approximations (doted) are provided using the proposed MBA.
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Approximation

In order to use (4.2) as an approximating function

Bpk|γq “ K0rxpkqs (4.3)

conditioned on γ for the one–sided jitter probability densities shown in Fig. 4.7 using the

slow algorithm, a variable x is represented via k as xpk, γq “ lnpΦpk, γqq in a way such

that small k ě 0 correspond to large values of x and visa versa. Among several candidates,

it has been found empirically that the function Φpk, γq fits the histograms with highest

accuracy,

Φpk, γq “ p|k| ` 1qβ`α|k|

„
1 ` ?

γ

γ
´ ϵ

ȷ

, (4.4)

if to set γ “ γ´
l for k ă 0, γ “ γ´

l
`γ`

l

2
for k “ 0, and γ “ γ`

l for k ą 0, and represent the

coefficients αpγq, βpγq, and ϵpγq as

αpγq “ a0γ ` a1, (4.5)

βpγq “ γpb0γb1 ` a0q ` b2, (4.6)

ϵpγq “ c0γ
c1 ` c2, (4.7)

where a0 “ 0.02737, a1 “ ´4.5ˆ10´3, b0 “ 0.3425, b1 “ ´0.3413, b2 “ 0.808, c0 “ 0.8865,

c1 “ ´1.033 and c2 “ ´1.233 were found in the mean square error sense. These values

were found in several iterations until the MSE reached a minimum.

The most appropriate values of αpγq, βpγq, and ϵpγq computed for various symmetric

SNRs γ´
l “ γ`

l are sketched in Table 4.1 and given in Figure 4.8. The points in Fig. 4.8a,

Fig. 4.8b, and Fig. 4.8c are the best values to each SNRs, and the solid lines are the fitted

functions (4.5), (4.6), and (4.7) using the curve fitting tool from MATLAB. The MSE of

approximations for functions αpγq, βpγq, and ϵpγq generated are 3.852ˆ 10´5, 2.35ˆ 10´4

and 4.226 ˆ 10´4 respectively. Table 4.1 shows this information in a range of SNRs from

39



4. Improving Jitter 40

Table 4.1: MSEs produced by Laplace-based (3.39) and Bessel-based (4.3) approximations.

γ αpγq βpγq ϵpγq γ αpγq βpγq ϵpγq

0.1 -0.0018 0.886 8.32 5 0.7 0.0146 1.098 0.048

0.2 0.0001 0.932 3.438 0.8 0.0173 1.125 -0.116

0.3 0.0037 0.971 1.840 0.9 0.0201 1.152 -0.244

0.4 0.0064 1.0062 1.050 1.0 0.0228 1.177 -0.346

0.5 0.0092 1.0386 0.581 1.1 0.0255 1.2028 -0.498

0.6 0.0119 1.0691 0.269 1.37 0.0310 1.257 -0.556

γ “ 0.1 to γ “ 1.37.

4.3 Parametrization of Laplace Density

The SkL pdf (3.39) still can be applied in a parameterized form as follows. An increase

in the discrete-step index k diminishes the effect of the segmental noise on jitter in the

breakpoint. For example, noise at l ´ 10 has a smaller effect on il that noise at l ´ 1. In

Figure 4.9 is illustrated this theory using a simulated CNA with a breakpoint il at n “ 10.

The constant standard deviation σl and the k-varying standard deviation function σlpkq
are plotted (dashed) to see the graphical difference.

To provide the same effect of noise at any point l˘k on il as required by the derivation

of the SkL-based approximation [58], the noise variances must be increased with k. That

makes the variances, σ2
l pkq and σ2

l`1pkq, k-variant and the SkL pdf (3.39) parameterized

with k. Consequently, the probabilities computed of events A and B using the equations

(3.29) and (3.30) to compute the SkL (3.39) distribution are inconstant and it can be estab-

lished that P pAq|k“n ą P pAq|k“n´1, P pBq|k“n`1 ą PB|k“n`2 and P pAq|k“n " P pAq|k“n´10,

P pBq|k“n`1 " P pBq|k“n`10, see Fig. 4.9.
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(a)

(b)

(c)

Figure 4.8: Coefficients for the approximation functions: (a) αpγq, (b) βpγq, and (c) ϵpγq.
Actual values are dotted and the mean square error of approximations is a) 3.852 ˆ 10´5,

b) 2.35 ˆ 10´4 and c) 4.226 ˆ 10´4.

Because exact analytic functions are unavailable for σ2
l pkq and σ2

l`1pkq, in this section

these functions are investigated numerically and find reasonable approximations in the

minimum MSE sense based on simulations.

To this end, we redefine the k-varying segmental SNRs as
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Figure 4.9: Representation of a standard deviation constant σl and the proposed k-varying

standard deviation function σlpkq used to parametrize the SkL pdf (3.39). To this mod-

ification, it must keep the relationships P pAq|k“n ą P pAq|k“n´1, P pBq|k“n`1 ą PB|k“n`2

and P pAq|k“n " P pAq|k“n´10, P pBq|k“n`1 " P pBq|k“n`10.

γ´
l pkq “ ∆

2

σ2
l pkq , γ`

l pkq “ ∆
2

σ2
l`1pkq , (4.8)

where σ2
l fi σ2

l p0q, σ2
l`1 fi σ2

l`1p0q, γ´
l fi γ´

l p0q, and γ`
l fi γ`

l p0q. Otherwise, when k ‰ 0,

it is assigned

σ2
l pkq “ σ2

l r1 ` flpkqs ,

where flpkq is a function to be specified later.

First Bessel-based Approximation

Testing several non–conventional functions has revealed that the modified Bessel equation

Kνpxq of the second kind and fractional order ν “ 0.5 is a good candidate to approximate
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the measured jitter histogram, because it is positive-valued for xpkq ą 0, smooth, and

decreases with x to zero. We use the representation of Kνpxq defined in equation ( 4.2).

Based on simulations, it has been found that the following parameterizing function

makes the SkL pdf (3.39) accurate in fitting the jitter histogram for any k,

σ2
l pkq “ σ2

l

”
1 ` K´1

1{2

´
log

apγ´
l

qb

k`1

¯ı
, (4.9)

if to assign a “ 0.6951 and b “ ´0.1296. In fact, k “ 0 turns the parameterized SkL to

(3.39) and, by γ´
l , γ

`
l " 1, it also converges to (3.39). An important property of the SkL

parameterized with (4.9) is that it shows that when γ`
l Ñ 0 and γ´

l Ñ 0 then σ2
l pkq ÝÑ 8

and σ2
l`1pkq ÝÑ 8 and il thus cannot be localized or, most likely, does not exists.

Second Bessel-based Approximation

The second approximation was obtained employing the same Bessel function (4.2) , but

with another variable,

σ2
l pkq “ σ2

l

«
1 ` K 1

2

˜
1

pk ` 1qβpγ´
l

q ´ 1

¸ff

, (4.10)

where βpγ´
l q “

?
2{γ0.1734

l . Testing (4.10) by simulations has shown that this function can

produce more accuracy for certain values of SNR and that (4.9) can be more accurate

otherwise, although both (4.9) and (4.10) can be applied to any k.

Functional approximation

A simple approximation has appeared by using a power function of

σ2
l pkq “ σ2

l

1

2

”
1 ` kapγ´

l
qb

ı2

, (4.11)

where a “ 0.436 and b “ ´0.1575. An analysis has shown that (4.11) is about 10 times

more accurate than (4.9) and (4.10) when k ą 1, but cannot be applied to k “ 0 or k “ 1.
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Functions (4.9) (dashed), (4.10) (solid), and (4.11) (circled and dotted) are sketched

in Fig. 4.10 for γ “ 0.1, 1.0, 5.0 in the range of 0 ď k ď 50.As can be seen, the proposed

k–varying variances are consistent, but produce different errors in the k-domain. Note

that an exact function σ2
l pkq is still unavailable.

!
2
(

)
k

Figure 4.10: The proposed k-varying variance functions σ2
l pkq used to parametrize the

SkL pdf (3.39) for equal low (γ “ 0.1), normal (γ “ 1), and large (γ “ 5) SNRs: (4.9) is

dashed, (4.10) is solid, and (4.11) is circled and dotted.

Figures 4.11a and 4.11b show the measurements obtained to symmetric SNRs γ˘
l “ 0.1

and γl “ 1.37 using the fast algorithm and the proposed approximations based on equa-

tions (4.9), (4.10) and (4.11). Figure 4.11a illustrates the simulation of the lowest value

of SNR γ “ 0.1 (circles). It ca also be noticed a notorious difference between mesure-

ments (circles) with the SkL (solid) distribution and a minimal error with respect to the

proposed approximations using the parametrization with (4.9) (dashed), (4.10) (dash-dot)

and (4.11) (dotted). Setting a SNR γ “ 1.37 the difference between measurements (cir-

cles) with SkL distribution (solid) and is lower than γ “ 0.1, but the error of estimation

is still significant, see Fig. 4.11b. Also, this picture shows a good fit of the parameterize

approximations with (4.9) (dashed), (4.10) (dash-dot) and (4.11) (dotted).

44



4. Improving Jitter 45

4.

4

4

.

.

(a)

4.

.

.

4

4

(b)

Figure 4.11: Measured jitter pdf functions (circles) and the approximations by the SkL law

(3.39) and by the SkL law parameterized with (4.9), (4.10), and (4.11) for equal segmental

SNRs γl “ γ´
l “ γ`

l ,a) low SNR γl “ 0.1 and b) normal SNR γl “ 1.37.
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4.4 Asymmetric Exponential Power Distribution

Analyzing the measured jitter pdf obtained with the detailed algorithm, we conclude

that it could be approximated with a sub–Laplacian distribution such as the Asymmetric

Exponential Power (AEP) distribution [77] –which is a generalization of the Gaussian and

Laplace laws. A random variable yl associated with the lth breakpoint is said to have the

AEP function, if for the shape parameter αl ą 0, scale factor σl ą 0, location θl “ 0, and

skew factor κl ą 0, a variable yl is distributed with

ppk|p̄l, q̄lq “ αl

σlΓ

´
1
αl

¯ κl

1 ` κ2
l

$
&
%

p̄k
αl

l , k ě 0 ,

q̄
|k|αl

l , k ď 0 ,
(4.12)

where p̄l “ e
´

κ
αl
l

σ
αl
l , q̄l “ e

´ 1

κ
αl
l

σ
αl
l , and Γpxq is the Gamma function.

In a special case of γ´
l “ γ`

l , the skew factor becomes κl “ 1 and the AEP distribution

symmetric. In the other special case of κl ‰ 1, letting αl “ 1 transforms (4.12) to the

discrete skew Laplace distribution (3.39) [77], which alternative form is

ppk|p̄l, q̄lqαl“1 “ 1

σl

κl

1 ` κ2
l

$
&
%

p̄kl , k ě 0 ,

q̄
|k|
l , k ď 0 .

(4.13)

Using values of α “ 0.5, 1, 1.5, 2, 2.5, 10, κ “ 1, σ “ 1 and zero mean, some distributions

are plotted in the Figure 4.12. The AEP function is a good candidate to approximate the

jitter distribution because have a mathematical support and exhibit a great flexibility

modifying only three parameters, given that location θl always is zero.

An example of applications of (4.12) as an approximation is given in [78], where factors

αl, κl and σl were estimated in the maximum likelihood sense for the simulated growth

distribution.
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Figure 4.12: Asymmetric Exponential Power Distribution to several parameters of shape

α, for the symetric case skew is set as κ “ 1, scale σ “ 1 and zero mean. The function

AEP function have two special cases: when α “ 1 represent the Laplace distribution and

if α “ 2 the normal distribution can be computed.

4.4.1 Parameters Estimation for AEP distribution

In order to approximate the jitter distribution with (4.12) in an optimal way, one needs

finding αl, κl and σl as functions of γ
´
l and γ`

l to provide the best fit. These constants can

be found by fitting the histograms with a highest accuracy by minimizing the Kolmogorov–

Smirnov (KS) distance [78] defined as

dKS “ max|F0pxq ´ SNpxq| , (4.14)

where F0pxq is the population cumulative distribution of (4.12) and SNpxq is the observed
cumulative step function. The KS distance dKS between SNpxq and F0pxq functions is

illustrated in Figure 4.13. The Kolmogorov-Smirnov distance is a common statistical
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measure called the “test of goodness of fit” or the Kolmogorov-Smirnov test (KS-test).

The parameter dKS is computed by (4.15) and selects the minimum one to set the most

appropriate values of αl, κl, and σl for various symmetric SNRs γ´
l “ γ`

l .
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Figure 4.13: The Kolmogorov-Smirnov distance between the empirical distribution func-

tion of the sample SNpxq and the cumulative distribution function of the reference distri-

bution F0pxq.

Also, constants αl and σl are approximated in the MSE sense as

αlpγlq “ 1 ´ a1

γb1
l

, (4.15)

σlpγlq “ a2γ
b2
l , (4.16)

where a1 “ 0.389, b1 “ 0.1394, a2 “ 1.142 and b2 “ ´0.6289.Note that, for the asym-

metric case γ´
l ‰ γ`

l , the shape and scale factors depends on the parameters individually

estimated, so αlpγ˘
l q and σlpγ˘

l q are provided by equations (4.17) and (4.18).

αlpγ˘
l q “ αlpγ`

l q ` αlpγ´
l q

2
, (4.17)

σlpγ˘
l q “ σlpγ`

l q ` σlpγ´
l q

2
. (4.18)
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Figure 4.14: Approximations of the (a) shape factor αlpγ˘
l q and (b) scale factor σlpγ˘

l q
for jitter distribution using Asymmetric Exponential Power distribution. Measured data

are dotted to a range of SNR from γ˘ “ 0.1 to γ˘ “ 2 and the curves to fit them are

represented with a dashed line for both variables.

Figure 4.14a and Fig. 4.14b sketch the measured data (dotted) and the approximations

of αlpγ˘
l q and σlpσ˘

l q (dashed) obtained using SkL (3.39) and AEP distribution (4.12). To

find κl, the equation proposed in [77] is modified.

κl “
„
X̄´

αl

X̄`
αl

ȷ

1

2pαl`1q

(4.19)

by substituting X̄´
αl

“ γ`
l and X̄`

αl
“ γ´ for the asymmetric case and κl “ 1 otherwise.

The AEP distribution applied to symmetric γ´
l “ 0.3, γ`

l “ 0.3 and asymmetric case

γ´
l “ 0.3, γ´

l “ 0.8 are plotted in Figures 4.15a and 4.15b. For the symmetric case, Figure
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Figure 4.15: The approximations of the experimentally measured jitter pdf (doted) for

different SNR values using the AEP distribution (solid) for γ´
l “ 0.3: (a) γ`

l “ 0.3 and

(b) γ`
l “ 0.8. Measurement data are provided by averaging 104 runs using the detailed

algorithm for ML estimator.

4.15a, the parameters estimated were shape α “ 0.54, skew κ “ 1 and scale σ “ 2.49.

For the asymmetric case given in Figure 4.15b, the parameter of shape, scale and skew

were computed as α|γ´“0.3,γ´“0.8 “ 0.57, σ|γ´“0.3,γ´“0.8 “ 1.89 and κ|γ´“0.3,γ´“0.8 “ 1.36,

respectively.
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4.5 Comparison of Proposed Approximations

The errors caused by the propose approximations depend on the algorithm used to generate

the experimental jitter distribution. It is worth mentioning that the parameters estimated

to each approximation were obtained using a particular algorithm: slow, fast or detailed.

The Tables D.1 and D.2, Appendix D, shows errors of each distributions computed with

the MSE defined as

MSEpx̂q “ Erpx̂ ´ xq2s (4.20)

where x̂ is the approximation proposed and x is the experimental jitter pdf obtained with

the ML estimator. Complete tables D.1 and D.2, given in Appendix D, compile the mse

of each approximation and a comparison with the measurements of long format.

The MBA distribution was designed to estimate the jitter histogram obtained with the

slow algorithm. Here, the mean square error is notoriously lesser than Skew Laplace to

the same measurements, column 2 to 3 section I of Table D.1. By the fast algorithm, we

found the parametrized approximations, which produce less mean square error compared

with the Skew Laplace distribution. The values of MSE of a range of SNR are recorded in

the column 4 to 7 section I Table D.1. In the same table, Section II we collected the MSE

of all proposed distributions compared with the measurements of the detailed algorithm.

Figures 4.16a and 4.16b illustrate a graphic summary of tables D.1 and D.2, in Ap-

pendix D, which were presented in [79, 80]. The minimum error of each approximation is

plotted in 4.16a, it can be noticed that the Skew Laplace distribution have the higher error.

A general error comparison of proposed approximations and the experimental histogram

based on the detailed algorithm is given in 4.16b. The AEP and the SkL distributions

show the lower and higher errors, respectively.
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Figure 4.16: Error of ML estimator and proposed approximations. a) Minimum errors ob-

tained of each approximations, b) errors of all approximations respect to the experimental

jitter obtained with the detailed algorithm.
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Chapter 5

Modified Confidence Masks

In this Chapter, the proposed approximations, to fit the experimental jitter distributions

showed in Chapter 4, are adapted to the confidence masks. Consequently, the initial

algorithm computing the Upper Bound and Lower Bound is modified using these functions.

The modified algorithm is applied to microarrays data obtained with Single Nucleotide

Polymorphism and Comparative Genomic Hybridization technologies to test estimates of

Copy Number Alterations.

5.1 Confidence Masks for Hybrid approximation

The UB mask BUB
l|H and LB mask BLB

l|H for the heuristic (Bessel-based) approximation can

be formed using the same equations as for the Laplace distribution described in Section

3.2. In doing so, we suppose that the Laplace pdf (3.39) is equal to the approximating

function Blpkq equation 4.3 at k “ 0,

ppk “ 0|dl, qlq “ Blpk “ 0q , (5.1)

that gives us Blpk “ 0q “ 1
φl

where φl is the parameter of normalization defined in 3.42 .

Next, the probabilities P pAlqH at k “ ´1 and P pBlqH at k “ 1 are defined based on the

heuristic approximation as
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P pAlqH “ Blpk “ 0q
Blpk “ ´1q ` Blpk “ 0q , (5.2)

P pBlqH “ Blpk “ 0q
Blpk “ 1q ` Blpk “ 0q . (5.3)

Then equations (5.2) and (5.3) are substituted into (3.40), (3.41), and (3.42), and

κl|H and νl|H can be calculated. That allows us to specify the right-hand jitter kR
l|H and

left-hand jitter kL
l|H by, respectively,

kR
l|H “

Z
νl|H

κl|H
ln

1

ξBlpk “ 0q

^
, (5.4)

kL
l|H “

Z
νl|Hκl|H ln

1

ξBlpk “ 0q

^
. (5.5)

Finally, we define the jitter left boundary JL
l|H and right boundary JR

l|H as, respectively,

JL
l|H – n̂l ´ kR

l|H , (5.6)

JR
l|H – n̂l ` kL

l|H , (5.7)

and use in the algorithm [16] previously designed for the confidence masks based on the

Laplace distribution.

5.1.1 Testing Estimates by BUB
l|H and BLB

l|H Masks

Our purpose now is to test the complete CNA estimates by the probabilistic masks. Specif-

ically, the probes employed are from 1st chromosome available from “BLC B1 T45.txt”

obtained using the SNP array technology.

Inherently, the more accurate Bessel-based approximation extends the jitter proba-

bilistic boundaries with respect to the Laplace-based ones, especially for low SNRs. This

is illustrated in Fig. 5.1, where the estimates of the 1st chromosome were tested by BUB
l ,

BLB
l , BUB

l|H and BLB
l|H for ϑ “ 3 (confidence probability P “ 99.73%).

In Fig. 5.2a, the masks BUB
l|H and BLB

l|H are showed and placed in the vicinity of segment

â18 for several confidence probabilities: ϑ “ 0.6745 (P “ 50%), ϑ “ 1 (P “ 68.27%),
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Figure 5.1: Upper boundaries BUB
l , BUB

l|H and lower boundaries BUB
l and BLB

l|H for the

breakpoint i2 of Chromosome 1 from database BLC B1 T45.txt given ϑ “ 3. Confidence

bounds BUB
l|H and BLB

l|H (dash–dot) are based on the heuristic approximations and BUB
l|H and

BUB
l andBUB

l and BLB
l|H (doted) use the SkL distribution.

ϑ “ 2 (P “ 95.45%), and ϑ “ 3 (P “ 99.73%).What the masks suggest here is that the

CNA evidently exists with high probability, but the segmental levels and the breakpoint

locations cannot be estimated with high accuracy, owing to low SNRs.

It also worth emphasizing on a special case when the masks BUB
l and BLB

l are not

able to confirm or deny an existence of segmental changes with high probability, owing to

an inability of computing the Laplace-based masks for extremely low SNRs. Figure 5.2b

illustrates such situations. Just on the contrary, the masks BUB
l|H and BLB

l|H can be computed

for any reasonable SNR.

A conclusion that can be made based on the results illustrated in Fig. 5.1, Fig. 5.2a and

Fig. 5.2b is that the Bessel-based probabilistic masks can be used to improve estimates of

the chromosomal changes at low and extra low values of SNR for the required probability

that it is done in the next section.
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Figure 5.2: The BUB
l|H and BLB

l|H masks placed a) around the segmental level a18 for several

confidence probabilities and b) around the breakpoint i20 for ϑ “ 0.6745 and ϑ “ 3.

The CNA in a) exists with high probability, but the segmental levels and the breakpoint

locations cannot be estimated with high accuracy.
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5.1.2 Improving CNAs Estimates

As has been shown before, not all of the detected chromosomal changes have the same

confidence, which means that there is a probability that some breakpoints do not exist. In

order to improve the CNA estimates for the required confidence, the following methodology

can be used:

1. Obtaining estimates of the CNA using the standard CBS algorithm [51, 52] or any

other algorithm.

2. Computing masks BUB
l|H and BLB

l|H for the given confidence probability P ,% and bound

the estimates.

3. If the masks reveal double uniformities, in UB and LB, in a gap of any three neigh-

bouring breakpoints, then remove the intermediate breakpoint and estimate the

segmental level between the survived breakpoints by simple averaging. The CNAs

estimated in such a way will be valid for the given confidence P ,%.

Finally, Figures 5.3a–5.3e show an application of this methodology to the CNA struc-

ture detected in frames of the Project Genome Alteration Print (GAP) [34].

A number of hardly recognized small chromosomal changes are illustrated in (Fig.

5.3a) and the aim is tested them by the proposed masks BUB
l|H and BLB

l|H .

In doing so, first equal confidence probabilities start at P “ 50% for each estimate

to exist or not and find out that three breakpoints demonstrate no detectability. These

breakpoints are removed and depicted their locations with “ˆ”. Reasoning similarly, four

breakpoints are removed to retain only probable changes, by P “ 75%, nine breakpoints

to show a picture combined with almost certain changes, by P “ 93%, and ten breakpoints

in the 3-sigma sense, P “ 99.73%. Observing the results, it is inferred that the masks are

able to correct only the estimates obtained under low SNRs. The relevant chromosomal

sections S1–S7 are circled in Fig. 5.3. It is not surprising, because changes existing with

high SNRs are seen visually. They thus can easily be detected with high confidence by an

estimator.
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Figure 5.3: Improving estimates of the CNAs obtained in Project GAP by removing some

unlikely existing breakpoints: (a) original estimates, (b) even changes, P “ 50%, (c)

probable changes, P “ 75%, (d) almost certain changes, P “ 93%, and (e) 3-sigma sense,

P “ 99.73%.
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5.2 ConfidenceMasks based on Laplace–parametrization

It follows from an analysis of errors produced by the proposed approximations that the

most reliable results can be achieved when developing the confidence masks worked out

in 3.2 to be hybrid by using different approximations in diverse regions of the segmental

SNRs.

5.2.1 Hybrid confidence masks

Based on the MSEs produced by the approximations (Table D.1), in Table 5.1 the seg-

mental SNR regions are selected, in which the MBA developed in [16], Laplace pdf (3.39),

and Laplace pdf (3.39) parameterized with (4.9), (4.10), and (4.11) are most successful in

detecting the right jitter k´ and the left jitter k` in the minimum MSE sense.

Table 5.1: SNR regions for MBA, Laplace pdf (3.39), and (3.39) parameterized with (4.9),

(4.10), and (4.11) to detect the right jitter k´ and the left jitter k` with the minimum

MSE.

SNR region

γ´
l , γ

`
l k´, k` pdf 0.1...0.9 0.9...1.37 ą 1.37

=
Any

(3.39) with (4.9) – X –

(3.39) with (4.10) X – –

ą 1 (3.39) with (4.11) X X –

‰
Any (MBA) [16] X X –

Any (3.39) – – X
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Table 5.1 suggests that for γ´
l “ γ`

l and |k| ě 0, the Laplace pdf (3.39) parameterized

with (4.9) is most accurate in the SNR region of 0.9 . . . 1.37, while that with (4.10) produces

better accuracy in 0.1 . . . 0.9. The Laplace pdf parameterized with (4.11) is also accurate

when 0.1 ă SNR ă 1.37, but it loses accuracy at k “ 0 and k “ 1. When γ´
l ‰ γ`

l , the

MBA is preferable in the SNR region of 0.1 . . . 1.37 and the skew Laplace pdf (3.39) can

be used otherwise for any departure index k.

Following the above provided analysis of Table 5.1, better accuracy in the confidence

UB mask and LB mask designed in [16] can be achieved if these masks are made hybrid.

The difference between the hybrid masks and the basic ones [16] is in the parametrization

of (3.39) and in the conditions introduced for the SNR values γ´
l and γ`

l . With such

modifications, the basic masks can be used straightforwardly and readers can consult [16]

for a detailed description of the basic algorithm.

5.2.2 Applications to SNP Array Probing

In this subsection, we tested experimentally the parameterized Laplace density (3.39) and

several confidence masks by the SNP array-based CNAs probing data taken from database

BLC BI T31 available from the project GAP [12].

Confidence of the Breakpoint Location

To emphasize again on a practical importance of the hybrid confidence masks, in Fig.

5.4a and Fig. 5.4b it is showed a part of the 13rd chromosome [12] consisting of a single

a single breakpoint i5 and two segments with the segmental SNR values of γ´
5 – 1.46 and

γ`
5 – 1.5 as investigated in [12].

The candidate breakpoint was detected using the ML estimator and then the ML

estimates were tested by different masks based on the Laplace pdf (3.39), Laplace pdf

parameterized with (4.10), and the one designed in [16] for the confidence probability

P “ 99.73%. The MBA and (3.39) parameterized with (4.10) shown in Fig. 5.4b more

accurately approximate the jitter distribution. Therefore, the regions of possible break-

point locations produced by these approximations (Fig. 5.4a) must be accepted as more
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Figure 5.4: Testing the ML estimate of the breakpoint i5 location of the sample

BLC BI T31 in the 13th Chromosome by the confidence masks: (a) ML estimate (solid)

and different upper bound (UB) and lower bound (LB) masks and (b) jitter distribution

in i5 approximated with the Laplace pdf (3.39), Laplace pdf parameterized with 3.45, and

MBA.

realistic. As can be seen, these regions are wider than that produced by the Laplace pdf

(3.39).

Chromosome Probing by SNP Array

Now, the confidence masks are applied to test the estimates of the breakpoint locations

in the complete chromosome 13th of the profile BLC BI T31 taken from the series of

basal–like carcinomas (BLC) available from the project GAP [12]. This series are in-

cluded in a study of primary breast carcinomas (40 cases) and two cell lines measured on

a 300K Illumina SNP-arrays (Human Hap300-Duo). The Copy-Number Alteration profile
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Figure 5.5: Probes (points), CNAs estimates (solid), and confidence regions (dashed)

provided by the hybrid masks for the 13th chromosome taken from BLC BI T37 of GAP.

The breakpoint locations were detected using the algorithm cghcbs

.

is represented by the Log R ratios centered at zero for each sample. The estimates were

obtained using the algorithm Comparative Genomic Hybridization–Circular Binary Seg-

mentation (cghcbs) [51] available in MATLAB, which suggests that the chromosome has

59 segments and 58 breakpoints as shown in Fig. 5.5.

It follows from Fig. 5.5 that the confidence intervals are wider for the segmental levels

than for the breakpoints. Therefore, this figure is supplied with Tables E.1 Part I and

Table E.2 Part II given in Appendix E, in which the left jitter k´
l and the right jitter k`

l

are estimated for the confidence probability P “ 99.73% in the (3σ) sense [16].

Tables E.1 and E.2 suggest that the masks often produce unequal jitter estimates and

that the difference between the estimates can be in several points, as in the case of l “ 7

or l “ 27. Large jitter in i1, i40, i43, and i44 was detected only by the MBA. But the MBA

was unsuccessful in detecting any jitter in a larger number of the breakpoints such as i8,
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i9, i14, i18–i20, i26, i48–i51, i57, and i58, while other masks provided it with near similar

errors. One can also notice that extra low SNR values made the jitter unavailable for

bounding by all of the masks, as in the cases of i4, i5, and i41.

Jitter computed by the hybrid masks is put to the two last columns of Tables E.1 and

E.2. Because the hybrid masks combine the most accurate outputs of the particular masks,

the left and right jitter computed by the hybrid masks can be considered as most reliable.

What the hybrid masks suggest is that jitter in the breakpoints of this chromosome ranges

from 1 point to tens of points and thus an actual breakpoint can be defined specifying

tens points apart from the candidate one provided by an estimator.

5.3 Confidence Masks based on AEP distribution

For the AEP-based approximation (4.11), the confidence masks can easily be modified

using the equations given in [16] for the SkL (3.39), in which case JL
l (3.44) and JR

l (3.45)

can be defined specifing kR
l pϑq and kL

l pϑq as [58]

kR
l “

Z
νl

κl

ln
p1 ´ plqp1 ´ qlq
ξp1 ´ plqlq

^
, (5.8)

kL
l “

Z
νlκlln

p1 ´ plqp1 ´ qlq
ξp1 ´ plqlq

^
, (5.9)

where txu means a maximum integer lower than or equal to x. Note that functions (5.8)

and (5.9) were obtained in [58] by equating (3.39) to ξpNlq “ erfcpϑ{
?
2q and solving for

kl.

For the AEPD-based approximation (4.11), the UB and LB masks can be formed by

replacing pl and ql with, respectively,

p̄l “ e
´

κ
αl
l

σ
αl
l , (5.10)

q̄l “ e
´ 1

κ
αl
l

σ
αl
l . (5.11)
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That allows specifying the right-hand jitter kR
l|αE and the left-hand jitter kL

l|αE with,

respectively,

kR
l|αE “

Z
σl

κl

ln
p1 ´ p̄lqp1 ´ q̄q
ξp1 ´ p̄lq̄lq

^
, (5.12)

kL
l|αE “

Z
σlκlln

p1 ´ p̄lqp1 ´ q̄lq
ξp1 ´ p̄lq̄lq

^
. (5.13)

Provided (5.12) and (5.13), the jitter left boundary JL
l|αE and right boundary JR

l|αE can

be finally defined as, respectively,

JL
l|αE – n̂l ´ kR

l|αE , (5.14)

JR
l|αE – n̂l ` kL.

l|αE (5.15)

Replacing the equations (5.14) and (5.14) into the algorithm designed in [16], developed

in Appendix C, for the SkL-based the confidence masks, it is obtained the BUB
l|αE and BLB

l|αE

boundaries.

Figures, 5.6a and 5.6b show the confidence masks based on the asymmetric exponential

power distribution applied to CNAs of Chromosomes 10 and 19 from neuroblastoma copy

number profile 207. The BUB
l|αE and BLB

l|αE bounds computed around the breakpoint i3,

plotted in Figure 5.6a, suggest that this breakpoint can remain at high probability « 1.

In the same figure, it can be noticed that the values of SNR are much greater than one

γ´
i3

“ 15.18 and γ´
i3

“ 44.33. Unlike, in the Figure 5.6b the breakpoint i2 possibly do not

exist at a greater probability that the breakpoints i1, in spite of that γ´
i2

“ 3.66.
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Figure 5.6: a) Chromosome 10 and b) Chromosome 19 of neuroblastoma copy number

profile 207 with masks BUB
l|αE and BLB

l|αE applied to the CNA estimates (bold). The confidence

probabilities are: P “ 0.5 (ϑ “ 0.6745) (doted), P “ 0.75 (ϑ “ 1.15035) (dashed), and

P “ 0.9973 (ϑ “ 3) (dash-dot).
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Chapter 6

Matching Expert’s Annotations

In this Chapter, the efficiency of the proposed AEP-based confidence masks is demon-

strated. First, we use the standard circular binary segmentation algorithm [51, 52] to

estimate the CNAs in some neuroblastoma copy number profiles. Then the masks are

applied and the confidence probabilities founded, which match annotations made by ex-

perts. Finally, an analysis of similarities and discrepancies between the regions outlined by

masks and experts annotations is done. Throughout this study, we exploit the database

of 575 annotated neuroblastoma copy number profiles as a public benchmark available for

testing new algorithms [81].

6.1 Breakpoints Annotations as Gold Standard

The confidence masks derived and developed in [16, 30] are intended to correct the CNA

estimates for the given confidence probability P . The probability ranges as 0.5 ă P ă 1.0,

but its exact value acceptable for medical needs is still not specified. One way is to specify

P using the breakpoint annotations provided by experts as the gold standard [81].

The annotations are counts of breakpoints in genomic regions made by visual inspection

of the noisy signal. Observing each region, expert biologists determine whether or not it

contains a breakpoint based on their expertise. Let us notice that visual annotations have

been used successfully for object recognition in photos and cell phenotype recognition in
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6. Matching Expert’s Annotations 67

microscopy [82, 83]. An example of annotations for the breakpoints is shown in Fig. 6.1

as related to the Profile 44–Chromosome 1 taken from aCGH microarray experiments on

neuroblastoma tumors.

Here, data are separated on several regions, which were annotated by the experts

as having ą 0–Breakpoints, 1–Breakpoint, and 0–Breakpoints. Although the confidence

probability was not specified, it can easily be deduced that the probability is high in each

annotation.

To specify the expert’s probability, the masks must be applied to the CNA estimates

and the confidence probability increased until the masks reach the same decision as that

by the experts. We present in [84, 85] an example of this procedure to match several

algorithms with the annotations made by experts.
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Figure 6.1: Annotations made by medical experts to Profile 44–Chromosome 1 of sample

of neuroblastoma. Regions with different annotations are separated. Experts suggested

that there exist ą 0–Breakpoints, 1–Breakpoint, and 0–Breakpoints. Data were obtained

using the aCGH microarrays and plotted as Log2Ratio versus genomic position.
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6. Matching Expert’s Annotations 68

6.2 Match Cases

The Upper Bound mask based on Asymmetric Exponential Power will be denoted as BUB
l|αE

and the Lower Bound mask as BLB
l|αE. The following expert’s annotations will be taken

into account for the particular chromosomal regions, which will be classified with colored

stripes as follows:

• 0–Breakpoints means that there are no breakpoints.

• 1–Breakpoint means that there exists a single breakpoint.

• ě1–Breakpoints means that there are one or more breakpoints.

6.2.1 Case 1–Perfect Match

The Chromosome 10 of profile 207 is analyzed in Fig. 6.2 using masks BUB
l|αE and BLB

l|αE.

The confidence probabilities are: P “ 0.5 (ϑ “ 0.6745) (doted), P “ 0.75 (ϑ “ 1.15035)

(dashed), and P “ 0.9973 (ϑ “ 3) (dash-dot). The expert’s annotations (striped) are

0–Breakpoints and 1–Breakpoints. For convenience, the genomic position is represented

here with the chromosome ideogram related to Homo Sapiens. The breakpoints of CNAs

plotted in Figure 6.2 are rough and obvious to the naked eye. For this reason, the CNA

estimates tested by the masks and the experts annotations match each other when ϑ ă 12.8

with an extremely high probability of P « 1 ´ 1.11 ˆ 10´16.

6.2.2 Case 2–Good Match

An analysis of chromosome 11 and chromosome 19 for neuroblastoma copy number profile

207 is represented in Fig. 6.3a and Fig. 6.3b, respectively. Two annotations to this

measurements were made 0–Breakpoints and ě1–Breakpoints (striped). The masks BUB
l|αE

and BLB
l|αE tested the CNAs using the confidence probabilities are P “ 0.5 (doted), P “ 0.75

(dashed), and P “ 0.9973 (dash-dot). Here, it was demonstrated a good match with the

annotations with ϑ ă 5.8 (dash-dot) that corresponds to the very high probability of

P “ 1 ´ 6.63 ˆ 10´9.
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Figure 6.2: Chromosome 10 of neuroblastoma copy number profile 207 with masks BUB
l|αE

and BLB
l|αE applied to the CNA estimates (bold) and expert’s annotations (striped): 0–

Breakpoints and 1–Breakpoints. The confidence probabilities are: P “ 0.5 (ϑ “ 0.6745)

(doted), P “ 0.75 (ϑ “ 1.15035) (dashed), and P “ 0.9973 (ϑ “ 3) (dash-dot).

6.2.3 Case 3–Wrong Match

Estimates obtained for chromosomes 2 and 17 of profile 207 suggest that some annota-

tions made by experts are definitely wrong. In fact, within the region from 116305178 to

242918939 bp annotated by experts as “normal,” an estimator has discovered two break-

points (Fig. 6.4a). For this case, the bounds BUB
l|αE and BLB

l|αE at a confidence probabilities

of P “ 0.9973 or ϑ “ 3, Figures 6.4a (dotted) and Fig. 6.4b (dash-dot), suggest that

all breakpoints still exist. However, the confidence masks discard these breakpoints with

the probability of P “ 1 ´ 1.44 ˆ 10´4 and P “ 1 ´ 4.13 ˆ 10´5. In the measurement

of chromosome 17 (Fig. 6.4b), a single but not annotated breakpoint was found at the

genomic position 60401416. The masks match this annotation with ϑ “ 9.7.
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(a)

(b)

Figure 6.3: Estimate (bold), masks BUB
l|αE and BLB

l|αE, and expert’s annotations (striped)

for neuroblastoma copy number profile 207: (a) chromosome 11 and (b) chromosome 19.

Experts have recognized two regions as having 0–Breakpoints and ą0–Breakpoints. The

confidence probabilities are P “ 0.5 (doted), P “ 0.75 (dashed), and P “ 0.9973 (dash-

dot).
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(a)

(b)

Figure 6.4: The BUB
l|αE and BLB

l|αE masks around the chromosome 2 and 17 for neuroblastoma

copy number profile 207. The confidence probabilities are calculated with P “ 0.9973 a)

(dotted) and b) (dash–dot).

6.2.4 Case 3.1–Transitional Match

Finally, it is considered a chromosome 2 of profile 12 (Fig. 6.5a) and chromosome 11 of

profile 522 (Fig. 6.5b), which demonstrate that the expert probability can be determined
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(a)

(b)

Figure 6.5: The BUB
l|αE and BLB

l|αE masks around the chromosome 2 and 11 for neuroblastoma

copy number profile 22 and 522 respectively. a) The confidence masks (dashed) with a

probability of P “ 1 ´ 4.13 ˆ 10´3 suggest to remove the first breakpoint and b) the

proposed algorithm with a probability of 1 ´ 5.23 ˆ 10´10 also suggest to clear the first

breakpoint(dashed).
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in the transitional match. As can be seen, the experts failed to identify the breakpoints

located at 70563419 and 69360977. The breakpoint discovered by an estimator at 70563419

in the chromosome 2 (Fig. 6.5a) was discarded by the masks with the probability of

P “ 1 ´ 4.13 ˆ 10´3. In turn, the breakpoint discovered at 69360977 in the chromosome

11 (Fig. 6.5b) was discarded with the probability of P “ 1 ´ 5.23 ˆ 10´10.

By analyzing the results provided above, two important conclusions are obtained:

• All of the breakpoints identified by experts correspond to a high level of the segmental

SNR, γ ě 1, i.e. the CNAs exist at a high probability. Such breakpoints do not

need the confidence masks to adjust the estimates.

• Some CNAs, which were estimated for low SNR values, γ ă 1, but not annotated

by experts, can be disagreed by the mask to match the experts annotations and,

thereby, determine the experts confidence probability.

Table 6.1: Comparison between several profiles annotations with CNAs estimated by CBS

and tested by confidence masks: CASE–I Excellent match and CASE–II Poor match.

Profile Case Chromosome Profile Case Chromosome

1 I 2,3,6,7,11,15,17,19,X. 57 I 1,2,3,7,8,13,14,19.

II 1,4,9. II 4,5,12,16,17.

8 I 3,7,11,12,18. 162 I 1,2,3,5,7,11,17,19.

II 1,2,4,17. II 4,8,22.

12 I 1,3,6,11,14,22. 207 I 2,3,4,5,10,12,15,18,19.

II 2,4,17,X. II 1,17,21,22.

22 I 3, 9,11,12,13,17,19,21. 316 I 1,2,3,11,15,17,19,20.

II 1,2,4. II 4,7,12.

44 I 2,3,4,5,7,11,17,19. 522 I 2,11 ,21.

II 1 II 1,3,4,17
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An overall comparison between the CNA estimates provided by CBS and the experts

annotations is given in Table 6.1. All cases are separated here into two classes. The

Case I representing an excellent match, which means that the estimates perfectly match

the annotations and no additional analysis is required using the masks. The Case II

corresponds to a poor match, which means that the number of breakpoints identified by

an estimator differs from that annotated by the experts. In this case, the masks must be

applied to determine the experts confidence probability.
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Chapter 7

Algorithms comparizon using

Confidence Masks

In this Chapter, we compare the CNAs breakpoint estimates produced using the Circular

Binary Segmentation and Pruned Exact Linear Time methods. To reach this goal, the

breakpoints estimated with the Next Generation Sequencing technology are established as

a reference, in other words, as ideal estimates. Then the modified confidence masks based

on the AEP distribution is applied at several levels of probability to clear false positives

estimated by CBS and PELT and to increase their accuracy. Also, we provide a complete

analysis of the deleted breakpoints and the length of CNAs at each level of probability in

the ϑ-sense.

7.1 Comparison of breakpoints estimators

Due to the relevance of identification and classification of CNAs to identify diseases, many

methods have been proposed to estimate the breakpoints and segmental constants in

the CNAs with highest precision using the most powerful technologies of hybridization.

However, locations and lengths of CNAs estimated using well–elaborated methods are

often contradictory due to extensive variability of measurements and performance of the

algorithms. Still much less attention is given to the estimation accuracy and it is difficult
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to select the best estimator. We illustrate in Figure 7.1 a procedure to compare the

breakpoints estimated with any method, for this example the CBS and PELT, with respect

to an ideal estimation.

n

1

2

3

Figure 7.1: Procedure diagram to compare the breakpoints estimator methods respect

to an ideal estimation obtained using the Next Generation Sequencing technology. The

modified probabilistic masks remove the breakpoints that unsatisfied a given probability,

which is specified with the ϑ–sense.

The procedure showed in Fig. 7.1 implied several steps. First, the microarray measure-

ment yn is processed to estimate the breakpoints b̂i of CNAs with CBS and PELT methods.

The copy number data considered in this chapter to illustrate the method were provided by

Institute Curie, Paris, France Ovarian cancer samples were sequenced using shallow Whole

genome sequencing technology; copy number estimations were obtained using ControlFreec

tool [86]; copy number profiles were randomly modified for anonymization. Sample 1 and

Sample 2 were chosen to test our method because they represent highly altered variants of

cancer genomic profiles. The package changepoint implements this methods in R, which
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is a free software environment for statistical computing and graphics. The breakpoints

b̂i are obtained with the command cpt.mean specifying the method BINSEG and PELT,

respectively. To both algorithms, it is specified a manual penalty value=”log(n) and a

minimal length segment of 5 points to both algorithms. Next, the modified probabilistic

confidence masks based on AEP distribution remove some breakpoints that do not exceed

a threshold of probability.

The ideal estimation of breakpoints bi is given by the method Next Generation Se-

quencing, which is the high resolution technology most reliable that exists to this day.

However, the comparison is delimited to breakpoints bi of segments with a length of 1, 2

and 3 Mbp seeking the best conditions for each algorithm. This restriction is based on the

argument that many times medical experts made their analysis and diagnostics according

to a specific length of estimated CNAs.

Finally, the matched breakpoints x, where the location of b̂i “ bi, the breakpoints

removed of b̂i and x represented as z1 and z2 respectively, are showed with a Venn diagram.

It can be noted that z2 “ z3 because the breakpoints bi are unprocessed with the confidence

masks, i. e. the unique points estimated with the NGS that can be deleted are the match

points. So, it is obtained four possible results True Positive (TP), False Positive (FP),

True Negative (TN) and False Negative (FN) points, which are represented in Table 7.1.

The True Negative points are obtained erasing a False Positive using the confidence masks.

The Figures 7.2 and 7.3 show the measurement of Chromosomes 4 and 18 from Sam-

Table 7.1: Possible cases of comparison between a particular breakpoints detector –CBS

or PELT– and Next Generation Sequencing estimation, represented with the symbols ⃝

and ▽, respectively. The case of True Negatives is given when a False Positive is removed

using the confidence masks, it is illustrated with the symbol
Â

.

Method TP FP TN FN

Breakpoint estimator ⃝ ⃝
Â

Reference NGS ▽ ▽
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ple 1, respectively. The comparison between CBS b̂i (circles) and NGS bi (plus sign)

breakpoints is illustrated in the Figure 7.2. The estimated breakpoints of NGS are delim-

ited at 1 Mega bases (Mb) in this example because the reason mentioned above. It can

be noticed that the CNAs obtained with this restriction are quite obvious to the naked

eye. For this reason, some estimated breakpoints are removed (cross) using the confidence

masks at a very high probability, for example the breakpoint b̂9 likely do no exist in the

sigma sense of ϑ “ 14. However, the segments around the breakpoint b̂9 were estimated

as normal CNAs by the NGS algorithm.

A comparizon of the PELT b̂i (circles) and NGS bi (plus sign) breakpoints given in the

figure 7.3. It is worth mentioning that the PELT algorithm estimates more breakpoints

than the CBS algorithm for the sames parameters. Here, several estimated breakpoints are

removed in a range of sigma sense of ϑ P r0.6745, 20s or a probability of 50% to « 100%.

The measurements of CNAs have many oscillations close to the centromere of the DNA

chain, which are detected by the PELT algorithm and completely removed with modified

confidence masks.

Using a Venn diagram it is possible to visualize the global results of comparison of the

16 patients of 23 Chromosomes from microarray database. Figure 7.4 shows the results

for the CBS method at several values of ϑ, respectively. This Venn diagrams show a total

of 1073 breakpoints estimated by the CBS method, 672 points estimated by the NGS

algorithm, 167 match points, in other words the breakpoints estimated that shared the

same position. An amount of 18 estimated points by CBS are deleted at the minimum

probability of 50% and a total of 659 deleted breakpoints at a maximum probability

« 100%. Based on the results of figure 7.4, all match breakpoints of NGS delimited at

1Mb exist at a probability of ă 1 ´ 2.78 ˆ´ 5 or at ă ϑ “ 4.19 where the first 5 points

are removed. After this probability the match breakpoints begin to be erased by the

probabilistic confidence masks BUB
l|αE and BLB

l|αE finishing with 53 points removed at ϑ “ 20.

Following the same procedure, the PELT algorithm obtained a total of 3002 CNAs

breakpoints, 2.79 times more points than CBS. The figure 7.5 gives the comparison of

breakpoints estimated with CBS and NGS algorithms employing a Venn diagram . In

the comparison PELT versus NGS, the match points are increased to 353. However, at
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Figure 7.2: Estimated CNAs–annotated as Normal, Gains or Loss– to measurements of

Chromosome 4 from the Sample 1, which is plotted Genomic Position versus Log2 Ratio.

The total of breakpoints located by the NGS (triangle down) is limited to segments greater

than 1 Mega bases (plus sign). The points estimated by the CBS method (circles) can be

removed using the modified confidence masks (cross) in a range of ϑ from 0.6745 to 20.

the probability of 1 ´ 2.78 ˆ´ 5 the confidence masks suggest that 13 match points not

exist. Initially, only 4 points estimated by PELT are deleted at a probability of 50%, 2421

breakpoints at the maximum probability « 100% and 207 match points to the same level.

The number of breakpoints removed with the modified confidence masks can be sum-

marized in the figure 7.6. Here it is plotted the estimated breakpoints of CBS (circle) and

PELT (square) respect to a level of specified probability in the σ-sense. The initial number

of estimated change points in both curves decrease when the probability increased from
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Figure 7.3: Estimated CNAs–annotated as Normal, Gains or Loss– to measurements of

Chromosome 8 from the Sample 1, which is plotted Genomic Position versus Log2 Ratio.

The total of breakpoints located by the NGS (triangle down) is limited to segments greater

than 1 Mega bases (plus sign). The points estimated by the CBS method (circles) can be

removed using the modified confidence masks (cross) in a range of ϑ from 0.6745 to 20.

50% to « 100%. The analysis showed in figure 7.6 can be useful to set the breakpoints at

a required probability.

Based on the computed points TP, FN, TN, and FP it is possible to show the results

using a Receiver Operating Characteristic (ROC) curve. The ROC space is created plot-

ting the True Positive Rate (TPR) against the False Positive Rate (FPR) [87]. The TPR

and FPR are also known as sensitivity and as the fall–out or probability of false alarm,

respectively. These parameters are calculated using the below equations
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(a) ϑ “ 0.6745 (b) ϑ “ 2.43 (c) ϑ “ 5.95

(d) ϑ “ 7.70 (e) ϑ “ 9.46 (f) ϑ “ 11.22

(g) ϑ “ 12.97 (h) ϑ “ 16.49 (i) ϑ “ 20

Figure 7.4: Comparative of breakpoints estimated with Circular Binary Segmentation

and Next Generation Sequencing algorithms employing a Venn diagram. Based on the

suggestion of confidence masks BUB
l|αE and BLB

l|αE the breakpoints estimated by CBS method

can be refined at a given probability, parameter ϑ.

TPR “ TP
P

“ TP
TP`FN

(7.1)

FPR “ FP
N

“ FP
FP`TN

“ 1 ´ TNR (7.2)
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(a) ϑ “ 0.6745 (b) ϑ “ 2.43 (c) ϑ “ 5.95

(d) ϑ “ 7.70 (e) ϑ “ 9.46 (f) ϑ “ 11.22

(g) ϑ “ 12.97 (h) ϑ “ 16.49 (i) ϑ “ 20

Figure 7.5: Comparative of breakpoints estimated with Circular Binary Segmentation

and Next Generation Sequencing algorithms employing a Venn diagram. Based on the

suggestion of confidence masks BUB
l|αE and BLB

l|αE the breakpoints estimated by CBS method

can be refined at a given probability, parameter ϑ.

where TNR is defined as the specificity and computed as TNR=TN(TN+ FP), P the

number of real positive cases and N the number of real cases in the data. So, the Figures
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Figure 7.6: Estimated breakpoints of CNAs using the methods a) CBS (circle) and b)

PELT (square) and deleted change points at specified probability. The first value of both

curves is the initial number of estimated breakpoints.

7.7a and 7.7b show the results of comparison in the range of ϑ from 0.6745 to 20 in

the ROC space of each method with three delimiters for CNAs of NGS: 1 (triangle), 2

(square), and 3 (circle) Mbp. The curve generated by CBS algorithm is far from being a

good estimator to the CNA measurements from the Sample 1, because any results in the

ROC space cross to the region of better classification (upper region). Nevertheless, the

results exhibited by the PELT estimations suggest to be a good estimator at a value of

ϑ “ 11.21, showed with a circle in the figure 7.7b.

7.1.1 CNAs Size Analysis

As mentioned above, sometimes the studies of medical experts are based on a definite size

of CNAs to give a diagnostic of a particular disease. Because the probabilistic confidence

masks are applied to test CNAs according to several intervals of confidence, there exist a

83



7. Algorithms comparizon using Confidence Masks 84

FPR or (1-specificity)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

r 
s
e

n
s
it
iv

it
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Threshold at 1Mbp
Threshold at 2Mbp
Threshold at 3Mbp

ϑ = 20

ϑ = 0.6745

(a) CBS

FPR or (1-specificity)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
P

R
 o

r 
s
e

n
s
it
iv

it
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Threshold at 1Mbp
Threshold at 2Mbp
threshold at 3Mbp

ϑ = 0.6745
ϑ = 20

ϑ = 11.21

(b) PELT

Figure 7.7: True positive rate against the false positive rate based on the results of compar-

ison between a) CBS and b) PELT with NGS estimates at three thresholds: 1 (triangle),

2 (square), and 3 (circle) Mega base pairs for a range ϑ from 0.6745 to 20.
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Figure 7.8: Size analysis of CNAs estimated by a) CBS and b) PELT tested with the

probabilistic confidence masks BUB
l|αE and BLB

l|αE.

direct influence over the resulting CNAs at each level of probability.

To exemplify this affirmation, the breakpoints estimated by CBS of Chromosome 8 from
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Sample 1 and by PELT of Chromosome 17 from Sample 2 were tested with the confidence

masks BUB
l|αE and BLB

l|αE increasing the confidence intervals ϑ from 0.6745 to 20. Next, the

CNAs size is inspected at each level finding the maximum, the mean and the minimum

length of tested segments. The figures 7.8a and 7.8b illustrate the analysis of CNAs size.

The maximum segment showed in the figure 7.8a estimated by the CBS method do not

change its length at any level of probability. The mean and minimum value of CNAs are

increased 1.94 and 5.99̄ times, respectively. For the case of PELT estimates, Figure 7.8b,

the maximum segment increase its length 7.385 Mbp and the minimum segment have a

little difference of 0.035 Mbp. The mean of CNAs estimated with PELT method and

tested by confidence masks is 9.8536 Mbp greater, growing 8.063 times.
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Chapter 8

Conclusions

8.1 About Heuristic Approximation

The Bessel function-based heuristic approximation of the jitter distribution in the break-

points is more accurate than the Laplace-based one. This is particularly true for low and

extra low SNR values (γ´
l , γ

`
l ) often observed in probes of small chromosomal changes.

Note that, when SNR ! 1, the Laplace distribution often is computed in complex numbers.

The confidence probabilistic masks formed with the Bessel-based approximation give

a more correct picture for possible locations of chromosomal changes on a probabilistic

field. These masks argue that the CNA estimates may be improved when the SNR reaches

low values. Several estimates of chromosomal changes obtained in Project GAP using the

SNP technology were tested by the masks and improved accordingly by removing some

unlikely existing breakpoints.

Even though the heuristic approximation have less error than Laplace distribution, the

Bessel-based distribution shows mathematical disadvantages and a simple analytic form

for the jitter distribution should be sought in order to use it in the probabilistic masks.
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8.2 About Laplace–Parametrization

The parametrization of the Laplace density provided by several approximations of the

k-varying segmental noise variance has demonstrated higher accuracy in bounding jitter

in the breakpoints with given confidence probability. The parametrization has appeared

to be especially efficient for low and extra low segmental SNR values, when the break-

point locations are unrecognized visually. The mathematical support of the skew Laplace

distribution gives a great advantage of this technique in contrast to the Heuristic approx-

imation.

The hybrid confidence masks combining best outputs of the particular masks have

demonstrated an ability to bound the jitter with a high accuracy for practically all seg-

mental SNR values observed in chromosomal probing. That was confirmed by testing the

masks by a chromosome sample having 59 segments and 58 breakpoints and associated

with breast cancer.

It has also been revealed that the left and right jitter in the breakpoints correlate each

other. The parametrization of the Laplace density can be provided with more accuracy

when accounting the correlation properties of the k-varying segmental noise variances.

This problem is under investigation.

8.3 About AEP approximation

The AEPD (asymmetric exponential power distribution) has appeared to be more ac-

curate than the SkL discrete skew Laplace and the above described distributions in the

approximation of jitter distribution, obtained by the ML estimator, in the breakpoints of

the CNAs.

This is particularly true for SNR ă 1 and SNR ! 1 values often observed in probes of

small CNAs using CGH microarrays. Another advantage of AEPD is that if SNR" 1 the

parameter α « 1 and this distribution converges to the Skew Laplace distribution.

Concerning to the confidence masks, the computed upper and lower bounds decreased

the error generated by other distributions in order to avoid uncertainties and false deci-
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sions. To corroborate, the confidence masks were applied to real data obtained using the

micro-array of HR-CGH coinciding correctly with the annotations established by medical

experts. Referring to this approximation, It is necessary to seek a simple relationships

between the AEPD parameters and the segmental SNRs to use them in the confidence

probabilistic masks.

8.4 About Matching Expert’s Annotations

The comparison of AEPD-based confidence probabilistic masks and experts annotations on

the testing set of CNA profiles of neuroblastoma show improvement of the CNA estimates.

This result implied that modified confidence masks can give additional information to

biologists for diagnostic and prognostic purpose.

The CNAs estimated by the standard CBS algorithm were tested by the confidence

masks and improved accordingly by removing some unlikely existing breakpoints and thus

matching better with the annotations. Based on this procedure, It has been specified the

probability Pε of the gold standard as Pmin
ε “ 0.9998 ă Pε ă Pmax

ε À 1 in the 3.21 ´ σ

interquartile with an average probability of P̄ε “ 1 ´ 1.41 ˆ 10´12. Talking about this

procedure, we propose using several algorithms to detect breakpoints and evaluate its

efficiency.

8.5 About Comparative of algorithms using Confi-

dence Masks

The CNAs estimated by Circular Binary Segmentation (CBS) and Pruned Exact Linear

Time (PELT) algorithms were compared with the estimates generated by the most modern

technology that exists, Next Generation Sequencing (NGS). The methods to find CNAs

are based on dissimilar statistical foundations, for this reason the estimates from each

technique are uncorrelated. Aiming to obtain better results, the CNAs of NGS were

restricted using the thresholds of 1, 2, and 3 Megabase pairs.
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Testing the CNAs estimates obtained by CBS and PELT using the probabilistic confi-

dence masks BUB
l|αE and BLB

l|αE, it was enhanced the matching of these algorithms respect to

the NGS estimates. Modulating the parameter ϑ from 0.6745 to 20 it was showed that the

algorithm PELT is better estimator than CBS to the database provided by the Institute

of Curie in all cases. The best versions of algorithm PELT are found when the confidence

masks cleared its estimations at a value of ϑ “ 11.21. The probability is represented in

the σ–sense because it has very high values « 100%

Finally, we show the impact on the length of CNA estimated at several levels of proba-

bility using the confidence masks. This procedure give a general vision that small segments

in size can remain at high probabilities because the confidence masks use more parameters

that the CNAs length N .
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[85] Jorge Muñoz-Minjares, Yuriy S Shmaliy, Tatiana Popova, and RJ Perez-Chimal.

Matching confidence masks with experts annotations for estimates of chromosomal

copy number alterations. In International Conference on Bioinformatics and Biomed-

ical Engineering, pages 85–94. Springer, 2018.

[86] Valentina Boeva, Tatiana Popova, Kevin Bleakley, Pierre Chiche, Julie Cappo, Gu-

drun Schleiermacher, Isabelle Janoueix-Lerosey, Olivier Delattre, and Emmanuel Bar-

illot. Control-freec: a tool for assessing copy number and allelic content using next-

generation sequencing data. Bioinformatics, 28(3):423–425, 2011.

[87] James A Hanley and Barbara J McNeil. The meaning and use of the area under a

receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

101



Appendices

102



Appendix A

A.1 Analysis of Gaussian Process

To find the probabilities of events Al and Bl the following analysis of gaussian process is

described. First, it is defined the equations in terms of γ:

p1pyq “ 1a
2πσ2

x

e
´ py´∆q2

2σ2
x (A.1)

“
c

γ´
l

2π∆2
e´

γ
´
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Case I : σx ą σy, γ
´
l ă γ`

l . Defining the limits and substituting the gaussian function,

it is established that

P pAlq “ 1 ´
α

ż

β

p1pyqdy (A.5)

“ 1 ´
c

γ´
l

2π∆2

α
ż

β

e´
γ

´
l

py´∆q2

2∆2 dy (A.6)
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Now, using the definition of erf and erfc

erfpxq “ 2?
π

x
ż

0

e´t2dt (A.7)

erfcpxq “ 1 ´ erfpxq “ 2?
π

8
ż

x

e´t2dt (A.8)

and setting a change of variable t “
b

γ´
l

2∆2 py ´ ∆q and modifying the limits, the

probability of Al can be represented as:

P pAlq “ 1 ´ 1?
π

gα
l

ż

g
β
l

e´t2dt (A.9)

where g
β
l “ βl´∆l

|∆l|

b
γ´
l

2
and gαl “ αl´∆l

|∆l|

b
γ´
l

2
. Finally, the equation (A.9) is represented

in the form

P pAlq “ 1 ` 1

2
rerfpgβl q ´ erfpgαl qs. (A.10)

In the same way, defining the limits and substituting the gaussian function, the prob-

ability of event Bl is defined as:

P pBlq “
α

ż

β

p2pyqdy “ 1

∆

c
γ`
l

2π

α
ż

β

e´
γ

`
l

y2

2∆2 dy (A.11)

setting a change of variable t “
b

γ`
l

2∆2y and modifying the limits, the probability of Bl

can be represented as:

P pBlq “ 1?
π

hα
l

ż

h
β
l

e´t2dt (A.12)

where hβ
l “ βl

|∆l|

b
γ`
l

2
, hα

l “ αl

|∆l|
. So. the the equation (A.12) is represented in the form
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P pBlq “ 1

2
rerfphα

l q ´ erfphβ
l qs. (A.13)

Case II: σx “ σy, γ
´
l “ γ`

l

For Case II, the limits are computed respect to α

P pAlq “ 1 ´
8
ż

α

p1pyqdy (A.14)

“ 1

∆

c
γ´
l

2π

8
ż

α

e´
γ

´
l

py´∆q2

2∆2 dy (A.15)

“ 1?
π

8
ż

gα
l

e´t2dt (A.16)

and the probability of event Al for this case is expressed as

P pAlq “ 1

2
erfcpgαl q (A.17)

The probability of event Bl also is computed respect to the constant α in the next

form

P pBlq “
α

ż

´8

p2pyqdy (A.18)

“ 1

∆

c
γ`
l

2π

8
ż

´α

e´
γ

`
l

y2

2∆2 dy (A.19)

“ 1?
π

8
ż

´hα
l

e´t2dt (A.20)

and the probability of event Bl for this case is expressed as

P pBlq “ 1 ´ 1

2
erfcphα

l q (A.21)
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Case III: σx ă σy, γ
´
l ą γ`

l

Following the procedure in Case I, the limits are defined and the gaussian function

replaced:

P pBlq “
β

ż

α

p1pyqdy (A.22)

“ 1

∆

c
γ´
l

2π

β
ż

α

e´
γ

´
l

py´∆q2

2∆2 dy. (A.23)

Using the limits defined to equation A.9 g
β
l and gαl , the probability P pBq can be

expressed as

P pAq “ 1?
π

g
β
l

ż

gα
l

e´t2dt (A.24)

and represented in terms of erf and erfc

P pAq “ 1

2
rerfcpgαl q ´ erfcpgβl qs “ 1

2
rerfpgβl q ´ erfpgαl qs (A.25)

The probability of event P pBq for this case is deduced replacing the gaussian function

and setting the limits according to values of α and β

P pBlq “ 1 ´
β

ż

α

p2pyqdy (A.26)

“ 1 ´ 1

∆

c
γ`
l

2π

β
ż

α

e´
γ

`
l

y2

2∆2 dy (A.27)

using the limits as in the equation (A.12) hβ
l and hα

l it is obtained the next equation
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P pBq “
h
β
l

ż

hα
l

e´t2dt (A.28)

Finally, the probability of event B, P pBq, is represented in terms of erf and erfc

P pAq “ 1 ` 1

2
rerfcphβ

l q ´ erfcphα
l qs “ 1 ` 1

2
rerfphα

l q ´ erfphβ
l qs. (A.29)
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Appendix B

B.1 Skew Laplace Distribution

The probability density function of the skew Laplace distribution is proposed in [59] and

defined in continuous time as:

fpxq “ 1

σ

κ

1 ` κ2

$
&
%

e´ κ
σ
x , x ě 0 ,

e´ 1

κσ
x , k ď 0 ,

(B.1)

where σ ą 0 is a scale parameter and skewness parameter κ. In the symmetric case

(κ “ 1) this leads to a discrete analog of the classical Laplace distribution

fpxq “ 1

2σ
e´ |x|

σ . (B.2)

The discrete distribution of equation (B.1) takes on an explicit form in terms of the

parameters d “ eκ{σ and q “ e1{κσ leading to the following definition.

Definition. A random variable Y has the discrete Laplace distribution with parame-

ters d P p0, 1q and q P p0, 1q, if

fpk|d, q, q “ PpY “ kq “ p1 ´ dlqp1 ´ qlq
1 ´ dlql

$
&
%

dkl , k ě 0 ,

q
|k|
l , k ď 0 .

(B.3)

Now, in order to find κ and ν, it is needed to change the variable σ by ν and based on

the relationship 0 ă dl “ e
´

κl
νl “ P pBlq´1 ´ 1 ă 1, 0 ă ql “ e

´ 1

κlνl “ P pAlq´1 ´ 1 ă 1 the

equation (B.3) can be represented as:
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ppkq “ 1

φ

$
’’&
’’%

rP´1pBq ´ 1sk , k ą 0 ,

1 , k “ 0 ,

rP´1pAq ´ 1s|
k| , k ă 0 ,

(B.4)

where φ is a parameter of normalization.

Using (B.4) at k “ ´1 and k “ 1, it is obtained the next expressions

p1 ´ dlqp1 ´ qlqdl
1 ´ dlql

“ 1

φ

ˆ
1

P pBq ´ 1

˙
, k “ 1 (B.5)

p1 ´ dlqp1 ´ qlqql
1 ´ dlql

“ 1

φ

ˆ
1

P pAq ´ 1

˙
, k “ ´1. (B.6)

which are used to establish a ratio s

dl

ql
“ P pAqp1 ´ P pBqq

P pBqp1 ´ P pAqq “ s (B.7)

isolating the variable dl and replacing the variable s

dl “ sql Ñ e
´

κl
νl “ se

´ 1

κlνl (B.8)

then, based on (B.8)

s “ e
1

κlνl
´

κl
νl Ñ ln s “ 1

κlνl
´ κl

νl
“ 1 ´ κ2

κ

1

ν
(B.9)

so it is obtained an initial representation of νl

νl “ 1

ln s

1 ´ κ2
l

κl

. (B.10)

Substituting the equation (B.10) and setting
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p1 ´ dlqp1 ´ qlq
1 ´ dlql

“ 1

φl

k “ 0 (B.11)

1 ´ dlql “ φlp1 ´ ql ´ dl ´ qldlq

1 ´ e
´ 1

νl

κ2
l

`1

κ2
l “ φl

ˆ
1 ´ e

´ 1

κlνl ´ e
´

κl
νl ` e

´ 1

νl

κ2
l

`1

κl

˙

1 ´ s
´

1`κ2
l

`1

1´κ2
l “ φl

˜
1 ´ s

´ 1

1´κ2
l ´ s

´
κ2
l

1´κ2
l ` s

´
1`κ2

l

1´κ2
l

¸

1 ´ φl “ p1 ` φlq s´1s
´2

κ2
l

1´κ2
l ´ φls

´1s
´

κ2
l

1´κ2
l ´ φls

´
κ2
l

1´κ2
l (B.12)

To simplify, it is needed to use the variable xl defined as xl “ s
´

κ2
l

1´κ2
l , and rewriting

the equation (B.11)

1 ´ φl “ p1 ` φlq
1

s
x2
l ´ φ

1

d
xl ´ φlxl

x2
l ´ φlp1 ` sq

1 ` φl

xl ´ 1 ´ φl

1 ` φl

s “ 0 (B.13)

So, the equation (B.13) is solved applying the standard solution of a quadratic function

to find xl:

xl “ φlp1 ` µlq
2p1 ` φlq

˜
1 ´

d
1 ` 4µlp1 ´ φ2

l q
φ2
l p1 ` µlq2

¸
. (B.14)

If xl “ s
´ κ2

1´κ2 then it can be assumed that

ln xl “ κ2
l

1 ´ κ2
ln s

ln xl

ln s
´ κ2 ln xl

ln s
` κ2

l “ 0

(B.15)

and the variable κl is computed as

κl “
d

ln xl

ln
`
xl

s

˘ (B.16)
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.

Finally, the variable νl can be obtained assuming that
1´κ2

l

κl
“ ´κl

ln s
lnxl

νl “ ´ κl

lnxl

. (B.17)
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Appendix C

C.1 Computational Algorithm

The algorithm for computing the UB BU
n and LB BL

n bounds is developed in Table C.1

and Table C.2 [71]. Its inputs are the detected CNAs yn, breakpoint locations n̂l, bound

wideness ϑ, number L of the breakpoints, and number of the probes M . At the output,

it has two confidence masks BU
n and BL

n . The first algorithmic block (3–6) computes the

segmental statistics âj and σj on intervals between neighboring breakpoints. The second

block (7) is a function, described in table C.2, that employs equations (3.29, 3.30, 3.10,

3.37, 3.40) to compute the right jitter kR
l and left jitter kL

l . The third block (8–12) finds

the jitter boundaries Il and El for the UB and LB masks. The fourth block (13–16) make

corrections to jitter boundaries in the cases when some boundaries merge or overlap. The

fifth block (17–23) skips some points in the case when the UB mask or LB mask occurs to

be uniform for several breakpoints. The masks BU
n and BL

n finally go to the output. Note

that 3.39 approximates jitter in the breakpoints of CNVs in the lower bound sense. That

means that wide jitter boundaries detected by the algorithm may be wider in practice.

Table C.1: Algorithm for computing the UB mask BU
n and LB mask BL

n via SNP array CNVs

measurements yn and the breakpoint locations estimates n̂l. Given: bound wideness (ϑ-sigma).

Input: yn, n̂l, ϑ

1: ξ “erfcp ϑ?
2
q, L “length(n̂l), M “length(yn)
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2: NL`1 “ M ´ n̂L, n̂0 “ 0

3: for j “ 1 : L ` 1 do

4: Nj “ n̂j ´ n̂j´1, âj “ 1
Nj

řn̂j´1
v“n̂j´1

yv

5: σj “
b

1
Nj

řn̂j´1
v“n̂j´1

pyv ´ âjq2

6: end for

7:
“
kR
l , k

L
l

‰
“ kR

l kL
l jitterpâj , σ̂j, Lq Ź right jitter

Ź left jitter

8: IL`1 “ M ´ 1, EL`1 “ M ´ 1

9: for l “ 1 : L do

10: Il “

$
&
%

n̂l ´ kR
l if ∆l ą 0

n̂l ` kL
l if ∆l ă 0

11: El “

$
&
%

n̂l ` kL
l if ∆l ą 0

n̂l ´ kR
l if ∆l ă 0

12: end for

13: for l “ 1 : L do

14: Il “

$
’’’’’&
’’’’’%

Il if Im Il “ 0

Il´1 if ∆l ě 0 ^ Im Il ‰ 0

Il`1 if ∆l ă 0 ^ Im Il ‰ 0

elseif pIm Il`1q Ñ Il`2

15: El “

$
’’’’’&
’’’’’%

El if Im El “ 0

El`1 if ∆l ě 0 ^ Im El ‰ 0

elseif pIm El ` 1q Ñ El`2

El´1 if ∆l ă 0 ^ Im El ‰ 0

16: end for

17: l “ 1, k “ 1

18: for n “ 0 : M ´ 1 do

19: l “

$
’’&
’’%

l if n ă Il

l ` 1 if n ě Il ^ Il`1 ą Cl

l ` 2 if n ě Il ^ Il`1 ď Cl
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20: k “

$
’’&
’’%

k if n ă El

k ` 1 if n ě El ^ El`1 ą Cl

k ` 2 if n ě El ^ El`1 ď Cl

21: BU
n “ âl ` ϑ

b
σ2

l

Nl
Ź UB mask

22: BL
n “ âk ´ ϑ

b
σ2

k

Nk
Ź LB mask

23: end for

Output: BU
n , B

L
n

Table C.2: Algorithm for computing the KR jitter kRl and KL jitter kLl . Given: âj , σ̂j and

number L of breakpoints.

Function kR
l kL

l jitter, Input: âj, σ̂j , L

1: for l “ 1 : L do

2: ∆l “ âl`1 ´ âl, γ´
l “ ∆2

l

σ2

l

, γ`
l “ ∆2

l

σ2

l`1

3: αl by (3.10) with “ ´ ” and al “ âl

4: βl by (3.10) with “ ` ” and al “ âl

5: g
β
l “ βl´∆l

|∆l|

b
γ´
l

2
, gαl “ αl´∆l

|∆l|

b
γ´
l

2

6: h
β
l “ βl

|∆l|

b
γ`
l

2
, hα

l “ αl

|∆l|

b
γ`
l

2

7: PA
l by (3.29), PB

l by (3.30), φl by (3.37)

8: µl “ PA
l

p1´PB
l

q

PB
l

p1´PA
l

q
, xl by (3.40) , κl “

b
lnxl

lnpxl{µlq
,

9: νl “ ´ κl

lnpxlq
, dl “ e

´
κl
νl , ql “ e

´ 1

κlνl

10: kR
l “

Y
νl
κl
ln p1´dlqp1´qlq

ξp1´dlqlq

]
Ź right jitter

11: kL
l “

Y
νlκlln

p1´dlqp1´qlq
ξp1´dlqlq

]
Ź left jitter

12: end for

Output: kR
l , k

L
l
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Appendix D

D.1 Comparison of Approximations

The (mse) computed to each proposed approximation is summarized in tables D.1 and D.2.

Following a particular methodology -Heuristic, Parametrization of Laplace or Asymetric

Exponential Power distribution- the functions obtained are compared with the measure-

ments generated at three levels of simulation: slow, fast and detailed. So, in tables D.1

and D.2 are exposed the best performance of each function proposed.

Table D.1: Typical MSEs produced by all the approximations proposed for different values

of Signal to Noise Ratio γ “ γ´
l “ γ`

l

Section I

γ
Slow Algorithm Fast Algorithm

pdf

(3.39)

MBA

(4.3)

pdf

(3.39)

(3.39)

with (4.9)

(3.39)

with (4.10)

(3.39)

with (4.11)

0.1 7.6ˆ10´5 4.2ˆ10´6 8.6ˆ10´5 1.4ˆ10´6 1.5ˆ10´6 1.8ˆ10´7

0.2 7.7ˆ10´5 1.8ˆ10´6 7.8ˆ10´5 4.1ˆ10´6 3.8ˆ10´6 1.1ˆ10´7

0.3 7.5ˆ10´5 1.1ˆ10´6 7.4ˆ10´5 5.6ˆ10´6 5.3ˆ10´6 7.9ˆ10´8

0.4 7.3ˆ10´5 8.0ˆ10´7 7.0ˆ10´5 6.9ˆ10´6 6.3ˆ10´6 8.5ˆ10´8

0.5 6.6ˆ10´5 6.1ˆ10´7 6.6ˆ10´5 8.1ˆ10´6 7.3ˆ10´6 1.1ˆ10´7

0.6 6.3ˆ10´5 4.9ˆ10´7 5.9ˆ10´5 1.0ˆ10´5 9.0ˆ10´6 1.2ˆ10´7
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Section I

γ
Slow Algorithm Fast Algorithm

pdf

(3.39)

MBA

(4.3)

pdf

(3.39)

(3.39)

with (4.9)

(3.39)

with (4.10)

(3.39)

with (4.11)

0.7 5.9ˆ10´5 4.1ˆ10´7 5.9ˆ10´5 1.0ˆ10´5 9.0ˆ10´6 1.2ˆ10´7

0.8 5.5ˆ10´5 3.5ˆ10´7 5.3ˆ10´5 1.2ˆ10´5 1.0ˆ10´5 9.2ˆ10´8

0.9 5.3ˆ10´5 3.0ˆ10´7 5.3ˆ10´5 1.2ˆ10´5 1.0ˆ10´5 9.2ˆ10´8

1.0 5.1ˆ10´5 2.7ˆ10´7 5.0ˆ10´5 2.2ˆ10´5 2.7ˆ10´5 1.7ˆ10´7

1.1 4.9 ˆ10´5 2.4ˆ10´5 2.7ˆ10´5 2.5ˆ10´5 3.2ˆ10´5 1.7ˆ10´7

1.37 4.1ˆ10´5 1.8ˆ10´5 4.0ˆ10´5 2.7ˆ10´5 3.4ˆ10´5 2.6ˆ10´7

Table D.2: Typical MSEs produced by all the approximations proposed for different values

of Signal to Noise Ratio γ “ γ´
l “ γ`

l

Section II

γ
Detailed Algorithm

pdf

(3.39)

MBA

(4.3)

(3.39)

with (4.9)

(3.39)

with (4.10)

(3.39)

with (4.11)
AEP 4.11

0.1 7.3ˆ10´5 2.18ˆ10´5 1.3 ˆ10´5 1.2ˆ10´5 9.5ˆ10´6 1.11ˆ10´7

0.2 7.6ˆ10´5 2.8ˆ10´5 9.9ˆ10´6 8.5ˆ10´6 1.3ˆ10´5 7.09ˆ10´8

0.3 7.5ˆ10´5 3.3ˆ10´5 9.5ˆ10´6 7.8ˆ10´6 1.7 ˆ10´5 1.16ˆ10´7

0.4 7.2ˆ10´5 3.5ˆ10´5 8.17 ˆ10´6 6.2ˆ10´6 1.8ˆ10´5 1.03 ˆ10´7

0.5 6.8ˆ10´5 3.5ˆ10´5 7.12ˆ10´6 5.0ˆ10´6 1.9ˆ10´5 1.24 ˆ10´7

0.6 6.5ˆ10´5 3.4ˆ10´5 5.9ˆ10´6 5.1ˆ10´6 2.0ˆ10´5 1.04ˆ10´7

0.7 5.9 ˆ10´5 3.3ˆ10´5 4.7ˆ10´6 8.2ˆ10´6 2.0ˆ10´5 8.33ˆ10´8

0.8 5.7 ˆ10´5 3.2ˆ10´5 3.6ˆ10´6 1.5ˆ10´6 1.8 ˆ10´5 9.99ˆ10´8

0.9 5.2 ˆ10´5 3.0ˆ10´5 2.4ˆ10´6 6.9 ˆ10´7 1.6ˆ10´5 1.13ˆ10´7

1.0 5.0 ˆ10´5 2.9ˆ10´5 2.0ˆ10´6 4.4 ˆ10´7 1.6ˆ10´5 1.21ˆ10´7

1.1 4.7 ˆ10´5 2.8ˆ10´5 1.4 ˆ10´6 2.2 ˆ10´7 1.4ˆ10´5 1.13ˆ10´7

1.37 3.9ˆ10´5 2.37ˆ10´5 7.2 ˆ10´7 7.9 ˆ10´7 1.0ˆ10´5 6.80ˆ10´8
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